机械原理学习报告25篇

时间:2019-05-14 20:45:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《机械原理学习报告2》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《机械原理学习报告2》。

第一篇:机械原理学习报告2

机械原理学习报告

第5章 齿轮系及其设计

1.定轴齿轮系及其传动比

一对齿轮的传动比 i12w1w2z2z1 w:齿轮角速度

z:齿数

w1wkn1nk所有从动轮齿数的连成积所有主动轮齿数的连成积

定轴齿轮系传动比的一般公式 i1k

一对相啮合的齿轮的首、末轮的转向关系与齿轮的类型有关。

2.周转齿轮系及其传动比

两个周转齿轮的转化后的传动比 iH13w1wHH3w1wHw3wHz3z1 的传动比周转齿轮系中任意两齿轮iH1k1、kw1HHwkw1wHwkwHz2z3zkz1z2zk1

在周转齿轮系中,如果有一个中心轮固定,该齿轮系自由度为1,称为行星齿轮系;如果两个中心轮均不固定,该齿轮系自由度为2,称其为差动齿轮系。3.复合齿轮系及其传动比

在计算复合齿轮系及其传动比时,关键是先拆分出周转齿轮系,剩下的几何轴线不动而互相啮合的齿轮便组成了定轴齿轮系。

计算传动比的基本过程:(1)拆分齿轮系;(2)分别列出传动比计算公式;(3)联立解方程式。4.齿轮系的应用

1.在体积较小及质量较小的条件下,实现大功率传动。

2.获得较大的传动比

3.实现运动的合成4.实现运动的分解

5.实现变速传动

6.实现换向传动 5.行星轮系设计

1.传动比条件:z3i1H1z2.同心条件:zz3z12z1i1H22

3.装配条件:对于装有多个行星轮的轮系,要求在转臂上的所有行星轮能严格均匀地装入两中心轮之间。个数为k,则z1z3

k

4.邻接条件zz1sink2ha1sink

6.新型行星传动

1.渐开线少齿差行行星传动:两轮齿数差越小,传动比就越大。

2.摆线针轮行星传动

3.谐波齿轮传动

4.活齿传动

第6章 其他常用机构 1.间歇运动机构

1.槽轮机构

几何关系:2o-2o122 z z为槽轮的槽数,应大于或等于3

运动系数:2o12KKz22z

运动系数大于零,小于1

2.棘轮机构(齿式棘轮机构、摩擦式棘轮机构)

3.不完全齿轮机构

4.凸轮式间歇运动机构(圆柱形凸轮式间歇运动机构、蜗杆形凸轮式间歇运动机构)2.广义机构

1.电磁机构

1)电磁传动机构a.电磁回转机构

b.电锤机构

c.电磁气动传动机构

2)变频调速器

3)继电器机构a.线圈式快速动作继电器机构

b.凸轮式火灾报警信号发生机构

c.杠杆式温度继电器机构

4)振动机构 电磁振动机构、音叉振动机构、超声波机构

5)微位移机构

6)光电机构

光电动机、光化学回转活塞式行星马达

7)液、气动机构

3.具有其他功能的机构

1.组合机构:齿轮-凸轮机构、齿轮-连杆机构、凸轮-连杆机构

2.机构的组合 1.机构串联式组合:构件固接式串联、轨迹点串联

2.机构的并联式组合 3.机构的混接式组合 4.螺旋机构:单螺旋副机构、双螺旋机构 5.万向联轴节

1.单万向联轴节传动比i31w3w1cos1sincos0122

2.双万向联轴节 传动比恒为1时:1

313

w1w3

tanMcos1tan1,tanMcos3tan3

第7章 机构系统运动方案设计

1.机构系统运动方案设计:功能原理方案设计、运动规律设计、运动方案设计、运动简图设计

2.执行机构运动规律设计 3.执行机构运动协调设计 4.机械运动循环图设计

第8章 机构创新设计

1.机构选型

基本原则:满足工艺运动和运动要求、结构简单传动链短、原动机的选择有利于简化结构和改善运动质量、机构有尽可能好的动力性能、加工制造方便经济成本低、机器操作方便调整容易安全耐用、具有较高的生产效率和机械效率

2.机构构型的创新设计

1.基于组成原理的创新设计

平面机构中高副低代

2.机构构型的变异创新设计

机构的倒置、扩展、局部改变、移植模仿 3.基于功能分析的机构设计 4.机构设计方案的评价

第9章 机构系统的动力学设计 1.平面机构的平衡设计

22mBlBJS 1.质量代换法 mAmBm mAlAmBlB0 mAlA2.完全平衡 用质量代换法求出各构件上的平衡质量

3.部分平衡

2.机构系统的动力学模型及运动方程式

系统运动方程Medd3.机构系统的动力学设计

不均匀系数12Jew 2 Fedsdmev2

21wmaxwminwm

2

N为系统所做的功

NmaxJwm

转动惯量JF900Nmaxn22m 飞轮的转动惯量JF22mD1D2m22D1D2 248初定飞轮的尺寸后,应校验飞轮的最大圆周速度,若此圆周速度大于安全极限速度,则必须修改飞轮的结构尺寸。

第10章 机构优化设计

1.平面连杆机构的优化设计

机构优化的数学模型:1)设计变量;2)目标函数;3)约束条件 2.平面凸轮机构的优化设计

3.齿轮的变位系数的优化选择:1)轮齿的弯曲强度;2)齿面的接触强度;

第二篇:机械结构及原理学习心得体会

机加设备结构及原理学习心得体会

为了使我们更多地掌握设备的结构及原理,提高每一个技术人员的技术水平,进一步加深对各类设备的认识,开阔视野,特意聘请了大学的专业老师对我们进行了针对性培训,充分体现了领导对我们技术人员的关怀,对技术工作的重视,学习了《机加设备结构及原理》,我对机加设备结构及原理有了更深的认识,下面谈谈学习的心得体会:

通过参加这次继续培训学习,使我感受很深,收效较大,作为一名技术人员,必须要经常学习先进的科学技术和最新的理论,时刻更新丰富自己的知识,用最新的理论知识去指导自己的工作,才能使自己的工作有所突破、有所创新,才能在工作中遇到问题时做到游刃有余,彻底解决问题,才能为公司多做贡献。这次的培训,使我得到了较多收益。

随着工业自动化的发展,设备在减轻工人的劳动强度的同时, 大大提高了劳动生产率。尤其是数控设备,相对传统继电器控制设备具有结构复杂,使用简单,工作量小,劳动强度低,加工精度高等明显的优势,但同时存在维修困难,且费用高,工作环境要求较高等缺点。而我司的设备多数为数控设备,因此,要求我们必须要快速诊断设备出现的故障及降低设备的维修率,保证设备的正常运行,从而提高设备的工作效率。这就对设备技术人员就提出了很高的要求,所以我们每一个技术人员都要较深层次掌握数控设备的结构及原理,才能快速应对设备在生产过程中出现的各种问题,才能保证生产的正常进行。通过此次学习,使我掌握了典型设备的结构及原理,并将所学应用到工作中去,得到了较好的效果。

