数据结构课程设计-最小生成树

时间:2019-05-14 02:23:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数据结构课程设计-最小生成树》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数据结构课程设计-最小生成树》。

第一篇:数据结构课程设计-最小生成树

数据结构 课程设计报告

设计题目:最小生成树

专业:xxxxxx 院系:计算机学院 姓名:xxxxxxxxx 学号:xxxxxx

时间:2013年10月7日

数据结构课程设计报告 最小生成树

目 录

一、设计目的……………………………………………………………….-2-

二、算法思想分析………………………………………………………-2-1.算法思想………………………………………………………………..-3-1)普里姆(Prim)算法思想……………………………………………………….-3-2)克鲁斯卡尔(Kruskal)算法思想..........................................-3-2.系统采用的数据结构和算法………………………………-3-

三、算法的描述与实现……………………………………………….-4-

四、用户手册………………………………………………………………-7-

五、总结…………………………………………………………………….-10-

六、参考文献…………………………………………………………….-10-

七、附录(源代码)………………………………………………...-10-

数据结构课程设计报告 最小生成树

1.算法思想

1)普里姆(Prim)算法思想

a)选择从0节点开始,并选择0节点相关联的最小权值边,将与这条边相关联的另一顶点出列;

b)在出列的节点中相关联的所有边中选择一条不与另一个已出列的节点相关联的权值最小的边,并将该边相关联的节点出列;

c)重复b)直到所有的节点出列。2)克鲁斯卡尔(Kruskal)算法思想

为了使生成树上总的权值之和最小,应该使每一条边上的权值尽可能的小,所以应从权值最小的边选起,直至选出n-1条不能构成回路的权值最小的边位置。

具体做法如下:首先构造一个含n个顶点的森林,然后按权值从小到大从连通图中选择不使森林中产生回路的边加入到森林中去,直至该森林变成一棵树为止,这棵树便是连通图的最小生成树。

由于生成树上不允许有回路,因此并非每一条居当前最小的边都可选。从生成树的构造过程可见,初始态为n个顶点分属n棵树,互不连通,每加入一条边,就将两棵树合并为一棵树,在同一棵树上的两个顶点之间自然相连通,由此判别当前权值最小边是否可取只要判别它的两个顶点是否在同一棵树上即可。

2.系统采用的数据结构和算法 1)数据结构

Typedef int Vertextype;Typedef int adimatrix[MaxVertexNum][MaxVertexNum];Typedef int Vertextype vexlist[MaxVertexNum];Typedef int VexType;

数据结构课程设计报告 最小生成树

1.Great_adjmatrix()和Great_adjmatrix2()是两种建立图的方法;

2.克鲁斯卡尔算法(Kruskal):

Void kruskal(GraphMatrix * pgraph,Edge mst[]){int i,j,min,vx,vy;int weight,minweight;Edge edge;for(i=0;i

n-1;i++){mst[i].start_vex = 0;Mst[i].stop_vex = i+1;Mst[i].weight = pgraph->arcs[0][i+1];} for(i=0;i

n-1;i++)//共n-1条边 {minweight = MAX;min = i;for(j=i;j

n-1;j++)//从所有(vx,vy)(vx∈U,vy∈V-U)中选出最短的边 if(mst[j].weight

for(j=i+1;j

n-1;j++)

数据结构课程设计报告 最小生成树

j=MST[k-1].endvex;//定位于权值最小边的尾顶点 for(i=k;i

4.out_edgeset()功能为显示最小生成树。

四、用户手册

1.运行程序,得到如下窗口:

2.输入顶点数,选择算法:

1)当输入的顶点数小于10时,选择Kruskal算法,如下图

数据结构课程设计报告 最小生成树

五、总结

该程序实现了在n个城市之间建设网络,既保证了连通性,也成为了最经济的架设方法。程序中应用了普里姆算法和克鲁斯卡尔算法,实现了矩阵的输出以及最小生成树的输出。不过,该程序仍有不足之处,图的输入数据过大,易出错,不易返回,仍需完善。

六、参考文献

[1]《数据结构程序设计题典》 李春葆编 清华大学出版社 [2]《数据结构(C语言版)》 严蔚敏 吴伟民编 清华大学出版社 [3]《数据结构课程设计》 苏仕华编 机械工业出版社

七、附录:(源代码)

#include #include #define MaxVertexNum 12 #define MaxEdgeNum 20 #define MaxValue 1000 #define MAXVEX 6 #define MAX 1e+8 typedef int Vertextype;typedef int adjmatrix[MaxVertexNum][MaxVertexNum];typedef Vertextype vexlist[MaxVertexNum];typedef int VexType;typedef int AdjType;typedef struct edgeElem edgeset[MaxVertexNum];

数据结构课程设计报告 最小生成树

{ scanf(“%d%d%d”,&i,&j,&w);GA[i][j]=GA[j][i]=w;//对称 } }

void Creat_adjmatrix2(vexlist GV,adjmatrix GA,int m,int e,GraphMatrix &graph){ int i,j,k,w,x,y;

printf(“输入%d个顶点序号(0-m-1),序号从0开始。”,m);for(i=0;i=m){ printf(“您输入的序号有误,请输入0到%d-1之间的数,请重新输入。n”,m);scanf(“%d”,&GV[i]);} } for(i=0;i

