第一篇:通信原理课设文档simulink
《通信原理》课程设计
开机,启动Matlab,在工作窗口Simulink。
模块库——>各个模块 Simulink:基本模块库
Commuinications Blockset:通信模块库 Signal Processing Blockset:信号处理模块库
基本原理:
1. 信源
通信工具箱:Communications Blockset——Comm Sources/Rondom Data Sources 选择:Bernoulli Binary Generator二进制伯努利序列产生器
Random Integer Generator 随机整数产生器 Signal Processing Blockset——signal Processing Sources
Sine Wave正弦波 2. 噪声源
Communications Blockset——Comm Sources/Noise Generators 选择:Gaussian Noise Generator高斯白噪声产生器
Rayleigh Noise Generator瑞利噪声产生器
Uniform Noise Generator均匀噪声产生器 3. 示波器
Simulink——〉Sinks——〉Scope 4. 相加器、增益、相乘器 Simulink——〉Math Operations——〉Add、Gain、Produc 5. 信道
高斯白噪声加性信道
Communications Blockset—〉Comm Sources—〉Noise Generators—〉Gaussian Noise Generator 6. 滤波器
Signal Processing Blockset——〉Filtering——〉Filter Designs——〉Digital Filter Design 低通滤波器的带宽:基带信号的带宽
带通滤波器的带宽:载波频率±基带信号的带宽 7. Relay(抽样判决器)
Simulink——〉Discontinuities——〉Relay 这是一个滞环比较器,一般用来作为调节有波动的系统时的缓冲。
parameters里的设置为:switch on point-阈值上限,switch off point-阈值下限,output when on-阈值上限输出值,output when off-阈值下限输出值。
例如某个信号的阈值上限为1.5,下限为0.5,上限输出为1,下限输出为0.当该信号上升到大于1.5时,relay的输出为1。若信号下一个周期小于1.5,但仍大于0.5时,其输出仍保持为1。只有当信号下降到小于0.5时,才会输出0。
它的意义是使信号调节有一个足够的范围宽度,而不至于因为每个周期都进行调节。8. 眼图、星座图、误码率
Communications Blockset—〉Comm Sinks——〉Discrete-Time Eye Diagram Scope Samples per symbol:每个符号的采样点数,自己计算1个二进制码元在系统中有多少个采样点,也就是要保证眼图窗口的时间宽度为整数个码元宽度(最好1、2个)。 Offset:非负整数,小于Samples per symbol和Samples per trace的乘积,指定在画第一个点时省略的采样点数。可调。
Samples per trace:正数,指定每一条轨迹的符号数目。如2,显示两个符号周期。 Traces displayed:叠加的轨迹的数目。
New traces per display:正整数,小于Traces displayed,指定每一次显示时新轨迹的数目。
Rendering Properties:线型和颜色设计 Axes Properties:x、y轴范围设计
Figure Properties:眼图显示的数据类型设计
Communications Blockset—〉Comm Sinks——〉Discrete-Time Scatter Plot Scope Communications Blockset—〉Comm Sinks——〉Error Rate Calculation
第二篇:通信原理课设基于simulink的数字通信系统设计
华东交通大学课设论文
课程设计(论文)任务书
信息工程
学
院
通信工程 专
业
11-1、2、3、4
班一、一、课程设计(论文)题目 基于Simulink的数字通信系统的仿真设计
二、课程设计(论文)工作自 2014 年 6 月 16 日起至 2014 年 6 月 27 日止。
三、课程设计(论文)地点: 图书馆、寝室、通信实验室(4-410)。
四、课程设计(论文)内容要求: 1.本课程设计的目的
(1)使学生掌握通信系统各功能模块的基本工作原理;
(2)培养学生采用Simulink仿真软件对各种电路进行仿真的方法;(3)培养学生对二进制数字调制及解调电路的理解能力;(4)能提高和挖掘学生对所学知识的实际应用能力即创新能力;(5)提高学生的科技论文写作能力。2.课程设计的任务及要求 1)基本要求:
(1)学习Simulink仿真软件的使用;
(2)对数字通信系统调制及解调电路各功能模块的工作原理进行分析;(3)提出数字通信系统调制及解调电路的设计方案,选用合适的模块;(4)对所设计系统进行仿真;(5)并对仿真结果进行分析。