总之,通过此次培训,掌握了课程的内容,并将所学与生产现场结合起来,提高了分析问题、解决问题的能力,达到了学以致用的目的。

制造部 2013-4-15

第三篇:《透平机械原理》课程学习辅导材料

透平机械原理

汽轮机的级:将高温、高压蒸汽所具有的热能转换为机械功的基本单元,主要是由一列喷嘴叶栅和一列动叶栅组成。反动度:蒸汽在动叶通道内膨胀时的理想焓降与蒸汽在整个级的滞止理想焓降之比,用来衡量动叶栅中蒸汽的膨胀程度。

滞止参数:具有一定流动速度的蒸汽,如果假想蒸汽等熵地滞止到速度为零时的状态,该状态为滞止状态,其对应的参数称为滞止参数。

速度比:将(级动叶的)圆周速度u与喷嘴出口(蒸汽的)速度c1的比值定义为速度比 部分进汽度:工作喷嘴所占的弧长与整个圆周之比。调节级:外界负荷变化时,依靠依次启闭的调节阀改变汽轮机第一级的通流面积来改变机组负荷的级。

汽轮机的轮周效率:指1kg/s蒸汽在级内所做的轮周功与蒸汽在该级中所具有的理想能量之比。

过热度:蒸汽的温度比饱和温度还高的度数。余速损失:蒸汽流出动叶的速度损失。

漏汽损失:汽轮机动静部件存在间隙,且间隙前后存在压力差,这使工作蒸汽的一部分不通过主流通道,而是经过间隙,由此形成的漏汽造成的损失。

冲动原理:蒸汽主要在喷管叶栅中膨胀,而在动叶栅中基本不膨胀,只随汽道形状改变其流动方向,汽流改变流动方向时对汽到产生离心力,这样的做功原理。

反动原理:蒸汽既在喷管叶栅中膨胀,也在动叶栅中膨胀,且膨胀程度大致相等,这样的做功原理。

按工作原理、热力过程特性、蒸汽流动方向、新蒸汽参数等对汽轮机进行分类,汽轮机可分为哪些类型?按新蒸汽参数分类时,相应类型汽轮机的新汽压力等级是什么? 按工作原理可分为:冲动式汽轮机和反动式汽轮机

按热力过程特性可分为:凝汽式汽轮机;调整抽汽式汽轮机;背压式汽轮机;中间再热式汽轮机。

按蒸汽流动方向可分为:轴流式汽轮机;辐流式汽轮机

按新蒸汽参数可分为下列几种类型,相应的压力等级同时列于下面: 低压汽轮机新汽压力为1.18~1.47 MPa;中压汽轮机新汽压力为1.96~3.92 MPa;高压汽轮机新汽压力为5.88~9.8 MPa;超高压汽轮机新汽压力为11.77~13.73 MPa;亚临界汽轮机新汽压力为15.69~17.65 MPa;超临界汽轮机新汽压力超过22.16 MPa;蒸汽对动叶片冲动作用原理的特点是什么?

答:蒸汽只在喷嘴中膨胀,在动叶汽道内不膨胀加速,只改变流动方向。蒸汽对动叶片反动作用原理的特点是什么?

答:蒸汽在动叶通道内不仅改变流动方向,而且还进行膨胀加速。答:汽轮机级内的损失有:

喷嘴损失、动叶损失、余速损失、叶高损失、叶轮摩擦损失、部分进汽损失、漏汽损失、扇形损失、湿气损失9种。造成这些损失的原因: 喷嘴损失:蒸汽在喷嘴叶栅内流动时,汽流与流道壁面之间、汽流各部分之间存在碰撞和摩擦,产生的损失。

动叶损失:因蒸汽在动叶流道内流动时,因摩擦而产生损失。

余速损失:当蒸汽离开动叶栅时,仍具有一定的绝对速度,动叶栅的排汽带走一部分动能,称为余速损失。叶高损失:由于叶栅流道存在上下两个端面,当蒸汽流动时,在端面附面层内产生摩擦损失,使其中流速降低。其次在端面附面层内,凹弧和背弧之间的压差大于弯曲流道造成的离心力,产生由凹弧向背弧的二次流动,其流动方向与主流垂直,进一步加大附面层内的摩擦损失。扇形损失:汽轮机的叶栅安装在叶轮外圆周上,为环形叶栅。当叶片为直叶片时,其通道截面沿叶高变化,叶片越高,变化越大。另外,由于喷嘴出口汽流切向分速的离心作用,将汽流向叶栅顶部挤压,使喷嘴出口蒸汽压力沿叶高逐渐升高。而按一元流动理论进行设计时,所有参数的选取,只能保证平均直径截面处为最佳值,而沿叶片高度其它截面的参数,由于偏离最佳值将引起附加损失,统称为扇形损失。

叶轮摩擦损失:叶轮在高速旋转时,轮面与其两侧的蒸汽发生摩擦,为了克服摩擦阻力将损耗一部分轮周功。又由于蒸汽具有粘性,紧贴着叶轮的蒸汽将随叶轮一起转动,并受离心力的作用产生向外的径向流动,而周围的蒸汽将流过来填补产生的空隙,从而在叶轮的两侧形成涡流运动。为克服摩擦阻力和涡流所消耗的能量称为叶轮摩擦损失。

部分进汽损失:它由鼓风损失和斥汽损失两部分组成。在没有布置喷嘴叶栅的弧段处,蒸汽对动叶栅不产生推动力,而需动叶栅带动蒸汽旋转,从而损耗一部分能量;另外动叶两侧面也与弧段内的呆滞蒸汽产生摩擦损失,这些损失称为鼓风损失。当不进汽的动叶流道进入布置喷嘴叶栅的弧段时,由喷嘴叶栅喷出的高速汽流要推动残存在动叶流道内的呆滞汽体,将损耗一部分动能。此外,由于叶轮高速旋转和压力差的作用,在喷嘴组出口末端的轴向间隙会产生漏汽,而在喷嘴组出口起始端将出现吸汽现象,使间隙中的低速蒸汽进入动叶流道,扰乱主流,形成损失,这些损失称为斥汽损失。

漏汽损失:汽轮机的级由静止部分和转动部分组成,动静部分之间必须留有间隙,而在间隙的前后存在有一定的压差时,会产生漏汽,使参加作功的蒸汽量减少,造成损失,这部分能量损失称为漏汽损失。

湿汽损失:在湿蒸汽区工作的级,将产生湿汽损失。其原因是:湿蒸汽中的小水滴,因其质量比蒸汽的质量大,所获得的速度比蒸汽的速度小,故当蒸汽带动水滴运动时,造成两者之间的碰撞和摩擦,损耗一部分蒸汽动能;在湿蒸汽进入动叶栅时,由于水滴的运动速度较小,在相同的圆周速度下,水滴进入动叶的方向角与动叶栅进口几何角相差很大,使水滴撞击在动叶片的背弧上,对动叶栅产生制动作用,阻止叶轮的旋转,为克服水滴的制动作用力,将损耗一部分轮周功;当水滴撞击在动叶片的背弧上时,水滴就四处飞溅,扰乱主流,进一步加大水滴与蒸汽之间的摩擦,又损耗一部分蒸汽动能。以上这些损失称为湿汽损失。答:减少漏汽损失的措施: 加装隔板汽封片,减少漏汽量; 在动叶片根部安装径向汽封片;

在设计时采用合适的反动度,使叶片根部形成根部不吸不漏;

在叶轮上开平衡孔,使隔板漏汽经平衡孔漏向级后,避免混入主流。

什么是汽轮机的相对内效率?什么是级的轮周效率?影响级的轮周效率的因素有哪些? 解答:蒸汽在汽轮机内的有效焓降与其在汽轮机内的理想焓降的比值称为汽轮机的相对内效率。一公斤蒸汽在级内转换的轮周功和其参与能量转换的理想能量之比称为轮周效率。影响轮周效率的主要因素是速度系数φ和ψ,以及余速损失系数,其中余速损失系数的变化范围最大。余速损失的大小取决于动叶出口绝对速度。余速损失和余速损失系数最小时,级具有最高的轮周效率。

什么叫余速利用?余速在什么情况下可被全部利用?