GA[i][j]=MaxValue;printf(“请输入有多少条边。n”);scanf(“%d”,&e);printf(“输入%d条无向带权边(序号 序号 权值):n”,e);for(k=0;k

数据结构课程设计报告 最小生成树

/* mst[min]是最短的边(vx,vy)(vx∈U, vy∈V-U),将mst[min]加入最小生成树 */ edge = mst[min];mst[min] = mst[i];mst[i] = edge;vx = mst[i].stop_vex;/* vx为刚加入最小生成树的顶点的下标 */

for(j = i+1;j < pgraph->n-1;j++){ /* 调整mst[i+1]到mst[n-1] */ vy=mst[j].stop_vex;weight = pgraph->arcs[vx][vy];if(weight < mst[j].weight){ mst[j].weight = weight;mst[j].start_vex = vx;} } } }

void out_edgeset(edgeset MST,int e)//显示最小生成树 { int k;printf(“最小的消耗路线为n”);for(k=0;k

printf(“(%d %d %d)n”,MST[k].fromvex,MST[k].endvex,MST[k].weight);}

void prim(adjmatrix GA,edgeset MST,int n)//利用prim算法从0点出发求图的最小生成树

数据结构课程设计报告 最小生成树

int a;system(“color 71”);//改变屏幕颜色

printf(“ ┏━━━━━━━━━━━━━━━━━━━━━━━━━┓n”);printf(“ ┃㊣ 必做题:最小生成树 ㊣┃n”);printf(“ ┃ 姓名:xxxx ┃n”);printf(“ ┃ 学号:xxxxxxxxx ┃n”);printf(“ ┗━━━━━━━━━━━━━━━━━━━━━━━━━┛n”);vexlist GV;//顶点表 adjmatrix GA;//边表 edgeset MST;//最小生成树 do{ printf(“输入图的顶点数n,我们将根据您输入的数据大小选择合适的算法。n”);scanf(“%d”,&n);if(n>=10)//大于10用prim算法来实现,否则kruskal算法来实现 { printf(“用prim算法从0点出发求图的最小生成树为:n”);printf(“请输入图的边数。n”);canf(“%d”,&e);Creat_adjmatrix(GV, GA, n, e);//创建图 prim(GA,MST,n);//生成最小生成树

out_edgeset(MST, n-1);//输出最小生成树 } else{ printf(“用kcuskal算法的最小生成树为:n”);GraphMatrix graph;//定义一个结构体来表示存储结构 Creat_adjmatrix2(GV,GA,n,e,graph);//创建图 kruskal(&graph,mst);//生成最小生成树 rintf(“最小的消耗路线为n”);for(i = 0;i < graph.n-1;i++)

第二篇:数据结构实验报告-最小生成树

电 子 科 技 大 学

学生姓名:XXX 学 号:

20***

指导教师:刘峤 实验地点:信软楼306

实验时间:5月17日

一、实验室名称:软件实验室

二、实验项目名称:数据结构与算法—图

三、实验学时:4

四、实验原理:

Kruskal 算法是一种按照图中边的权值递增的顺序构造最小生成树的方法。其基本思想是:设无向连通网为G=(V,E),令G 的最小生成树为T,其初态为T=(V,{}),即开始时,最小生成树T 由图G 中的n 个顶点构成,顶点之间没有一条边,这样T 中各顶点各自构成一个连通分量。然后,按照边的权值由小到大的顺序,考察G 的边集E 中的各条边。若被考察的边的两个顶点属于T 的两个不同的连通分量,则将此边作为最小生成树的边加入到T 中,同时把两个连通分量连接为一个连通分量;若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,如此下去,当T 中的连通分量个数为1 时,此连通分量便为G 的一棵最小生成树。

如教材153页的图4.21(a)所示,按照Kruskal 方法构造最小生成树的过程如图4.21 所示。在构造过程中,按照网中边的权值由小到大的顺序,不断选取当前未被选取的边集中权值最小的边。依据生成树的概念,n 个结点的生成树,有n-1 条边,故反复上述过程,直到选取了n-1 条边为止,就构成了一棵最小生成树。

五、实验目的:

本实验通过实现最小生成树的算法,使学生理解图的数据结构存储表示,并能理解最小生成树Kruskal 算法。通过练习,加强对算法的理解,提高编程能力。

六、实验内容:

(1)假定每对顶点表示图的一条边,每条边对应一个权值;

(2)输入每条边的顶点和权值;

(3)输入每条边后,计算出最小生成树;

(4)打印最小生成树边的顶点及权值。

七、实验器材(设备、元器件):

八、数据结构及程序

#include #include #include typedef

struct {

int

vex;

int

gno;}TVex,*TpVex;

typedef

struct {

int

vhead, vtail;

int

wght;

int

flag;}TEdge,*TpEdge;

typedef struct{

TpVex VexList;

TpEdge EdgeList;

int nvex, nedge;}TGraph, *TpGraph;

void begin(TpGraph G){ int i;for(i=1;i<=G->nvex;i++){

G->VexList[i-1].gno=i;

G->EdgeList[i-1].flag=0;} } int findmin(TpGraph G){ int i,j;int minwght=G->EdgeList[0].wght;for(i=0,j=-1;inedge;i++){ PC机一台,装有C/C++语言集成开发环境。

if(G->EdgeList[i].wghtEdgeList[i].flag==0){

minwght=G->EdgeList[i].wght;

j=i;