a.2ASK调制及解调 b.2FSK调制及解调 c.2PSK调制及解调 d.2DPSK调制及解调
e.MASK,MFSK,MPSK,MSK,QAM(至少选做一种)
2)创新要求:
3)课程设计论文编写要求
(1)要按照书稿的规格打印誊写毕业论文
(2)论文包括目录、绪论、正文、小结、参考文献、谢辞、附录等(3)毕业论文装订按学校的统一要求完成 4)答辩标准:
(1)完成原理分析(20分)(2)系统方案选择(30分)(3)仿真结果分析(30分)(4)论文写作
(20分)5)参考文献:
(1)王俊峰.《通信原理MATLAB仿真教程》 人民邮电出版社第1版.2010.11.1
华东交通大学课设论文
(2)赵静.《基于MATLAB的通信系统仿真》 北京航空航天大学出版社
6)课程设计进度安排
内容
天数
华东交通大学课设论文
地点
构思及收集资料 2
图书馆 仿真 5
实验室 撰写论文 3
实验室
学生签名:
2014年6月16日
课程设计(论文)评审意见
(1)完成原理分析(20分):优()、良()、中()、一般()、差();(2)系统方案选择(30分):优()、良()、中()、一般()、差();(3)仿真结果分析(30分):优()、良()、中()、一般()、差();(4)论文写作
(20分):优()、良()、中()、一般()、差();(5)格式规范性及考勤是否降等级:是()、否()
评阅人:
职称:
副教授
2014 年 6 月27 日
华东交通大学课设论文
目录
1.引言.............................................................................................................................2 1.1设计背景。.......................................................................................................2 1.2数字通信系统设计步骤。...............................................................................3 1.3课设内容:.......................................................................................................3 2.MATLAB和SIMULINK简介。.............................................................................4 3.通信与基带传输系统概念。.....................................................................................6 3.1 通信的概念......................................................................................................6 3.2数字基带传输系统...........................................................................................7 4.2ASK的调制、解调系统设计原理及仿真。......................................................8 4.1 2ASK调制。.................................................................................................8 4.2
2ASK的解调:.........................................................................................9 4.3 2ASK调制与解调系统的仿真电路图及其仿真结果。.............................9 5.2FSK的调制、解调系统设计原理及仿真。....................................................10 5.1 2FSK的调制。...........................................................................................10 5.2 2FSK的解调。...........................................................................................12 5.3 2FSK调制与解调系统的仿真电路图及其仿真结果。...........................12 6.2PSK的调制、解调系统设计原理及仿真。....................................................13 