解答:蒸汽从上一级动叶栅流出所携带的动能,进入下一级参加能量转换,称为余速利用。如果相邻两级的直径相近,均为全周进汽,级间无回热抽汽,且在下一级进口又无撞击损失,则上一级的余速就可全部被下一级利用,否则只能部分被利用。当上一级的余速被利用的份额较小时,视为余速不能被利用。简述轴向推力的平衡方法。

答:平衡活塞法;对置布置法,叶轮上开平衡孔;采用推力轴承。简述汽封的工作原理?

答:每一道汽封圈上有若干高低相间的汽封片(齿),这些汽封片是环形的。蒸汽从高压端泄入汽封,当经过第一个汽封片的狭缝时,由于汽封片的节流作用,蒸汽膨胀降压加速,进入汽封片后的腔室后形成涡流变成热量,使蒸汽的焓值上升,然后蒸汽又进入下一腔室,这样蒸汽压力便逐齿降低,因此在给定的压差下,如果汽封片片数越多,则每一个汽封片两侧压差就越小,漏汽量也就越小。汽封的作用是什么? 答:为了避免动、静部件之间的碰撞,必须留有适当的间隙,这些间隙的存在势必导致漏汽,为此必须加装密封装置----汽封。根据汽封在汽轮机中所处的位置可分为:轴端汽封(轴封)、隔板汽封和围带汽封(通流部分汽封)三类。轴封的作用是什么?

答:轴封是汽封的一种。汽轮机轴封的作用是阻止汽缸高压侧的蒸汽向外泄露,低压侧的空气漏入汽缸。

轴封系统的作用是什么?

答:轴封系统是由高、低压轴封和与之相连的管道及附属设备组成,其主要作用包括:(1)回收利用轴封漏汽,用来加热给水或到低压级作功;(2)防止蒸汽自轴封处漏入大气;

(3)冷却轴封,防止高压端轴封处过多的热量传出至主轴承而造成轴承温度过高,影响轴承安全;

(4)防止空气漏入汽轮机真空部分。

答:汽轮机的轴向推力主要由下列这些力所组成: 蒸汽作用在叶片上的力在轴向的分量;

由叶轮前后的压差所引起的作用在叶轮上的轴向力; 蒸汽作用在转子凸肩上的轴向力;

蒸汽作用在隔板汽封和轴封套筒上的轴向力。答:平衡汽轮机轴向推力,可采取下列措施: 高压轴封两端以反向压差设置平衡活塞; 汽缸对称、分流布置; 叶轮上开平衡孔;

最后采用推力轴承来承担剩余轴向推力。推力轴承的作用是什么? 答:推力轴承的作用是承担汽轮机的剩余轴向推力,保持汽轮机转子和汽缸之间的轴向相对位置。

说明主蒸汽温度增加对汽轮机工作的影响。使循环热效率增大,相对内效率增大。若乏气温度保持不变,使理想焓降增加,当效率一定时,焓的变化增大,流量减小,当流量一定时,焓的变化增大,其效率增加,无论哪一种情况,都提高了汽轮机的热经济性。使金属的蠕变加剧,缩短其使用寿命,降低了安全性。使排气干度增大,提高了汽轮机的安全性。说明主蒸汽压力增加对汽轮机工作的影响。使循环热效率增大,相对内效率增大。

若乏气温度保持不变,使理想焓降增加,当效率一定时,焓的变化增大,流量减小,当流量一定时,焓的变化增大,其效率增加,无论哪一种情况,都提高了汽轮机的热经济性。管阀等的承受压力增大,降低了安全性。

使汽轮机的排气湿度增加,汽轮机级叶片易侵蚀,安全性下降。

第四篇:机械原理课程设计

机械原理 课程设计说明书

设计题目:牛头刨床的设计

机构位置编号:11 3

方案号:II

班 级: 姓 名: 学 号:

年 月 日

目录

一、前言………………………………………………1

二、概述

§2.1课程设计任务书…………………………2 §2.2原始数据及设计要求……………………2

三、设计说明书

§3.1画机构的运动简图……………………3 §3.2导杆机构的运动分析…………………4 §3.3导杆机构的动态静力分析3号点……11 §3.4刨头的运动简图………………………15

§3.5飞轮设计………………………………17

§3.6凸轮机构设计…………………………19 §3.7齿轮机构设计…………………………24

四、课程设计心得体会……………………………26

五、参考文献………………………………………27

一〃前言

机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要实践环节。是培养学生机械运动方案设计、创新设计以及应用计算机对工程实际中各种机构进行分析和设计能力的一门课程。其基本目的在于: 

⑴.进一步加深学生所学的理论知识培养学生独立解决有关本课程实际问题的能力。

⑵.使学生对于机械运动学和动力学的分析设计有一较完整的概念。

⑶.使学生得到拟定运动方案的训练并具有初步设计选型与组合以及确定传动方案的能力。

⑷.通过课程设计,进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。

⑸.培养学生综合运用所学知识,理论联系实际,独立思考与分析问题能力和创新能力。

机械原理课程设计的任务是对机械的主体机构连杆机构、飞轮机构凸轮机构,进行设计和运动分析、动态静力分析,并根据给定机器的工作要求,在此基础上设计凸轮,或对各机构进行

运动分析。

二、概述

§2.1课程设计任务书

工作原理及工艺动作过程 牛头刨床是一种用于平面切削加工的机床,如图(a)所示,由导杆机构1-2-3-4-5带动刨头5和削刀6作往复切削运动。工作行程时,刨刀速度要平稳,空回行程时,刨刀要快速退回,即要有极回作用。切削阶段刨刀应近似匀速运动,以提高刨刀的使用寿命和工件的表面 加工质量。切削如图所示。

§2.2.原始数据及设计要求

三、设计说明书(详情见A1图纸)

§3.1、画机构的运动简图

以O 4为原点定出坐标系,根据尺寸分别定出O 2点B点,C点。确定机构运动时的左右极限位置。曲柄位置图的作法为,取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3„12等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置,如下图:

§3.2 导杆机构的运动分析

11位置的速度与加速度分析 1)速度分析

取曲柄位置“11”进行速度分析。因构件2和3在A处的转动副相连,故VA2=VA3,其大小等于W2lO2A,方向垂直于O2 A线,指向与ω2一致。

曲柄的角速度 ω2=2πn2/60 rad/s=6.702rad/s υA3=υA2=ω2〃lO2A=6.702×0.09m/s=0.603m/s(⊥O2A)

取构件3和4的重合点A进行速度分析。列速度矢量方程,得

υA4= υA3+ υA4A3 大小 ?