} }

return j;}

void create(TpGraph G){

int i,j,minEdge;

for(i=0;invex-1;){

minEdge=findmin(G);

if(G->VexList[G->EdgeList[minEdge].vhead].gno== G->VexList[G->EdgeList[minEdge].vtail].gno)

G->EdgeList[minEdge].flag=-1;

else{

G->EdgeList[minEdge].flag=1;

G->VexList[G->EdgeList[minEdge].vtail].gno= G->VexList[G->EdgeList[minEdge].vhead].gno;

for(j=0;jnvex;j++){

if

(G->VexList[j].gno==G->VexList[G->EdgeList[minEdge].vtail].gno)

G->VexList[j].gno=G->VexList[G->EdgeList[minEdge].vhead].gno;

}

printf(“head:%d tail:%d

weight:%dn”,G->EdgeList[minEdge].vhead,G->EdgeList[minEdge].vtail,G->EdgeList[minEdge].wght);

i++;

}

}

} void read_file(char *filename,char *message,TpGraph

G){ int a = 0,b,c,i,j,vexlist[20]={0},m,k=0;FILE *pfile=NULL;pfile=fopen(filename,“r”);if(!pfile){

printf(“Open file failn”);

exit(0);} else

printf(“Open file success!n”);

G->EdgeList=(TpEdge)malloc(sizeof(TpEdge)*21);G->VexList=(TpVex)malloc(sizeof(TpVex)*7);for(i = 0;i < 20;++i){

fscanf(pfile , “%dt%dt%dn” , &a, &b, &c);

G->EdgeList[i].vhead=a;

G->EdgeList[i].vtail=b;

G->EdgeList[i].wght=c;

printf(“%dt%dt%dn”, a, b, c);

vexlist[k]=a;

k++;

for(m=0;m

if(vexlist[m]==vexlist[k-1])

k--;

}

vexlist[k]=b;

k++;

for(m=0;m

if(vexlist[m]==vexlist[k-1])

k--;

}

} for(j=0;j<6;j++)

G->VexList[j].vex=j+1;

G->nedge=20;G->nvex=j;}

int main(){

char *filename=“/Users/pro/Desktop/实验/数据结构实验3/graph.txt”;

TGraph G;

int Edges[20][3] = {0};

read_file(filename,Edges,&G);

begin(&G);

create(&G);

return 0;}

九、程序运行结果: 运行程序:

实验成功。

十、实验结论:

克鲁斯卡尔算法是一种能够体现“贪心”的精髓的贪心算法,它所使用的贪婪准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合中。

十一、总结及心得体会:

克鲁斯卡尔算法的时间复杂度为O(eloge),因此它相对于普里姆算法而言,适合于求边稀疏的网的最小生成树。

第三篇:2012数据结构课程设计

数 据 结 构

课程设计报告

题 目: 一元多项式计算 专 业: 信息管理与信息系统 班 级: 2012级普本班 学 号: 201201011367 姓 名: 左帅帅 指导老师: 郝慎学 时 间:

一、课程设计题目分析

本课程设计要求利用C语言或C++编写,本程序实现了一元多项式的加法、减法、乘法、除法运算等功能。

二、设计思路

本程序采用C语言来完成课程设计。

1、首先,利用顺序存储结构来构造两个存储多项式A(x)和 B(x)的结构。

2、然后把输入,加,减,乘,除运算分成五个主要的模块:实现多项式输入模块、实现加法的模块、实现减法的模块、实现乘法的模块、实现除法的模块。

3、然后各个模块里面还要分成若干种情况来考虑并通过函数的嵌套调用来实现其功能,尽量减少程序运行时错误的出现。

4、最后编写main()主函数以实现对多项式输入输出以及加、减、乘、除,调试程序并将不足的地方加以修改。

三、设计算法分析

1、相关函数说明:

(1)定义数据结构类型为线性表的链式存储结构类型变量

typedef struct Polynomial{}

(2)其他功能函数

插入函数void Insert(Polyn p,Polyn h)

比较函数int compare(Polyn a,Polyn b)

建立一元多项式函数Polyn Create(Polyn head,int m)

求解并建立多项式a+b,Polyn Add(Polyn pa,Polyn pb)

求解并建立多项式a-b,Polyn Subtract(Polyn pa,Polyn pb)2

求解并建立多项式a*b,Polyn Multiply(Polyn pa,Polyn pb)

求解并建立多项式a/b,void Device(Polyn pa,Polyn pb)

输出函数输出多项式,void Print(Polyn P)

销毁多项式函数释放内存,void Destroy(Polyn p)

主函数,void main()

2、主程序的流程基函数调用说明(1)typedef struct Polynomial {

float coef;

int expn;

struct Polynomial *next;} *Polyn,Polynomial;

在这个结构体变量中coef表示每一项前的系数,expn表示每一项的指数,polyn为结点指针类型,属于抽象数据类型通常由用户自行定义,Polynomial表示的是结构体中的数据对象名。

(2)当用户输入两个一元多项式的系数和指数后,建立链表,存储这两个多项式,主要说明如下:

Polyn CreatePolyn(Polyn head,int m)建立一个头指针为head、项数为m的一元多项式

p=head=(Polyn)malloc(sizeof(struct Polynomial));为输入的多项式申请足够的存储空间

p=(Polyn)malloc(sizeof(struct Polynomial));建立新结点以接收数据

Insert(p,head);调用Insert函数插入结点

这就建立一元多项式的关键步骤

(3)由于多项式的系数和指数都是随即输入的,所以根据要求需要对多项式按指数进行降幂排序。在这个程序模块中,使用链表,根据对指数大小的比较,对各种情况进行处理,此处由于反复使用指针对各个结点进行定位,找到合适的位置再利用void Insert(Polyn p,Polyn h)进行插入操作。(4)加、减、乘、除、的算法实现:

在该程序中,最关键的一步是实现四则运算和输出,由于加减算法原则是一样,减法可通过系数为负的加法实现;对于乘除算法的大致流程都是:首先建立多项式a*b,a/b,然后使用链表存储所求出的乘积,商和余数。这就实现了多项式计算模块的主要功能。

(5)另一个子函数是输出函数 PrintPolyn();

输出最终的结果,算法是将最后计算合并的链表逐个结点依次输出,便得到整链表,也就是最后的计算式计算结果。由于考虑各个结点的指数情况不同,分别进行了判断处理。

四、程序新点

通过多次写程序,发现在程序在控制台运行时总是黑色的,本次写程序就想着改变一下,于是经过查资料利用system(“Color E0”);可以函数解决,这里“E0,”E是控制台背景颜色,0是控制台输出字体颜色。

五、设计中遇到的问题及解决办法

首先是,由于此次课程设计里使用指针使用比较多,自己在指针多的时候易脑子混乱出错,对于此问题我是采取比较笨的办法在稿纸上写明白后开始进行 4

代码编写。

其次是,在写除法模块时比较复杂,自己通过查资料最后成功写出除法模块功能。

最后是,前期分析不足开始急于写代码,中途出现各种问题,算是给自己以后设计时的一个经验吧。

六、测试(程序截图)

1.数据输入及主菜单

2.加法和减法模块

3.乘法和除法模块

七、总结

通过本次应用C语言设计一元多项式基本计算程序,使我更加巩固了C语言程序设计的知识,以前对指针这一点使用是比较模糊,现在通过此次课程设计对指针理解的比较深刻了。而且对于数据结构的相关算法和函数的调用方面知识的加深。本次的课程设计,一方面提高了自己独立思考处理问题的能力;另一方面使自己再设计开发程序方面有了一定的小经验和想法,对自己以后学习其他语言程序设计奠定了一定的基础。

八、指导老师评语及成绩

附录:(课程设计代码)

#include #include #include typedef struct Polynomial {

float coef;6

int expn;

struct Polynomial *next;} *Polyn,Polynomial;

//Polyn为结点指针类型 void Insert(Polyn p,Polyn h){

if(p->coef==0)free(p);

//系数为0的话释放结点

else

{

Polyn q1,q2;

q1=h;q2=h->next;

while(q2&&p->expnexpn)//查找插入位置

{

q1=q2;q2=q2->next;}

if(q2&&p->expn==q2->expn)//将指数相同相合并 {

q2->coef+=p->coef;

free(p);

if(!q2->coef)//系数为0的话释放结点

{ q1->next=q2->next;free(q2);}

}

else { p->next=q2;q1->next=p;

}//指数为新时将结点插入

} 7

} //建立一个头指针为head、项数为m的一元多项式 Polyn Create(Polyn head,int m){

int i;

Polyn p;

p=head=(Polyn)malloc(sizeof(struct Polynomial));

head->next=NULL;

for(i=0;i

{

p=(Polyn)malloc(sizeof(struct Polynomial));//建立新结点以接收数据

printf(“请输入第%d项的系数与指数:”,i+1);

scanf(“%f %d”,&p->coef,&p->expn);

Insert(p,head);

//调用Insert函数插入结点

}

return head;} //销毁多项式p void Destroy(Polyn p){

Polyn q1,q2;

q1=p->next;8

q2=q1->next;

while(q1->next)

{

free(q1);

q1=q2;//指针后移

q2=q2->next;

} } //输出多项式p int Print(Polyn P){

Polyn q=P->next;

int flag=1;//项数计数器

if(!q)//若多项式为空,输出0

{

putchar('0');

printf(“n”);

return;

}

while(q)

{

if(q->coef>0&&flag!=1)putchar('+');//系数大于0且不是第一项 9

if(q->coef!=1&&q->coef!=-1)//系数非1或-1的普通情况

{

printf(“%g”,q->coef);

if(q->expn==1)putchar('X');

else if(q->expn)printf(“X^%d”,q->expn);

}

else

{

if(q->coef==1){

if(!q->expn)putchar('1');

else if(q->expn==1)putchar('X');

else printf(“X^%d”,q->expn);}

if(q->coef==-1){

if(!q->expn)printf(“-1”);

else if(q->expn==1)printf(“-X”);

else printf(“-X^%d”,q->expn);}

}

q=q->next;

flag++;

}

printf(“n”);} int compare(Polyn a,Polyn b){

if(a&&b)

{

if(!b||a->expn>b->expn)return 1;

else if(!a||a->expnexpn)return-1;

else return 0;