6.1 2PSK的调制。..............................................................................................13 6.2 2PSK的解调。..............................................................................................14 6.3 2PSK调制与解调系统的仿真电路图及其仿真结果。...........................15 7.2DPSK的调制、解调系统设计原理及仿真。.................................................16 7.1 2DPSK的调制。........................................................................................16 7.2 2DPSK的解调。........................................................................................17 7.3 2DPSK调制与解调系统的仿真电路图及其仿真结果。........................17 8.MSK的调制、解调系统设计原理及仿真。........................................................19 8.1 MSK的调制。............................................................................................19 8.2 MSK的解调...................................................................................................20 8.3 MSK调制与解调系统的仿真电路图及其仿真结果。...............................21 9.结论。.....................................................................................................................21 参考文献......................................................................................................................22
华东交通大学课设论文
基于simulink的数字通信系统的设计
摘要:数字调制是指用数字基带信号对载波的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。根据控制的载波参量的不同,数字调制有调幅、调相和调频三种基本形式,并可以派生出多种其他形式。
在此次的课设中我们利用simulink完成了2ASK调制及解调、2FSK调制及解、调2PSK调制及解调还有2DPSK调制及解调,在MASK,MFSK,MPSK,MSK,QAM中选择了MSK进行了调制解调的设计。
在报告中描述了此次课设中各种调制方式调制解调的原理,并给出调制、解调的原理框图。根据各种调制方式的原理,结合调制、解调的原理框图。利用simulink设计出了相应的调制、解调系统,同时还进行了仿真,结合原理不断观察仿真结果,不断的调整相应的参数得到了相对最理想的结果,并对相应的调制解调系统的结果进行分析。
最后对本次的课设进行了总结,此次的课设学会了simulink的使用,加深了对通信原理的理解,成功实现各调制方式的调制、解调。
关键字:数字调制 simulink 仿真与调试
华东交通大学课设论文
1.引言
1.1设计背景。
随着现代通信系统的飞速发展,计算机仿真已经成为分析和设计通信系统的主要工具,在通信系统的研发和教学中具有越来越重要的意义。计算机仿真是衡量系统性能的工具,它通过构建模型运行结果来分析实物系统的性能从而为新系统的建立或原系统的改造提供可靠的参考。通过仿真,可以降低新系统失败的可能性,消除系统中潜在的瓶颈,优化系统的整体性能。因此,仿真是通信系统研究和工程建设中不可缺少的环节。仿真也称模拟,在本质上,系统的计算机仿真就是根据实际的物理系统的运行原理建立相应的数学描述并进行计算机数值求解。根据实际的目标问题提出相应的数学描述,通常可以表达为一系列数学方程以及一系列边界条件。把系统的数学描述称为系统的仿真模型。用计算机语言重新表达的数学模型称为系统的计算机仿真模型。对用户而言,使用仿真软件的平台不同,所建立的计算机仿真模型形式也不同,可以是字符形式的一系列程序代码,也可以是图形化的一些列一组信号流程图、系统方框图或者状态转移图。