√ ? 方向 ⊥O4B ⊥O2A ∥O4B 取速度极点P,速度比例尺µv=0.01(m/s)/mm,作速度多边形如下图

由图得

υA4=0.567m/s

υA4A3 =0.208m/s

用速度影响法求得

VB5=VB4=VA4*04B/O4A=1.244m/s 又

ω4=VA4/O4A=2.145rad/s 取5构件为研究对象,列速度矢量方程,得

vC = vB+ vCB 大小

? √ ? 方向 ∥XX ⊥O4B ⊥BC 取速度极点P,速度比例尺μv=0.01(m/s)/mm, 作速度多边行如

上图。则图知,vC5= 1.245m/s

Vc5b5=0.111m/s

ω5=0.6350rad/s

2)加速度分析

取曲柄位置“11”进行加速度分析。因构件2和3在A点处的转动副相连,故aA2n=aA3n,其大小等于ω22lO2A,方向由A指向O2。ω2=6.702rad/s, aA3n=aA2n=ω22lO2A=6.702×0.09 m/s2=4.0425m/s2 取3、4构件重合点A为研究对象,列加速度矢量方程得:

aA4 = aA4n + aA4τ

= aA2n

+ aA4A2k

+

aA4A

2大小:

?

ω42lO4A

?

2ω4υA4 A2

?

方向: ? A→O4 ⊥O4B A→O2

⊥O4B

∥O4B 取加速度极点为P',加速度比例尺µa=0.1(m/s2)/mm, 作加速度多边形如下图所示.由图可知

aA4=2.593m/s2 用加速度影响法求得

aB4= aB5 = aA4* L04B / L04A =5.690 m /s2 又

ac5B5n =0.0701m/s2 取5构件为研究对象,列加速度矢量方程,得

ac5= aB5+ ac5B5n+ a c5B5τ 大小

?

w52 Lbc

? 方向

∥XX √

c→b

⊥BC 作加速度多边形如上图,则

aC5B5τ= C5´C5·μa =2.176m/s2

aC5 =4.922m/s2

3号位置的速度与加速度分析 1)速度分析

取曲柄位置“3”进行速度分析,因构件2和3在A处的转动副相连,故VA3=VA2,其大小等于w2〃lO2A,方向垂直于O2 A线,指向与w2一致。

曲柄的角速度 ω2=2πn2/60 rad/s=6.702rad/s υA3=υA2=ω2〃lO2A=6.702×0.09m/s=0.603m/s(⊥O2A)取构件3和4的重合点A进行速度分析,列速度矢量方程,得,VA4

=VA3

+ VA4A3

大小

?

?

方向

⊥O4B

⊥O2A

∥O4B 取速度极点P,速度比例尺µv=0.01(m/s)/mm,作速度多边形如下图

VA4=pa4〃µv= 0.487m/s VA4A3=a3a4〃µv= 0.356 m/s w4=VA4⁄lO4A=1.163rad/s VB=w4×lO4B= 0.675m/s

取5构件作为研究对象,列速度矢量方程,得

υC =

υB

+

υCB

大小

?

? 方向 ∥XX(向右)

⊥O4B

⊥BC

取速度极点P,速度比例尺μv=0.01(m/s)/mm, 作速度多边形如上,则

Vc5=0.669m/s

Vcb=0.102m/s

W5=0.589rad/s 2).加速度分析

取曲柄位置“3”进行加速度分析。因构件2和3在A点处的转动副相连,故aA2n=aA3n,其大小等于ω22lO2A,方向由A指向O2。ω2=6.702rad/s,9 aA2n=aA3n=ω22lO2A=6.702×0.09 m/s2=4.0426m/s2 取3、4构件重合点A为研究对象,列加速度矢量方程得:

aA4 =aA4n+ aA4τ = aA3n + aA4A3K + aA4A3v 大小: ? ω42lO4A ? √ 2ω4υA4 A3 ? 方向 ? B→A ⊥O4B A→O2 ⊥O4B ∥O4B(沿导路)取加速度极点为P',加速度比例尺µa=0.1(m/s2)/mm, 作加速度多边形下图所示:

则由图知:

aA4 =P´a4´〃μa =3.263m/s2 aB4= aB5 = aA4* L04B / L04A =4.052 m/ s2 取5构件为研究对象,列加速度矢量方程,得

ac = aB + acBn+ a cBτ

大小 ? √ ω5l2CB ? 方向 ∥X轴 √ C→B ⊥BC 其加速度多边形如上图,则 ac =p ´c〃μa =4.58m/s2 §3.3 导杆机构的动态静力分析 3号点 取3号位置为研究对象:

①.5-6杆组共受五个力,分别为P、G6、Fi6、R16、R45, 其中R45和R16 方向已知,大小未知,切削力P沿X轴方向,指向刀架,重力G6和支座反力R16 均垂直于质心,R45沿杆方向由C指向B,惯性力Fi6大小可由运动分析求得,方向水平向左。选取比例尺μ=(40N)/mm,受力分析和力的多边形如图所示:

已知:

已知P=9000N,G6=800N,又ac=ac5=4.58m/s2 那么我们可以计算 FI6=-G6/g×ac =-800/10×4.5795229205 =-366.361N 又ΣF=P + G6 + FI6 + F45 + FRI6=0,方向 //x轴 → ← B→C ↑ 大小 9000 800 √ ? ? 又

ΣF=P + G6 + Fi6 + R45 + R16=0,方向

//x轴

B→C

↑ 大小

8000

620

? 由力多边形可得:F45=8634.495N

N=950.052 N 在上图中,对c点取距,有

ΣMC=-P〃yP-G6XS6+ FR16〃x-FI6〃yS6=0 代入数据得x=1.11907557m ②.以3-4杆组为研究对象(μ=50N/mm)

已知: F54=-F45=8634.495N,G4=220N aB4=aA4〃 lO4S4/lO4A=2.261m/s2 , αS4=α4=7.797ad/s2

可得:

FI4=-G4/g×aS4 =-220/10×2.2610419N=-49.7429218N MS4=-JS4〃aS4=-9.356 对O4点取矩:

MO4= Ms4 + Fi4×X4 + F23×X23-R54×X54-G4×X4 = 0 代入数据,得:

MO4=-9.356-49.742×0.29+F23×0.4185+8634.495×0.574+220×0.0440=0 故:

F23=11810.773N Fx + Fy + G4 + FI4 + F23 + F54 = 0 方向: ? ? √ M4o4 √ √ 大小: √ √ → √ ┴O4B √

解得:

Fx=2991.612N Fy=1414.405N 方向竖直向下

③.对曲柄分析,共受2个力,分别为F32,F12和一个力偶M,由于滑块3为二力杆,所以F32=F34,方向相反,因为曲柄2只受两个力和一个力偶,所以F12与F32等大反力。受力如图:

h2=72.65303694mm,则,对曲柄列平行方程有,ΣMO2=M-F32〃h2=0 即

M=0.0726*11810.773=0,即M=858.088N〃M

§3.4刨头的运动简图

§3.5飞轮设计

1.环取取曲柄AB为等效构件,根据机构位置和切削阻力Fr确定一个运动循的等效阻力矩根据个位置时

值,采用数值积分中的梯形法,计算曲柄处于各的功

。因为驱动力矩可视为

,确定等效驱动力常数,所以按照

矩Md。

2.估算飞轮转动惯量 由

确定等效力矩。

§3.6凸轮机构设计

1.已知:摆杆为等加速等减速运动规律,其推程运动角o=10o,回程运动角0'=70o,摆杆长度=70远休止角001lo9D=135mm,最大摆角max=15o,许用压力角[]=38.2.要求:(1)计算从动件位移、速度、加速度并绘制线图。(2)确定凸轮机构的基本尺寸,选取滚子半径,划出凸轮实际轮廓线,并按比例绘出机构运动简图。