}

else if(!a&&b)return-1;//a多项式已空,但b多项式非空

else return 1;//b多项式已空,但a多项式非空 } //求解并建立多项式a+b,返回其头指针 Polyn Add(Polyn pa,Polyn pb){

Polyn qa=pa->next;

Polyn qb=pb->next;

Polyn headc,hc,qc;

hc=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点 11

hc->next=NULL;

headc=hc;

while(qa||qb){

qc=(Polyn)malloc(sizeof(struct Polynomial));

switch(compare(qa,qb))

{

case 1:

qc->coef=qa->coef;

qc->expn=qa->expn;

qa=qa->next;

break;

case 0:

qc->coef=qa->coef+qb->coef;

qc->expn=qa->expn;

qa=qa->next;

qb=qb->next;

break;

case-1:

qc->coef=qb->coef;

qc->expn=qb->expn;

qb=qb->next;

break;12

}

if(qc->coef!=0)

{

qc->next=hc->next;

hc->next=qc;

hc=qc;

}

else free(qc);//当相加系数为0时,释放该结点

}

return headc;} //求解并建立多项式a-b,返回其头指针 Polyn Subtract(Polyn pa,Polyn pb){

Polyn h=pb;

Polyn p=pb->next;

Polyn pd;

while(p)//将pb的系数取反

{ p->coef*=-1;p=p->next;}

pd=Add(pa,h);

for(p=h->next;p;p=p->next)

//恢复pb的系数

p->coef*=-1;13

return pd;} //求解并建立多项式a*b,返回其头指针 Polyn Multiply(Polyn pa,Polyn pb){

Polyn hf,pf;

Polyn qa=pa->next;

Polyn qb=pb->next;

hf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点

hf->next=NULL;

for(;qa;qa=qa->next)

{

for(qb=pb->next;qb;qb=qb->next)

{

pf=(Polyn)malloc(sizeof(struct Polynomial));

pf->coef=qa->coef*qb->coef;

pf->expn=qa->expn+qb->expn;

Insert(pf,hf);//调用Insert函数以合并指数相同的项

}

}

return hf;}

//求解并建立多项式a/b,返回其头指针 void Device(Polyn pa,Polyn pb){

Polyn hf,pf,temp1,temp2;

Polyn qa=pa->next;

Polyn qb=pb->next;

hf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点,存储商

hf->next=NULL;

pf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点,存储余数

pf->next=NULL;

temp1=(Polyn)malloc(sizeof(struct Polynomial));

temp1->next=NULL;

temp2=(Polyn)malloc(sizeof(struct Polynomial));

temp2->next=NULL;

temp1=Add(temp1,pa);

while(qa!=NULL&&qa->expn>=qb->expn)

{

temp2->next=(Polyn)malloc(sizeof(struct Polynomial));

temp2->next->coef=(qa->coef)/(qb->coef);

temp2->next->expn=(qa->expn)-(qb->expn);

Insert(temp2->next,hf);

pa=Subtract(pa,Multiply(pb,temp2));15

qa=pa->next;

temp2->next=NULL;

}

pf=Subtract(temp1,Multiply(hf,pb));

pb=temp1;

printf(“商是:”);

Print(hf);

printf(“余数是:”);

Print(pf);} void main(){ int choose=1;int m,n,flag=0;system(“Color E0”);Polyn pa=0,pb=0,pc,pd,pf;//定义各式的头指针,pa与pb在使用前付初值NULL printf(“请输入A(x)的项数:”);scanf(“%d”,&m);printf(“n”);pa=Create(pa,m);//建立多项式A printf(“n”);printf(“请输入B(x)的项数:”);16

scanf(“%d”,&n);printf(“n”);pb=Create(pb,n);//建立多项式B printf(“n”);printf(“**********************************************n”);printf(“*

多项式操作菜单

printf(”**********************************************n“);printf(”tt 1.输出操作n“);printf(”tt 2.加法操作n“);printf(”tt 3.减法操作n“);printf(”tt 4.乘法操作n“);printf(”tt 5.除法操作n“);printf(”tt 6.退出操作n“);printf(”**********************************************n“);while(choose){

printf(”执行操作:“);

scanf(”%d“,&flag);

switch(flag)

{

case 1:

printf(”多项式A(x):“);Print(pa);*n”);

printf(“多项式B(x):”);Print(pb);

break;

case 2:

pc=Add(pa,pb);

printf(“多项式A(x)+B(x):”);Print(pc);

Destroy(pc);break;

case 3:

pd=Subtract(pa,pb);

printf(“多项式A(x)-B(x):”);Print(pd);

Destroy(pd);break;

case 4:

pf=Multiply(pa,pb);

printf(“多项式A(x)*B(x):”);

Print(pf);

Destroy(pf);

break;

case 5:

Device(pa,pb);18

break;

case 6:

exit(0);

break;

} }

Destroy(pa);

Destroy(pb);}

第四篇:数据结构课程设计

数据结构课程设计

1.赫夫曼编码器

设计一个利用赫夫曼算法的编码和译码系统,重复地显示并处理以下项目,直到选择退出为止。要求:

1)将权值数据存放在数据文件(文件名为data.txt,位于执行程序的当前目录中)

2)初始化:键盘输入字符集大小26、26个字符和26个权值(统计一篇英文文章中26个字母),建立哈夫曼树;