SIMULINK是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。SIMULINK具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点SIMULINK已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于SIMULINK。从理论上对通信系统进行深入细致的研究是非常必要的,本文对通信系统中的一些重要环节,如数字信号的调制解调有着深入的研究学习。本文在深刻理解通信系统理论的基础上,利用MATLAB提供的通信工具箱和信号处理工具箱中的模块,对通信系统中的典型信号进行了模型构建、系统设计、仿真演示、结果显示。通过系统的仿真与分析可以看出SIMULINK在系统建模和仿真中的巨大优势,是学习、研究和设计通信系统强有力的工具。
华东交通大学课设论文
1.2数字通信系统设计步骤。
利用SIMULINK进行数字通信系统设计、仿真的基本步骤如下:(1)建立数学模型:根据通信系统的基本原理,将整个系统简化到有源系统,确定总的系统功能,并将各部分功能模块化,找出各部分之间的关系,画出系统流程框图模型。
(2)仿真系统:根据建立的模型从SIMULINK通信模型库的各个子库中将所需要的单元功能模块拷贝到Untitled窗口,按系统流程框图模型连接,组建要仿真的通信系统模型。
(3)设置、调整参数:参数设置包括运行系统参数设置(如系统运行时间。采样速率等)和功能模块运行参数设置(如正弦信号的频率、幅度、初相;低通滤波器的截止频率、通带增益、阻带衰减等)。
(4)设置观察窗口,分析仿真数据和波形:在系统模型的关键点处设置观测输出模块,用于观测仿真系统的运行情况,以便及时调整参数,分析结果。
(5)生成新的模块:对于库中没有的功能模块,可以根据以掌握的技术生成所需新的子模块,以便随时调用。
1.3课设内容:
此次课设的主要内容如下:
(1):学习了simulink的使用方法。
(2):学习了各种调制方式的调制解调原理,及其设计方法。
(3):根据各种调制方式的原理,利用simulink设计出了相应的调制、解调系统,同时还进行了仿真,结合原理不断观察仿真结果,不断的调整相应的参数得到了最理想的结果。
(4):以文档的形式描述了此次课设中各种调制方式调制解调的原理,给出相应的调制解调系统并对结果进行分析。
华东交通大学课设论文
2.MATLAB和SIMULINK简介。
美国Mathworks公司于1967年推出了矩阵实验室“Matrix Laboratory”(缩写为Matlab)这就是Matlab最早的雏形。开发的最早的目的是帮助学校的老师和学生更好的授课和学习。从Matlab诞生开始,由于其高度的集成性及应用的方便性,在高校中受到了极大的欢迎。由于它使用方便,能非常快的实现科研人员的设想,极大的节约了科研人员的时间,受到了大多数科研人员的支持,经过一代代人的努力,目前已发展到了7。X版本。Matlab是一种解释性执行语言,具有强大的计算、仿真、绘图等功能。由于它使用简单,扩充方便,尤其是世界上有成千上万的不同领域的科研工作者不停的在自己的科研过程中扩充Matlab的功能,使其成为了巨大的知识宝库。可以毫不夸张的说,哪怕是你真正理解了一个工具箱,那么就是理解了一门非常重要的科学知识。科研工作者通常可以通过Matlab来学习某个领域的科学知识,这就是Matlab真正在全世界推广开来的原因。目前的Matlab版本已经可以方便的设计漂亮的界面,它可以像VB等语言一样设计漂亮的用户接口,同时因为有最丰富的函数库(工具箱),所以计算的功能实现也很简单,进一步受到了科研工作者的欢迎。另外,Matlab和其他高级语言也具有良好的接口,可以方便的实现与其他语言的混合编程,进一步拓宽了Matlab的应用潜力。可以说,Matlab已经也很有必要成为大学生的必修课之一,掌握这门工具对学习各门学科有非常重要的推进作用。
Simulink是MATLAB中的一种可视化仿真工具,也是目前在动态系统的建模和仿真等方面应用最广泛的工具之一。确切的说,Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持线性和非线性系统,连续、离散时间模型,或者是两者的混合。系统还可以使多种采样频率的系统,而且系统可以是多进程的。Simulink工作环境进过几年的发展,已经成为学术和工业界用来建模和仿真的主流工具包。在Simulink环境中,它为用户提供了方框图进行建模的图形接口,采用这种结构画模型图就如同用手在纸上画模型一样自如、方便,故用户只需进行简单的点击和拖动就能完成建模,并可直接进行系统的仿真,快速的得到仿真结果。它的主要特点在于:
1、建模方便、快捷;
2、易于进行模型分析;
3、优越的仿真性能。它与传统的仿真软件包微分方程和差分方程建模相
华东交通大学课设论文