3.设计步骤:

1、取任意一点O2为圆心,以作r0=45mm基圆;

2、再以O2为圆心,以lO2O9/μl=150mm为半径作转轴圆;

3、在转轴圆上O2右下方任取一点O9;

4、以O9为圆心,以lOqD/μl=135mm为半径画弧与基圆交于D点。O9D即为摆动从动件推程起始位置,再以逆时针方向旋转并在转轴圆上分别画出推程、远休、回程、近休,这四个阶段。再以11.6°对推程段等分、11.6°对回程段等分(对应的角位移如下表所示),并用A进行标记,于是得到了转轴圆山的一系列的点,这些点即为摆杆再反转过程中依次占据的点,然后以各个位置为起始位置,把摆杆的相应位置

画出来,这样就得到了凸轮理论廓线上的一系列点的位置,再用光滑曲

线把各个点连接起来即可得到凸轮的外轮廓。

5、凸轮曲线上最小曲率半径的确定及滚子半径的选择

(1)用图解法确定凸轮理论廓线上的最小曲率半径min:先用目测法估计凸轮理论廓线上的min的大致位置(可记为A点);以A点位圆心,任选较小的半径r 作圆交于廓线上的B、C点;分别以B、C为圆心,以同样的半径r画圆,三个小圆分别交于D、E、F、G四个点处,如下图9所示;过D、E两点作直线,再过F、G两点作直线,两直线交于O点,则O点近似为凸轮廓线上A点的曲率中心,曲率半径minOA;此次设计中,凸轮理论廓线的最小曲率半径min 26.7651mm。

凸轮最小曲率半径确定图(2)凸轮滚子半径的选择(rT)

凸轮滚子半径的确定可从两个方向考虑: 几何因素——应保证凸轮在各个点车的实际轮廓曲率半径不小于1~5mm。对于凸轮的凸曲线处CrT,对于凸轮的凹轮廓线CrT(这种情况可以不用考虑,因为它不会发生

失真现象);这次设计的轮廓曲线上,最

小的理论曲率半径所在之处恰为凸轮

上的凸曲线,则应用公式:minrT5rTmin521.7651mm;滚

子的尺寸还受到其强度、结构的限制,不能做的太小,通常取rT(0.10.5)r0

及4.5rT22.5mm。综合这两方面的考虑,选择滚子半径可取rT=15mm。

然后,再选取滚子半径rT,画出凸轮的实际廓线。设计过程 1.凸轮运动规律 推程0≤2φ≤δo /2时:

2max12204max120,0024max2 120

推程δo /2≤φ≤δo时:

2max1max(220)04max1(20)002,04max2120

回程δo+δs01≤φ≤δo+δs+δ'o/2时:

2max1max2'204max1'200,0'24max21'20

回程δo+δs+δ’o/2≤φ≤δo+δs+δ’o时:2max1(0')2'204max1('20')00'2,0'4max21'20

2.依据上述运动方程绘制角位移ψ、角速度ω、及角加速度β的曲线,由公式得出如下数据关系(1)角位移曲线:

(2)角速度ω曲线:

(3)角加速度曲线:

4)、求基圆半径ro及lO9O2

3.由所得数据画出从动杆运动线图

§3.7齿轮机构设计 1、设计要求:

计算该对齿轮传动的各部分尺寸,以2号图纸绘制齿轮传动的啮合图,整理说明书。

2.齿轮副Z1-Z2的变位系数的确定

齿轮2的齿数Z2确定:

io''2=40*Z2/16*13=n0''/no2=7.5

得Z2=39

取x1=-x2=0.5

x1min=17-13/17=0.236 x2min=17-39/17=-1.29

计算两齿轮的几何尺寸:

小齿轮

d1=m*Z1=6*13=78mm

ha1=(ha*+x1)*m=(1+0.5)*6=9mm

hf1=(ha*+c*-x1)*m=(1+0.25-0.5)*6=4.5mm

da1=d1+2*ha1=78+2*9=96

df1=d1-2*h f1=78-9=69

db1=d1*cosɑ=78*cos20˚=73.3

四 心得体会

机械原理课程设计是机械设计制造及其自动化专业教学活动中不可或缺的一个重要环节。作为一名机械设计制造及其自动化大三的学生,我觉得有这样的实训是十分有意义的。在已经度过的生活里我们大多数接触的不是专业课或几门专业基础课。在课堂上掌握的仅仅是专业基础理论面,如何去面对现实中的各种机械设计?如何把我们所学的专业理论知识运用到实践当中呢?我想这样的实训为我们提供了良好的实践平台。

一周的机械原理课程设计就这样结束了,在这次实践的过程中学到了很多东西,既巩固了上课时所学的知识,又学到了一些课堂内学不到的东西,还领略到了别人在处理专业技能问题时显示出的优秀品质,更深切的体会到人与人之间的那种相互协调合作的机制,最重要的还是自己对一些问题的看法产生了良性的变化。

其中在创新设计时感觉到自己的思维有一条线发散出了很多线,想到很多能够达到要求的执行机构,虽然有些设计由于制造工艺要求高等因素难以用于实际,但自己很欣慰能够想到独特之处。这个过程也锻炼了自己运用所学知识对设计的简单评价的技能。

五、参考文献

1、《机械原理教程》第7版

主编:孙桓

高等教育出版社

2.《机械原理课程设计指导书》主编:戴娟

高等教育出版社

3.《理论力学》主编:尹冠生

西北工业大学出版社

第五篇:机械原理教案

课程教案

(按章编写)

课程名称:机械原理

适用专业:机械设计制造及自动化等机械类专业 年级、学年、学期:2010级,2011-2012学年第一学期 教材:《机械原理》,邹慧君 张春林 李杞仪主编,高等教育出版社,2006

《机械原理》,黄锡铠 郑文纬主编,高等教育出版社,1999

任课教师:胡昌军

编写时间:2011年08月 机械原理课程教案

绪 论

绪 论

一、教学目标及基本要求

1.认识和了解机器及其基本功能结构—机构;了解机构的基本功能和结构特征;对机构、可动联接、构件、零件等有明确的概念和具体的认识。

2.了解本课程的研究对象、主要内容以及在机械设计和人才培养中的地位和作用;了解学习本课程的要求和方法

通过“绪论”的学习,使学生能为后继内容的学习打下一定的感性认识和理性认识基础;明确本课程的内容与作用,激发学生学习的兴趣和积极性。

二、教学内容及学时分配

第一节 机器的功能结构及机构(1学时)第二节 机械原理课程的定位与任务

第三节 机械原理课程的主要内容、基本要求与学习方法(第二、三节共0.5学时)