3)编码:利用建好的哈夫曼树生成哈夫曼编码;

4)输出编码(首先实现屏幕输出,然后实现文件输出); 5)界面优化设计。

代码如下:

#include #include #include #include #define N 200

typedef struct HTNode

//结构体 { int Weight;

char ch;int Parent,Lchild,Rchild;}HTNode;typedef char * * HCode;

void Save(int n,HTNode *HT)

//把权值保存到文件 {

FILE * fp;

int i;

if((fp=fopen(“data.txt”,“wb”))==NULL)

{

printf(“cannot open filen”);

return;

}

for(i=0;i

if(fwrite(&HT[i].Weight,sizeof(struct HTNode),1,fp)!=1)

printf(“file write errorn”);

fclose(fp);

system(“cls”);

printf(“保存成功!”);

}

void Create_H(int n,int m,HTNode *HT)

//建立赫夫曼树,进行编码 {

int w,k,j;char c;for(k=1;k<=m;k++){

if(k<=n)

{

printf(“n请输入权值和字符(用空格隔开): ”);

scanf(“%d”,&w);

scanf(“ %c”,&c);HT[k].ch=c;

HT[k].Weight=w;

}

else HT[k].Weight=0;

HT[k].Parent=HT[k].Lchild=HT[k].Rchild=0;}

int p1,p2,w1,w2;

for(k=n+1;k<=m;k++){

p1=0;p2=0;

w1=32767;w2=32767;

for(j=1;j<=k-1;j++)

{

if(HT[j].Parent==0)

{

if(HT[j].Weight

{

w2=w1;p2=p1;

w1=HT[j].Weight;

p1=j;

}

else if(HT[j].Weight

{

w2=HT[j].Weight;

p2=j;

}

}

} HT[k].Lchild=p1;HT[k].Rchild=p2;HT[k].Weight=HT[p1].Weight+HT[p2].Weight;

HT[p1].Parent=k;HT[p2].Parent=k;

} printf(“输入成功!”);}

void Coding_H(int n,HTNode *HT)

//对结点进行译码 { int k,sp,fp,p;char *cd;HCode HC;

HC=(HCode)malloc((n+1)*sizeof(char *));

cd=(char *)malloc(n*sizeof(char));cd[n-1]='';

printf(“************************n”);printf(“Char Codingn”);

for(k=1;k<=n;k++)

{

sp=n-1;p=k;fp=HT[k].Parent;

for(;fp!=0;p=fp,fp=HT[fp].Parent)

if(HT[fp].Lchild==p)

cd[--sp]='0';

else

cd[--sp]='1';

HC[k]=(char *)malloc((n-sp)*sizeof(char));

strcpy(HC[k],&cd[sp]);

printf(“%c

%sn”,HT[k].ch,HC[k]);

}

printf(“************************n”);free(cd);} void Read(int n,HTNode *HT)

//从文件中读出数据 {

int i;FILE * fp;if((fp=fopen(“data.txt”,“rb”))==NULL){

printf(“cannot open filen”);

exit(0);} for(i=0;i

fread(&HT[i].Weight,sizeof(struct HTNode),1,fp);// printf(“%d n”,HT[i].Weight);

} Coding_H(n,HT);

fclose(fp);}

void Print_H(int m,HTNode *HT)

//输出赫夫曼造树过程 { int k;printf(“************************n”);printf(“Num Weight

Par LCh RCh n”);for(k=1;k<=m;k++){

printf(“%d ”,k);

printf(“

%d”,HT[k].Weight);

printf(“

%d”,HT[k].Parent);

printf(“

%d”,HT[k].Lchild);

printf(“

%dn”,HT[k].Rchild);

} printf(“************************n”);}

void Decode(int m,HTNode *HT)

//对输入的电文进行译码 { int i,j=0;char a[10];char endflag='2';i=m;printf(“输入发送的编码,以‘2’结束:”);scanf(“%s”,&a);printf(“译码后的字符:”);while(a[j]!='2'){

if(a[j]=='0')

i=HT[i].Lchild;

else i=HT[i].Rchild;

if(HT[i].Lchild==0)

//HT[i]是叶结点

{

printf(“%c”,HT[i].ch);

i=m;

//回到根结点

}

j++;} printf(“n”);if(HT[i].Lchild!=0&&a[j]!='2')

printf(“ERROR”);}

int main()

//主函数 { int n,m,c;HTNode HT[N];do {

system(“color 2f”);

//运行环境背景颜色.printf(“nntt*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=ntt”);

printf(“nttt 赫夫曼编译码系统 ttt”);

printf(“nntt*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=ntt”);

printf(“nttt1.输入权值、字母nttt2.把数据写入文件nttt3.输出赫夫曼编码表nttt”);

printf(“4.输出赫夫曼译码表nttt5.输入编码并译码.nttt6.从文件中读出数据nttt7.退出”);

printf(“nnttt请选择:”);

scanf(“%d”,&c);

switch(c)

{

case 1:system(“cls”);printf(“输入多少结点:”);

scanf(“%d”,&n);m=2*n-1;Create_H(n,m,HT);break;

case 2:system(“cls”);Save(n,HT);break;

case 3:system(“cls”);Print_H(m,HT);break;

case 4:system(“cls”);Coding_H(n,HT);break;

case 5:system(“cls”);Decode(m,HT);break;

case 6:system(“cls”);Read(n,HT);break;

case 7:system(“cls”);exit(0);