比,具有更直观、方便、灵活的优点。Simulink模块库(或函数库)包含有Sinks(输出方式)、Sources(输入源)、Linear(线性环节)、Nonlinear(非线性环节)、Connection(连接与接口)和Extra(其他环节)等具有不同功能或函数运算的Simulink库模块(或库函数),而且每个子模型库中包含有相应的功能模块,用户还可以根据需要定制和创建自己的模块。用Simulink创建的模型可以具有递阶结构,因此用户可以采用从上到下或从下到上的结构创建模型。用户可以从最高级开始观看模型,然后用鼠标双击其中的子系统模块,来查看其下一级的内容,以此类推,从而可以看到整个模型的细节,帮助用户理解模型的结构和各模块之间的相互关系。在定义完一个模型后,用户可以通过Simulink的菜单或MATLAB的命令窗口键入命令来对它进行仿真。菜单方式对于交互工作非常方便,而命令行方式对于运行仿真的批处理非常有用。采用Scope模块和其他的显示模块,可以在仿真进行的同时就可立即观看到仿真结果,若改变模块的参数并再次运行即可观察到相应的结果,这适用于因果关系的问题研究。仿真的结果还可以存放到MATLAB的工作空间里做事后处理。模型分析工具包括线性化和整理工具,MATLAB的所有工具及Simulink本身的应用工具箱都包含这些工具。由于MATLAB和SIMULINK的集成在一起的,因此用户可以在这两种环境下对自己的模型进行仿真、分析和修改模型。
强大的Simulink动态仿真环境,可以实现可视化建模和多工作环境间文件互用和数据交换。Simulink支持连续、离散及两者混合的线性和非线性系统,也支持多种采样速率的多速率系统;Simulink为用户提供了用方框图进行建模的图形接口,它与传统的仿真软件包用差分方程和微分方程建模相比,更直观、方便和灵活。用户可以在Matlab和Simulink两种环境下对自己的模型进行仿真、分析和修改。用于实现通信仿真的通信工具包(Communication toolbox,也叫Commlib,通信工具箱)是Matlab语言中的一个科学性工具包,提供通信领域中计算、研究模拟发展、系统设计和分析的功能,可以在Matlab环境下独立使用,也可以配合Simulink使用。另外,Matlab的图形界面功能GUI(Graphical User Interface)能为仿真系统生成一个人机交互界面,便于仿真系统的操作。因此,Matlab在通信系统仿真中得到了广泛应用,本文也选用该工具对数字调制系统进行仿真。
华东交通大学课设论文
3.通信与基带传输系统概念。
3.1 通信的概念
通信就是克服距离上的障碍,从一地向另一地传递和交换消息。消息是信息源所产生的,是信息的物理表现,例如,语音、文字、数据、图形和图像等都是消息(Message)。消息有模拟消息(如语音、图像等)以及数字消息(如数据、文字等)之分。所有消息必须在转换成电信号(通常简称为信号)后才能在通信系统中传输。所以,信号(Signal)是传输消息的手段,信号是消息的物质载体。通信系统一般模型如下所示:
信息源发送设备信道接收设备受信者
图3-1:通信系统一般模型
相应的信号可分为模拟信号和数字信号,模拟信号的自变量可以是连续的或离散的,但幅度是连续的,如下图3-2所示:
信息源调制器信道解调器受信者
图3-2:通信系统一般模型
同时数字信号的自变量可以是连续的或离散的,但幅度是离散的,如图3-3所示的数字通信系统:
信信源源信道数字制器数信信字受道源信息编编调 解译译信码器码器道调器码器码器者图3-3:数字通信系统
华东交通大学课设论文
通信的目的是传递消息,但对受信者有用的是消息中包含的有效内容,也即信息(Information)。消息是具体的、表面的,而信息是抽象的、本质的,且消息中包含的信息的多少可以用信息量来度量。
通信技术,特别是数字通信技术近年来发展非常迅速,它的应用越来越广泛。通信从本质上来讲就是实现信息传递功能的一门科学技术,它要将大量有用的信息无失真,高效率地进行传输,同时还要在传输过程中将无用信息和有害信息抑制掉。当今的通信不仅要有效地传递信息,而且还有储存、处理、采集及显示等功能,通信已成为信息科学技术的一个重要组成部分。
3.2数字基带传输系统
在数字基带传输系统中,为了使数字基带信号能够在信道中传输,要求信道应具有低通形式的传输特性。然而,在实际信道中,大多数信道具有带通传输特性,数字基带信号不能直接在这种带通传输特性的信道中传输。必须用数字基带信号对载波进行调制,产生各种已调数字信号。
3-4数字调制系统的基本结构
数字调制与模拟调制原理是相同的,一般可以采用模拟调制的方法实现数字调制。但是,数字基带信号具有与模拟基带信号不同的特点,其取值是有限的离散状态。这样,可以用载波的某些离散状态来表示数字基带信号的离散状态。基本的数字调制方式有:振幅键控(ASK)、移频键控(FSK)和移相键控(PSK)、正交振幅键控(QAM)、多相相移键控信号(QPSK)、最小移频键控(MSK)。
本次课设内容主要以二进制振幅键控(2ASK)、二进制频移动键控(2FSK)和二进制相移键控(2PSK)、二进制相对相移键控(2DPSK)、最小移频键控(MSK)为主。
华东交通大学课设论文
4.2ASK的调制、解调系统设计原理及仿真。
4.1 2ASK调制。
(1)调制原理(模拟相乘法):
振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制。当数字基带信号为二进制时,则为二进制振幅键控。幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。设发送的二进制符号序列由0、1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且相互独立。
该二进制符号序列可表示为:
其中:
Ts是二进制基带信号时间间隔,g(t)是持续时间为Ts的矩形脉冲:
则二进制振幅键控信号可表示为:
(2)根据模拟相乘法调制原理框图如下:
4-1振幅调制模拟相乘法调制原理图
(3)二进制振幅键控调制波形如下:
华东交通大学课设论文
根据载波信号幅度的取值的对调制信号进行调制。波形如下:
4-2二进制振幅键控调制波形
4.2
2ASK的解调:
(1)解调原理(相干解调):
2ASK信号的解调有两种方法即相干解调和包络解调。此次课设中采用相干解调,相干解调也称为同步解调,利用乘法器,输入一路与载频相干即同频同相的参考信号与载频相乘。具体过程如下:
比如原始信号A与载频
调制后得到信号,解调时,得到滤除,引入相干(同频同相)的参数信号,用低通滤波器将高频信号即得原始信号A。(2)解调原理框图:
4.3 2ASK调制与解调系统的仿真电路图及其仿真结果。
(1)
2ASK调制与解调系统的仿真电路图:
利用simulink得到2ASK调制与解调系统的仿真电路图:
华东交通大学课设论文
(2)仿真结果。
根据调制解调仿真电路,经过调整得到如下结果:
(3)结果分析:
对照调制解调电路各点,根据仿真结果可以看出,整个电路得到了很准确的调制信号,并且很好地将其解调出来,解调信号和原始信号对比发现,没有任何的失真和延时。
5.2FSK的调制、解调系统设计原理及仿真。
5.1 2FSK的调制。
(1)调制原理:
采用了模拟调频法。2FSK信号是用载波频率的变化来表征被传信息的状态
华东交通大学课设论文 的,被调载波的频率随二进制序列0、1状态而变化,即载频为载频为时代表传1。显然,2FSK信号完全可以看成两个分别以以和
时代表传0,和
为载频,为被传二进制序列的两种2ASK信号的合成。2FSK信号的一般时域数学表达式为:
其中,且是的反码,关系式如下:
(2)调制原理框图:
采用模拟相乘法有如下的调制原理图:
2fsk调制波形如下:(3)解调信号时域波形:
华东交通大学课设论文
5.2 2FSK的解调。
(1)解调原理(相干解调):
二进制移频键控信号的解调方法很多,有模拟鉴频法和数字检测法,有非相干解调方法也有相干解调方法。其解调原理是将二进制移频键控信号分解为上下两路二进制振幅键控信号,分别进行解调,通过对上下两路的抽样值进行比较最终判决出输出信号。(2)解调原理框图:
5.3 2FSK调制与解调系统的仿真电路图及其仿真结果。
(1)simulink绘制的2FSK调制与解系统的仿真电路图如下:
华东交通大学课设论文
(2)仿真结果如下:
(3)仿真结果分析:
结果表明能非常准确的对信号进行调制,得到了较好的2FSK波形,并且在时间上非常同步。对于解调信号,其解调结果与原波形相比有一半的失真,还不是很理想。
6.2PSK的调制、解调系统设计原理及仿真。
6.1 2PSK的调制。
(1)2PSK调制的原理:
二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。通常用已调信号载波的 0°和 180°分别表示二进制数字基带信号的 1 和 0。二进制移相键控信号的时域表达式为:
e2psk(t)g(tnTs)*an
在2PSK调制中,an应选择双极性,即:
0,an1,0,bn1,发送的概率为P发送的概率为1-P发送的概率为P发送的概率为1-P
若g(t)是脉宽为Ts,高度为1的矩形脉冲时,则有:
华东交通大学课设论文
coswct,e2pskcoswct,发送的概率为P发送的概率为1-P
当发送二进制符号1时,已调信号e2PSK(t)取0°相位,发送二进制符号0时,e2PSK(t)取180°相位。若用φn表示第n个符号的绝对相位,则有发送 1 符号
φn= 0°,发送 0 符号。这种以载波的不同相位直接表示相应二进制数字信号的调制方式,称为二进制绝对移相方式。(2)2PSK调制框图(采用模拟相乘法):
(3)2PSK调制的波形:
6.2 2PSK的解调。
(1)解调原理(相干解调法):
由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。此次课设中2PSK信号的解调方法采用的是相干解调法。经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0。
(2)解调原理框图:
华东交通大学课设论文
6.3 2PSK调制与解调系统的仿真电路图及其仿真结果。
(1):simulink软件仿真图如下:
(2)仿真结果如下:
华东交通大学课设论文
(3)结果分析:
结果表明能非常准确的对信号进行调制,得到了较好的2PSK波形,并且在时间上非常同步。对于解调信号,因为我所使用的simulink没有抽样判决器,采用代替器件中有判决键的使用导致解调结果有延时。
7.2DPSK的调制、解调系统设计原理及仿真。
7.1 2DPSK的调制。
(1)调制原理(模拟调相法):
二进制移相键控(2PSK)方式是指受键控的载波相位按基带脉冲而改变的一种数字调制方式。众所周知2PSK调制是将传输的数字码元“1”用初始相位为180°的正弦波表示,而数字码元“0”用初始相位为0°的正弦波表示。若设at是传输数字码元的绝对码,则2PSK已调信号在任一个码元时间T内的表达式为: s(t)Asin[wcta(t)]a(t)0或者1