三、教学内容的重点和难点

1.从机器及机械系统的总体去认识机构。

2.机构的基本功能特征—传递与变换运动;机构的基本功能结构—构件及可动联接。3.本课程的学习内容与要求,注意突出其系统综合性和创新性。

四、教学内容的深化与拓宽

介绍本学科领域的现状及发展前沿。

五、教学方式与手段及教学过程中应注意的问题

充分利用多媒体教学手段,通过典型机器案例的功能分析、结构分析及工作过程(特别是其运动传递、变换与做功的过程)分析,具体、形象、生动地认识了解机构及其结构与运动学特征,认识典型常用机构。

应强调学习知识和培养培养能力是相辅相成的,但后者比前者更重要。本课程的教学内容较多而教学时数相对较少,因此在讲授本课程时,着重讲重点、讲难点、讲思路、讲方法。学生在学习本课程时,应把重点放在掌握研究问题的基本思路和方法上,着重于能力的培养。这样,就可以利用自己的能力去获取新的知识。

六、主要参考书目 黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2002 2 申永胜主编.机械原理教程.北京:清华大学出版社,1999 3 王知行,刘廷荣主编.机械原理.北京:高等教育出版社,2000

七、相关的实践性环节

参观机械创新设计实验室,认识及了解典型机器和机构。

机械原理课程教案

绪 论

八、课外学习要求

学生通过自学了解本学科(机械学、机构学)领域的现状及发展方向、机械工程在国民经济中的地位和作用。

九、思考题 0-1~0-3 2 机械原理课程教案

第一章 机构的结构设计

第一章 机构的结构设计

一、教学目标及基本要求

1.从功能与结构设计的角度认识和了解运动副与运动副元素。

2.熟练掌握机构运动简图的绘制方法。能够将实际机构或机构的结构简图绘制成机构运动简图;能看懂各种复杂机构的运动简图;能用机构运动简图表达自己的设计构思。

3.了解运动链和机构的结构以及机构结构设计的理论和方法,掌握运动链成为机构的条件。

4.熟练掌握机构自由度的计算方法,从结构和功能设计的角度了解局部自由度及虚约束,能准确识别出机构中存在的复合铰链、局部自由度和虚约束,并作出正确处理;

5.掌握机构的组成原理和结构分析方法。了解高副低代的方法;会判断杆组、杆组的级别和机构的级别;学会将Ⅱ级、Ⅲ级机构分解为机架、原动件和若干基本杆组的方法。

二、教学内容及学时分配

第一节 机构的基本结构及简图(1.5学时)

第二节 运动链及机构的自由度计算和机构运动简图的绘制(2.5学时)第三节平面运动链与机构的结构设计(1学时)

第四节 按基本杆组的机构结构综合与结构分析(1.5学时)

三、教学内容的重点和难点 重点:

1.机构运动简图的绘制。2.机构自由度的计算。3.运动链成为机构的条件。4.机构的组成原理与结构分析。难点:

1.机构运动简图的绘制。

2.复合铰链的准确识别和虚约束的正确判断。

四、教学内容的深化与拓宽 空间单封闭形机构自由度计算。

五、教学方式与手段及教学过程中应注意的问题 充分利用多媒体教学手段,围绕教学基本要求进行教学。

本章是进入整个机械系统设计的开篇。它不仅为学习各类机构的运动设计和动力设计打下必要的基础,也为机械系统方案设计和新机构的创新设计提供一条途径。在教学过程中,应注重突出重点,多采用启发式教学以及教师和学生的互动。运动简图是设计者交流设计思想所需要的一种工程语言,既要求简洁,又要在讨论和评价设计方案时,能够正确表达设计思想,显示出设计方案;保证机构运动学、动力学分析计算无误。介绍绘制机构运动简图和 3 机械原理课程教案

第一章 机构的结构设计

机构自由度计算时,应通过典型例题的分析,指出初学者容易犯的错误,并要求学生在绘制机构运动简图和机构自由度计算时,采用正确、严谨的步骤。

六、主要参考书目 黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2002 2 申永胜主编.机械原理教程.北京:清华大学出版社,1999 3 王知行,刘廷荣主编.机械原理.北京:高等教育出版社,2000 4 曹惟庆.机构组成原理.北京:高等教育出版社,1983

七、相关的实践性环节

机械设计及结构展示与分析实验。

八、课外学习要求

自学虚约束与过约束的设计及分析、运动链结构公式推导法、运动链的演化与派生及运动副元素与构件的功能结构演化等内容。

九、习题

1-2,1-4,1-5,1-6 4 机械原理课程教案

第二章平面连杆机构及其分析与设计

第二章平面连杆机构及其分析与设计

一、教学目标及基本要求

1.掌握平面连杆机构的基本类型,掌握其演化方法。

2.掌握平面连杆机构的运动特性,包括具有整转副和存在曲柄的条件、急回运动、机构的行程、极限位置、运动的连续性等;

3.掌握平面连杆机构运动分析的方法,学会将复杂的平面连杆机构的运动分析问题转换为可用计算机解决的问题。

4.掌握连杆机构的传力特性,包括压力角和传动角、死点位置、机械增益等;能够熟练地对移动副中的摩擦问题进行分析计算;掌握转动副中摩擦问题分析和计算方法;掌握机械效率的概念、效率的各种表达形式及机械效率的计算方法;正确理解自锁的概念,掌握确定自锁条件的方法。

5.掌握平面连杆机构的静力学分析方法,学会合理选择与设计平面连杆机构。6.了解平面连杆机构设计的基本问题,掌握根据具体设计条件及实际需要,选择合适的机构型式;学会按2~3个刚体位置设计刚体导引机构、按2~3个连架杆对应位置设计函数生成机构及按K值设计四杆机构;对机构分析与设计的现代解析法有清楚的了解。

二、教学内容及学时分配 第一节 概述(1.5学时)

第二节平面连杆机构运动特性与分析方法(4.5学时)第三节平面连杆机构的传力特性与受力分析(3.5学时)第四节平面四杆机构综合的内容与方法(4.5学时)

三、教学内容的重点和难点 重点:

1.平面四杆机构的基本型式及其演化方法。

2.平面连杆机构的运动特性,包括存在整转副的条件、从动件的急回运动及运动的连续性;平面连杆机构的传力特性,包括压力角、传动角、死点位置、机械增益。

3.平面连杆机构运动分析的瞬心法、相对运动图解法和杆组法。

4.总反力的确定,移动副和转动副中摩擦问题的分析方法,自锁条件的判定和机械效率的计算。

5.按给定2~3个位置设计刚体导引机构,按给定的2~3个对应位置设计函数生成机构,按K值设计四杆机构。

难点:

1.平面连杆机构运动分析的相对运动图解法求机构的加速度。2.总反力的正确确定。

3.机械的自锁问题及移动副自锁条件的求解。4.按给定的2~3个对应位置设计函数生成机构。

机械原理课程教案

第二章平面连杆机构及其分析与设计

四、教学内容的深化与拓宽平面连杆机构的优化设计。

五、教学方式与手段及教学过程中应注意的问题 充分利用多媒体教学手段,围绕教学基本要求进行教学。

在教学中应注意要求学生对基本概念的掌握,如整转副、摆转副、连杆、连架杆、曲柄、摇杆、滑块、低副运动的可逆性、压力角、传动角、极位夹角、行程速度变化系数、死点、自锁、摩擦角、摩擦圆、总反力、速度影像、加速度影像、装配模式等;基本理论和方法的应用,如影像法在机构的速度分析和加速度分析中的应用、连杆机构设计的刚化—反转法等。在教学过程中,应注意突出重点,多采用启发式教学以及教师和学生的互动。