}

}while(1);return 0;}

运行界面如下:

2.学生成绩管理(链表实现)要求:

实现如下功能:增加、查找、删除、输出、退出。

代码如下:

#include #include #include typedef struct score

//定义成绩信息结构体 {

char Number[20];char Name[20];char Chinese[20];char English[20];char Math[20];}score;typedef struct node_score

//定义成绩信息链表结点,包括数据域和指针域 {

score data;struct node_score *next;}node_score,*p_node_score;p_node_score headScore;//定义链表的头指针为全局变量 void PrintScore(score s)//输出信息函数 { printf(“ %10s”,s.Number);printf(“ |

%-6s”,s.Name);printf(“

|

%-3s”,s.Chinese);printf(“

|

%-3s”,s.English);

printf(“ |

%-3sn”,s.Math);} void View()//输出函数 {

p_node_score pNodeScore;

pNodeScore=headScore;printf(“

学号

|

姓名

| 语文成绩

| 英语成绩| 高数成绩n”);while(pNodeScore!= NULL){

PrintScore(pNodeScore->data);//输出学生信息和成绩信息

pNodeScore=pNodeScore->next;} } void Add(){

p_node_score pNodeScore;// 定义一个节点

pNodeScore=(p_node_score)malloc(sizeof(node_score));//为节点分配存储空间

printf(“请输入学号:”);scanf(“%s”,pNodeScore->data.Number);printf(“请输入姓名:”);scanf(“%s”,pNodeScore->data.Name);printf(“请输入语文成绩:”);scanf(“%s”,pNodeScore->data.Chinese);printf(“请输入英语成绩:”);scanf(“%s”,pNodeScore->data.English);printf(“请输入高数成绩:”);scanf(“%s”,pNodeScore->data.Math);if(headScore==NULL){ //如果头结点为空

headScore=pNodeScore;

pNodeScore->next=NULL;} else

{ //如果头结点不为空

pNodeScore->next=headScore;

headScore=pNodeScore;//将头结点新结点

} } void Input(){ int n,i;printf(“输入几个学生的数据:”);scanf(“%d”,&n);for(i=0;i

Add();printf(“输入成功!”);} int Delete(){ p_node_score pNodeScore,p1;//p1为pNodeScore的前驱

p1=headScore;if(p1==NULL){

printf(“成绩表中没有数据!请先添加数据!n”);

return 0;} char DeleteNumber[20];

printf(“请数入要删除的学生学号:”);scanf(“%s”,DeleteNumber);if(strcmp(p1->data.Number,DeleteNumber)==0)

{ //如果要删除的结点在第一个

headScore=p1->next;

pNodeScore=p1;

printf(“学号为%s的学生信息已经删除!n”,DeleteNumber);

return 0;} else

{

pNodeScore=p1->next;

while(pNodeScore!=NULL)

{

if(strcmp(pNodeScore->data.Number,DeleteNumber)==0)

{

p1->next=pNodeScore->next;

printf(“学号为%s的学生信息已经删除!n”,DeleteNumber);

return 0;

}

else

{ //否则,结点向下一个,p1仍为pNodeScore的前驱

p1=pNodeScore;

pNodeScore=pNodeScore->next;

}

} } printf(“没有此学号的学生!”);} int Change(){

p_node_score pNodeScore;

pNodeScore=headScore;if(pNodeScore==NULL){

printf(“成绩表中没有数据!请先添加数据!n”);

return 0;} char EditNumber[20];printf(“请输入你要修改的学生学号:”);scanf(“%s”,EditNumber);while(pNodeScore!=NULL){

if(strcmp(pNodeScore->data.Number,EditNumber)==0)

{ //用strcmp比较两字符串是否相等,相等则返回0

printf(“原来的学生成绩信息如下:n”);//输出原来的成绩信息

printf(“

学号

|

姓名

| 语文成绩

| 英语成绩| 高数成绩n”);

PrintScore(pNodeScore->data);

printf(“语文新成绩:”);

scanf(“%s”,pNodeScore->data.Chinese);

printf(“英语新成绩:”);

scanf(“%s”,pNodeScore->data.English);

printf(“高数新成绩:”);

scanf(“%s”,pNodeScore->data.Math);

printf(“成绩已经修改!”);

return 0;

}

pNodeScore=pNodeScore->next;//如果不相等,pNodeScore则指向下一个结点

} printf(“没有此学号的学生!n”);//如果找到最后都没有,则输出没有此学号的学生

} int Find(){

p_node_score pNodeScore;

pNodeScore=headScore;if(pNodeScore==NULL){

printf(“成绩表中没有数据!请先添加数据!n”);

return 0;} char FindNumber[20];printf(“请输入你要查找的学生学号:”);scanf(“%s”,FindNumber);while(pNodeScore!=NULL){

if(strcmp(pNodeScore->data.Number,FindNumber)==0)

{

printf(“你要查找的学生成绩信息如下:n”);

printf(“

学号

|

姓名

| 语文成绩

| 英语成绩| 高数成绩n”);

PrintScore(pNodeScore->data);

return 0;