为此实际中一般采用一种所谓的差分移相键控(2DPSK)方式。2DPSK方式是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。用前后相邻码元的载波相对相位变化来表示数字信息。假设前后相邻码元的载波相位差为,可定义一种数字信息与
之间的关系为:
若将传输数字码元的绝对码at先进行差分编码得相对码bt,其差分编译码如下:
差分编码为 btatbtT(2)差分译码为 atbtbtT(3)再将相对码bt进行2PSK调制,则所得到的即是2DPSK已调信号,其在任一码元时间T内的表达式为
stAsinctbt,bt1或0(4)(2)调制原理框图(采用模拟调相法):
华东交通大学课设论文
(3)其调制波形:
7.2 2DPSK的解调。
(1)解调原理(差分相干解调方式):
实际中接收到的2DPSK 信号在经过带通滤波后,由于码元跳变处的高频分量被过滤掉,滤波后的2DPSK信号波形分为稳定区和过渡区,码元中间部分是稳定区,前、后部分为过渡区。稳定区内的信号基本无损失,波形近似为正弦波,而过渡区内的波形则不是正弦波,并且幅度明显降低。调制信息基本上只存在于码元稳定区。
直接比较前、后码元的相位差,从而恢复发送的二进制数字信息。由于解调的同时完成了码反变换作用,故解调器中不需要码反变换器,只需将调制信号延迟一个码元间隔Ts。由于差分相干解调方式不需要专门的相干载波,因此是一种非相干解调方法。(2)解调原理框图:
7.3 2DPSK调制与解调系统的仿真电路图及其仿真结果。
华东交通大学课设论文
(1)DPSK调制与解调系统的仿真电路图
(2)仿真结果:
(3)结果分析:
华东交通大学课设论文
结果表明能非常准确的对信号进行调制,得到了较好的2DPSK波形,并且在时间上非常同步。对于解调信号,能很好的恢复出调制信号,世间上非常同步,只不过有些许误差。
从信差分编码移相2DPSK在数字通信系统中是一种重要的调制方式,其抗噪性能和信道频带利用率均优于移幅键控(ASK)和移频键控(FSK),因而在实际的数据传输系统中得到广泛的应用。
8.MSK的调制、解调系统设计原理及仿真。
8.1 MSK的调制。
(1)调制原理:
MSK叫最小频移键控,它是频移键控(FSK)的一种改进型。这里“最小”指的是能以最小的调制指数(即0.5)获得正交信号,它能比PSK传送更高的比特速率。
二进制MSK信号的表达式可写为:
sMSK(t)cos(wctpiak*tk)其中(k1)TstkTs 2*Ts
式中,φk称为附加相位函数;ωc为载波角频率;Tk为第k个输入码元,s为码元宽度;a取值为±1;φk为第k个码元的相位常数,在时间kTs≤t≤(k+1)Ts中保持不变,其作用是保证在t=kTs时刻信号相位连续。由
wc+p2TSa=+1dfk(t)pa=wc+k=dt2Tswc-p2TSa
1可知 4Ts1当ak=-1时,信号的频率为:f1=fc-
4Ts11由此可得频率之差为:f=f2-f1=H=f Ts=x=0.5
2Ts2Ts当ak=+1时,信号的频率为:f2=fc+(2)调制系统:
华东交通大学课设论文
(3)MSK调制信号:
+--+++-- 8.2 MSK的解调
(1)解调原理:
采用相干解调,其解调原理是将MSK信号分解为上下两路2ASK信号分别进行解调,然后进行判决,这里的抽样判决是直接比较两路信号抽样 值的大小,可以不专门设置门限。(2):解调原理框图:
华东交通大学课设论文
8.3 MSK调制与解调系统的仿真电路图及其仿真结果。
(1)MSK调制与解调系统的仿真电路图。
(2)仿真结果:
9.结论。
通过这段时间的努力,基本成功设计出了2ASK、2FSK、2PSK及2DPSK及解有MSK调制解调系统,并且除部分失真和延时外,调制解调信号都和调制解调原理相符。
通过本次课程设计,我收获颇多,对二进制数字调制和解调系统有了更深入的了解,对2ASK调制及解调、2FSK调制及解、调2PSK调制及解调还有2DPSK调制及解调还有MSK调制解调都有了更是深入的理解。把书本上的理论知识和实际动手联系起来让我懂得了在学习的过程中要带着问题去学习,这样才能提高学习的效率。我们必须要联系实际去解决问题,因为我们的知识水平有限,在学习与实践的过程中难免会出现一些问题。这次课程设计使我把以往所学的很多基础知识都联系了起来,在这期间我深刻的体会到了以前所学的每一样知识都是有用的。只有把基础知识一样样地学扎实了才能在现代技术的基础上不断拓展,不
华东交通大学课设论文
断创新。才能在专业领域上赢得自己的一席之地。也学会了对matlab和Simulink的基础使用方法,能成功对数字调制系统的进行仿真设计。
当然在做课程设计的过程中总会出现各种问题,通过不断对各种通信系统的调整改进、改变某些参数比较系统性能的变化,最后基本可以设计出正确的调制解调电路,可以得到较理想的调制解调结果。
无形间提高了我们的动手、动脑能力,并且同学相互探讨问题,研究解决方案,增进大家的团队意识。同时我也充分认识到了理论与实践相结合的重要性,平时我们只是一味地学习理论知识,很少有自己动手设计的时候,但这次课程设计为我们提供了一个好的机会,不仅锻炼了我的动手能力,还使我对通信系统有了感性的认识。
参考文献
[1]樊昌信, 曹丽娜.通信原理.国防工业出版社.2006. [2]张化光、孙秋野.MATLAB/SIMULINK教程.人民邮电出版社.