六、主要参考书目 黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2002 2 申永胜主编.机械原理教程.北京:清华大学出版社,1999 3 华大年,华志宏,吕静平.连杆机构设计.上海:上海科学技术出版社,1995

七、相关的实践性环节

机构运动学参数测试实验,工业机器人认识及应用实验,机械创新展示与分析实验。

八、课外学习要求

自学运动分析的相对运动图解法,机构的合理选用,平面四杆机构的优化设计和空间连杆机构等内容。

九、习题

第一次 2-1,2-2,2-8,2-10,2-13,2-16 第二次 2-5,2-6,2-18,2-19,2-21,2-24,2-26 第三次 2-27,2-28,2-29,2-30,2-32 6 机械原理课程教案

第三章 凸轮机构及其设计

第三章 凸轮机构及其设计

一、教学目标及基本要求

1.了解凸轮机构的基本结构特点、类型及应用,学会根据工作要求和使用场合选择凸轮机构。

2.了解凸轮机构的设计过程,对凸轮机构的运动学、动力学参数有明确的概念。3.掌握从动件常用运动规律的特点及适用场合,了解不同运动规律位移曲线的拼接原则与方法。

4.掌握凸轮机构基本尺寸设计的原则,学会根据这些原则确定移动滚子从动件盘形凸轮机构的基圆半径、滚子半径和偏置方向,摆动从动件盘形凸轮机构的摆杆长、中心距以及移动平底从动件平底宽度。

5.熟练掌握应用反转法原理设计平面凸轮廓线,学会凸轮机构的计算机辅助设计方法。

二、教学内容及学时分配 第一节 概述

第二节 凸轮机构的传力特性

第三节 凸轮机构的设计过程(第一、二、三节共1.5学时)

第四节 凸轮机构运动学参数和基本尺寸的设计(1学时)第五节平面凸轮轮廓曲线的设计(1.5学时)第六节 凸轮机构从动件的设计(1学时)

三、教学内容的重点和难点 重点:

1.凸轮机构的型式选择。2.从动件运动规律的选择及设计。

3.盘形凸轮机构基本尺寸的设计,凸轮轮廓曲线设计的图解法和解析法。3.从动件的设计,包括高副元素形状选择,滚子半径和平底宽度的确定。难点:

凸轮轮廓曲线设计的图解法

四、教学内容的深化与拓宽 空间凸轮机构与高速凸轮机构简介。

五、教学方式与手段及教学过程中应注意的问题 充分利用多媒体教学手段,围绕教学基本要求进行教学。

在教学过程中应强调凸轮机构的运动学参数与结构参数的概念及其选用设计;应用反转法原理进行凸轮轮廓曲线的图解法设计时凸轮转角的分度,要注意从动件反转方向;正确确定偏置移动从动件凸轮机构在反转过程中从动件所依次占据的位置线;滚子从动件凸轮机构理论轮廓曲线与实际轮廓曲线的联系和区别等。要注意突出重点,多采用启发式教学以及教 7 机械原理课程教案

第三章 凸轮机构及其设计

师和学生的互动。

六、主要参考书目 黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2002 2 申永胜主编.机械原理教程.北京:清华大学出版社,1999 3 石永刚,徐振华.凸轮机构设计.上海:上海科学技术出版社,1995

七、相关的实践性环节 凸轮机构运动参数测试实验。

八、课外学习要求

学生通过自学了解空间凸轮机构的应用特点和高速凸轮机构设计应注意的问题。

九、习题

3-1,3-3,3-5,3-6,3-7,3-8,3-11,3-12 8

机械原理课程教案

第四章 轮系及其设计

第四章 轮系及其设计

一、教学目标及基本要求

1.了解各类轮系的组成和运动特点,学会判断一个已知轮系属于何种轮系。

2.熟练掌握各种轮系传动比的计算方法,会确定主、从动轮的转向关系;掌握周转轮系的传动特性与类型和结构的关系。

3.了解各类轮系的功能,学会根据各种要求正确选择轮系类型。4.了解行星轮系效率的概念及其主要影响因素。

5.了解复合轮系的组合方法,学会分析复合轮系的组成,正确计算其传动比。6.了解行星轮系设计的几个基本问题;了解几种其它类型行星传动的原理及特点。

二、教学内容及学时分配 第一节 轮系的分类

第二节 定轴轮系及其设计(第一、二节共1学时)第三节 周转轮系及其设计(3.5学时)第四节 复合轮系及其设计(0.5学时)第六节 少齿差传动简介(1学时)

三、教学内容的重点和难点 重点:

1.轮系传动比的计算。2.轮系的设计。难点:

复合轮系传动比计算

四、教学内容的深化与拓宽 新型少齿差传动

五、教学方式与手段及教学过程中应注意的问题 充分利用多媒体教学手段,围绕教学基本要求进行教学。

在教学过程中应注意强调应用反转法原理求解周转轮系传动比方法的实质、转化机构的概念、正确划分基本轮系的方法。要注意突出重点,多采用启发式教学以及教师和学生的互动。

六、主要参考书目 黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2002 2 申永胜主编.机械原理教程.北京:清华大学出版社,1999 3 曲继方,安子军,曲志刚.机构创新设计.北京:科学出版社,2001

机械原理课程教案

第四章 轮系及其设计

七、相关的实践性环节 参观机械创新设计实验室。

八、课外学习要求

自学定轴轮系的传动效率计算、定轴轮系设计中的几个问题、封闭型轮系的功率流等内容。

九、习题

4-1,4-2,4-5,4-6,4-7,4-9,4-13,4-14,4-18

机械原理课程教案

第五章 其它常用机构

第五章 其它常用机构

一、教学目标及基本要求

了解槽轮机构、棘轮机构、不完全齿轮机构、凸轮式间歇机构及螺旋机构的工作原理、运动特点和适用场合。

二、教学内容与学时分配 第一节 间歇运动机构 第二节 螺旋机构

第三节 摩擦传动机构(第一、二、三节共1学时)

三、教学内容的重点和难点 重点:

1.槽轮机构、棘轮机构、不完全齿轮机构、凸轮式间歇运动机构及螺旋机构的组成和运动特点。

2.简单螺旋机构与复式螺旋机构位移与转角之间的关系。3.摩擦传动机构传动比的计算。

四、教学内容的深化与拓宽 液动、气动机构及电磁传动机构。

五、教学方式与手段及教学过程中应注意的问题 充分利用多媒体教学手段,围绕教学基本要求进行教学。

本章教学应侧重于概念分析,简要介绍这些机构的工作原理、运动特点和适用场合。通过学习,开阔眼界和思路,扩大知识面,为机械系统方案设计提供一些基础知识。在教学过程中,应注意突出重点,多采用启发式教学以及教师和学生的互动。

六、主要参考书目 黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2002 2 申永胜主编.机械原理教程.北京:清华大学出版社,1999