}

pNodeScore=pNodeScore->next;} printf(“没有此学号的学生!n”);} int main()

//主函数 { int choice=0;headScore=NULL;int c;do {

system(“color 2f”);

//运行环境背景颜色.printf(“nntt*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=ntt”);

printf(“nttt 学生成绩管理系统 ttt”);

printf(“nntt*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=ntt”);

printf(“nttt1.输入成绩信息nttt2.输出成绩信息nttt3.添加成绩信息nttt”);

printf(“4.修改成绩信息nttt5.删除成绩信息nttt6.查询成绩信息nttt7.退出”);

printf(“nnttt请选择:”);

scanf(“%d”,&c);

switch(c)

{

case 1:system(“cls”);Input();break;

case 2:system(“cls”);View();break;

case 3:system(“cls”);Add();break;

case 4:system(“cls”);Change();break;

case 5:system(“cls”);Delete();break;

case 6:system(“cls”);Find();break;

case 7:system(“cls”);exit(0);

}

}while(1);return 0;}

运行界面如下:

第五篇:《数据结构》课程设计文档格式(定稿)

课程设计报告的内容

设计结束后要写出课程设计报告,以作为整个课程设计评分的书面依据和存档材料.设计报告以规定格式的电子文档书写,打印并装订,排版及图,表要清楚,工整.装订顺序如下:封面、目录、正文.正文包括以下7个内容:

1.需求分析

陈述说明程序设计的任务,强调的是程序要做什么,需要什么结果、所能达到的功能.2.概要设计

说明本程序中用到的所有抽象数据类型的定义,主程序的流程以及各程序模块之间的层次(调用)关系.3.详细设计

实现概要设计中定义的所有数据类型,对每个操作只需要写出伪码算法;对主程序和其他模块也都需要写出伪码算法(伪码算法达到的详细程度建议为:按照伪码算法可以在计算机键盘直接输入高级程序设计语言程序);可采用流程图、N S 图进行描述,画出函数和过程的调用关系图.4.调试分析

内容包括:

a.调试过程中遇到的问题是如何解决的以及对设计与实现的回顾讨论和分析;b.算法的时空分析(包括基本操作和其他算法的时间复杂度和空间复杂度的分析)和 改进设想;

c.经验和体会等.5.测试结果

列出你的测试结果,包括输入和输出.这里的测试数据应该完整和严格,最好多于需求分析中所列.6.参考文献

列出参考的相关资料和书籍.封面格式如下:

数据结构课程设计报告

班级:_____ _____ _____ _________

姓名:____________________

指导教师:___________________

成绩:__________________________

信息工程学院

年月日

目录

1.需求分析 ………………………………………………

22.概要设计………………………………………………2

3.详细设计 ………………………………………………2

4.调试分析 ………………………………………………2

5.测试结果… ……………………………………………2 参考文献 …………………………………………………6

附录……………………………………………………

一、需求分析

二、概要设计

三、详细设计

四、调试分析

五、测试结果

六、参考文献

七、附录

附录为程序代码!4

下载数据结构课程设计-最小生成树word格式文档
下载数据结构课程设计-最小生成树.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    课程设计(数据结构)

    课程设计题目 1、 运动会分数统计 任务:参加运动会有n个学校,学校编号为1……n。比赛分成m个男子项目,和w个女子项目。项目编号为男子1……m,女子m+1……m+w。不同的项目取前五......

    数据结构课程设计

    数据结构课程设计 计算机科学与技术2008级1班 课程设计题目:图书借阅管理系统 姓名: 学号: 一.需求分析说明 图书借阅处理过程简述处理过程主要包含:新增图书上架、办理图证、图......

    数据结构课程设计

    课 程 设 计 任 务 书 信息 学院 信息管理与信息系统 专业 09级1班 班 孙鹏一、 二、 课程设计题目: 迷宫求解、一元多项式 课程设计主要参考资料: 数据结构(C语言版) 严蔚敏、......

    数据结构课程设计

    《数据结构》 课程设计报告 学 号 姓 名 班 级 指导教师 XXX XXX XXX XXX 安徽工业大学计算机学院 2014年6月 利用栈实现迷宫问题的求解 一、问题描述 以一个M*N的长方阵表......

    数据结构课程设计

    南京航空航天大学金城学院 《数据结构》 课程设计报告 题目:一元多项式的加减乘法运算 班级: 20100232 学号: 2010023220 姓名: 祁博 成绩:指导教师: 叶延风完成日期: 2012年 2月18......

    数据结构课程设计

    河海大学计算机与信息学院(常州)数据结构课程设计 课程设计题目: 多 项 式 问 题专业 、 年级:计算机科学与技术09级 学 号: 0962810226 姓 名: 王超目 录 一、问题描述----------......

    数据结构课程设计

    一、课程题目:一元稀疏多项式计算器 二、需求分析 1、一元稀疏多项式简单计算器的功能是: 1.1 输入并建立多项式; 1.2 输出多项式,输出形式为整数序列:n,c1,e1,c2,e2,„„„cn,en,......

    数据结构课程设计

    二○一三 ~二○一四 学年第 二 学期 信息科学与工程学院 综合设计报告书 课程名称: 数据结构课程设计 班 级: 学 号: 姓 名: 指导教师:二○一四 年 六 月 一、实验内容 (一)、单链......