七、相关的实践性环节 机电流体传动控制实验。

八、课外学习要求

自学液动机构、电磁传动机构等内容。

九、思考题 5-1~5-4

机械原理课程教案

第六章 机械动力学

第六章 机械动力学

一、教学目标及基本要求

1.明确认识惯性力、惯性力矩对机械工作的稳定性、动载荷和输入力矩的影响,了解机构动态静力分析的方法。

2.了解机械平衡的目的及其分类,掌握机械平衡的方法。熟练掌握刚性转子的平衡设计方法,了解平衡试验的原理及方法,了解平面机构惯性力平衡的方法。

3.掌握机械运转过程的三个阶段,机械系统的功、能量和原动件运动速度的特点。了解作用在机械中的力与某些运动参数之间的函数关系。

4.掌握建立单自由度机械系统等效动力学模型以确定机械的真实运动规律的基本思路及建立运动方程式的方法,能求解等效力矩和等效转动惯量均是机构位置函数时机械的运动方程式。

5.了解周期性速率波动的调节方法,掌握飞轮调速原理及飞轮的设计方法,能求解等效力矩是机构位置函数时飞轮的转动惯量。

二、教学内容与学时分配

第一节 机构的动态静力分析 2学时 第二节 机械的平衡 1.5学时

第三节 机械的运转及其速度波动的调节 4.5学时

三、教学内容的重点和难点 重点:

1.刚性转子静平衡、动平衡的原理及平衡设计方法。

2.单自由度机械系统等效动力学模型的建立及机械系统真实运动规律的求解。3.机械系统运动的波动及其调节方法。难点:

1.刚性转子动平衡计算

2.等效力(力矩)、等效质量(等效转动惯量的计算)

四、教学内容的深化与拓宽

机械系统的计算机辅助运动学和动力学。

五、教学方式与手段及教学过程中应注意的问题 充分利用多媒体教学手段,围绕教学基本要求进行教学。

在教学过程中应强调,机械的真实运动规律是由其各构件的尺寸、质量、转动惯量和作用在各构件上的力等许多参数决定的。只有根据这些参数确定出机械原动件的真实运动规律,才能进而对其进行运动分析,确定各构件的真实运动规律。了解机械的真实运动情况,是对机械进行动力学研究与分析所必需的。要注意突出重点,多采用启发式教学以及教师和学生的互动。

机械原理课程教案

第六章 机械动力学

六、主要参考书目 黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2002 2 申永胜主编.机械原理教程.北京:清华大学出版社,1999 3 唐锡宽,金德闻.机械动力学.北京:高等教育出版社,1984

七、相关的实践性环节 刚性回转体平衡实验。

八、课外学习要求

自学机构动态静力分析的图解法等内容。

九、习题

6-1,6-4,6-5,6-7,6-8,6-11,6-14

机械原理课程教案

第七章 机械系统运动方案设计

第七章 机械系统运动方案设计

一、教学目标及基本要求

1.了解机械系统设计的整个过程,明确机械系统总体方案设计阶段的设计目的及工作内容。

2.了解机械系统总体方案设计中应具有的现代设计观念以及机械现代设计和创新设计的特点,逐步学会在机械执行系统、传动系统的方案设计和原动机选择过程中,正确灵活运用这些设计思想。

3.了解机械执行系统方案设计的过程和具体设计内容,学会根据机械预期实现的功能要求,进行功能原理设计的创新构思;学会根据工作原理提出的工艺动作要求,创造性地构思出合适的运动规律。

4.掌握执行机构型式设计的原则,学会运用选型和构型的方法进行执行机构型式的创新设计。

5.了解执行系统协调设计的目的和原则,掌握机械运动循环图的绘制方法。6.了解方案评价的意义、评价准则、评价指标和评价方法。

二、教学内容与学时分配

第一节 机械总体方案设计(1学时)

第二节 现代设计观念与创新设计简介(1学时)第三节 机械执行系统运动方案设计(3学时)第五节 机械系统运动方案设计举例(1学时)

(注:课内只安排2学时,着重介绍第一、三节的部分内容,其余内容安排在课程设计进行时讲授)

三、教学内容的重点和难点 重点:

1.机械系统总体方案设计阶段的设计内容和设计思想。

2.机械执行系统方案设计的内容和全过程,执行系统方案设计的具体方法。

四、教学内容的深化与拓宽 机械现代设计方法。

五、教学方式与手段及教学过程中应注意的问题 充分利用多媒体教学手段,围绕教学基本要求进行教学。

在教学过程中,要强调机械总体方案设计是机械产品设计中十分重要的一环,产品的功能是否齐全、性能是否优良,在很大程度上取决于总体方案设计阶段的工作;执行系统的方案设计是机械总体方案设计的核心,对机械系统能否实现预期的功能以及工作质量的优劣和产品在市场上的竞争力,都起着决定性的作用。要注意突出重点,多采用启发式教学以及教师和学生的互动。

机械原理课程教案

第七章 机械系统运动方案设计

六、主要参考书目 黄茂林,秦伟主编.机械原理.北京:机械工业出版社,2002 2 申永胜主编.机械原理教程.北京:清华大学出版社,1999

七、相关的实践性环节

机械创意组合设计实验,机械运动方案创新设计实验。

八、课外学习要求

自学现代设计观念与创新设计、机械传动系统的方案设计和原动机的选择、机械系统运动方案设计举例等内容。

九、思考题 7-1~7-3 15

下载机械原理学习报告25篇word格式文档
下载机械原理学习报告25篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    机械原理问答题

    1. 构具有确定运动的条件是什么?若此条件不满足,将会产生什么结果? 机构具有确定运动的条件是F>0,且F等于原动件数。F>0时,如原动件数目少于自由度数,则运动不能确定;如原动件数目多......

    机械原理课程设计

    机械原理课程设计 培养和提高学生的创新思维能力是高等教育改革的一项重要任务.机械原理是机械类专业必修的一 门重要的技术基础课,它是研究机械的工作原理、构成原理、设计原......

    机械原理实验报告

    实验一 机构运动简图测绘实验 一、实验原理 1、观察几种典型机构及运动,了解其特点。 2、掌握依据实物绘制出机构运动简图的方法。 3、进一步培养抽象思维的能力,即通过查看抽......

    机械原理习题

    1、用平面低副联接的二构件间,具有相对运动数为(b ) A. 1 B. 2 C. 3 D. ≥22、某平面机构共有5个低副,1个高副,机构的自由度为1,则该机构具有几个活动构件?(b ) A. 3 B. 4 C.......

    机械原理自测题

    机械原理自测题库—单选题(共 63 题) 1、铰链四杆机构的压力角是指在不计算摩擦情况下连杆作用于 B上的力与该力作用点速度所夹的锐角。 A.主动件 B.从动件 C.机架 D.连架杆 2、平......

    《机械原理》教学大纲

    《机械原理》教学大纲 Syllabus of Theory of Machines and Meachanisms 一、 课程性质与任务 1.课程性质 机械原理是为工科各专业而开设的一门专业技术基础课,它是以高等数学......

    机械原理实验报告

    2013.10.25 周五晚机械原理实验报告书写要求 明燕老师 (下边附带创新题图片)......

    机械原理课程设计结题报告(最终版)

    ——机械原理课程设计 自动网球发球机 班级 : 05020604 小组成员 : 吴军 (061201) 周少丰(061209) 毛海龙( 指导老师 :葛文杰 机械原理课程设计报告 目录 一、 设计背景简介: .......