第三篇:通信原理课设(本站推荐)
目
录
一、音频传输系统设计..................................................................................................................1
1.设计目的................................................................................................................................1 2.设计内容................................................................................................................................1 3.实现步骤................................................................................................................................1 4.结论及思考............................................................................................................................5
二、数字传输系统设计..................................................................................................................7
1.设计目的................................................................................................................................7 2.设计内容................................................................................................................................7 3.实现步骤..............................................................................................................................11 4.结论及思考..........................................................................................................................17
三、总结与收获............................................................................................................................18 指导教师意见................................................................................................................................19
《通信原理》课程设计报告
一、音频传输系统设计
1.设计目的
通信的基本形式是在信源和信宿之间建立一条传递信息的通道,通信系统通常由 信源,变换器,信道,反变换器,信宿以及等效噪声等几部分构成.通过这次音频传输系统设计,我们可以深刻体会到信号在通信系统中的传输和处理过程有一个更加清晰的认识和理解,对于模拟通信系统,考查学生对调制技术的理解和使用, 同时,通过音频传输系统的设计,我们更加深刻理解了模拟通信系统设计,以及模拟通信系统下最重要的调制技术的应用和设计,锻炼了我们独立思考和分析工程问题的能力,同时,通过设计和实现,我们对复杂的工程问题会有更加深刻的认识,对一个完整的模拟通信系统会有一个更加清晰和完善的概念.2.设计内容
利用NI-USRP节点设备接收实际的广播信号.结合LABVIEW,实现对音频信号的调制解调,观察接收信号的质量并进行分析.3.实现步骤
音频传输系统包括发送端和接收端: 音频传输系统TX.vi: 发射端主程序的前面板如图,前面板左侧为参数输入图部分。
(1)首先,用NI-USRP Configuration Utility观察确保硬件与电脑连接上,以及硬件的地址。
(2)然后修改发送端前面板的“设备的IP地址”。
(3)可以设置声音文件路径(labview只能识别wav格式音频文件)。
(4)USRP配置各类程序控制参数,包括IQ速率,可以更改,但是发送端与接收端的IQ速率要相同,载波频率就是频点频率。
《通信原理》课程设计报告
此模块的作用是根据输入的路径获取音频文件,对应于程序框图SUBVI OPEN Waveform File.vi,输入是外部音频文件的路径,要求必须是wav格式。如果留空,则会自动选择默认音频文件,输出时声音文件的引用句柄,每次从声音文件中读取的样点数以及任务id。此外,这个子程序还留有一个选择是否同时播放的选项,程序的前面板会有一个勾选框,可以选择是否在发送的同时也播放声音。
2.读取声音波形
这个模块的作用是将打开音频文件模块中得到的声音文件转换成波形数组形式输出,同时,还将波形数据写进声音输出设备,使得在发送端可以听到将要发送的声音,如果在前面板勾选了同时播放声音这个选项,那么就可以通过电脑声卡播放出声音,对应于程序框图中的SubVI Read Waveforem File.vi子程序。
输出是波形数据、任务ID以及文件标示和同时播放声音这个选项。3.进行FM调制
该模块的作用是对音频进行FM调制,对应于Exercises FM Modulation.vi
图1-3FM调制图
该模块的输入是声音波形数据,IQ 采样率和频偏,输出是经过FM调制后的时域波形,调制后的波形数据进入niUSRP Write Tx Data(poly)函数。根据前面板上配置后的各项参数发射到空间中,以供接收端程序,普通的FM收音机或者有FM接收功能的手机接收。
该模块需要分两步完成对声音信号的FM调制。
《通信原理》课程设计报告
4.结论及思考
思考:
1.频偏的意义是什么?它怎样影响调制信号?从听众的角度,能做些什么来解决这些影响,做一些测试验证观点。
mf = 最大频偏低频信号的频率,B = 2*(mf+1)F,影响带宽,而带宽影响噪声,所以同时频偏也影响输出信噪比。
从听众的角度来讲,因为公共广播的频带范围是有限的,为87.5~108MHz,以100KHz为步进搜索电台。我们在使用通信系统时应该避开这些公共频带。
2.找出一些能证明所设计的FM收发机性能优劣的技术指标
采样率的大小:接收机的采样效率越高,相同信噪比下收听效果越好。天线增益:天线增益越小,接收效果越好。结论:
1.利用NI-USRP节电设备,结合LabVIEW,我实现了对音频信号的调制解调,收听到了包含有噪声的音乐。
2.提高接收质量:有很多因素影响FM通信系统的有效性和可靠性,如带宽、频偏、增益和载波频率对FM通信系统的影响较大。经测试,提高增益和减小频偏可以有效改善质量。
《通信原理》课程设计报告
3、信源编码
该模块主要是完成霍夫曼编码—基于有序频率二叉树的编码。
图2-2信源编码
4、信道编码
这里主要是使用的(7,4)分组编码
5、脉冲调制
主要完成添加训练队列以及脉冲成形滤波的功能。其中添加训练序列主要是为了接收端可以频偏校正。
6、信道设置
主要在信道中加入白噪声。
《通信原理》课程设计报告
前面板左下方是接受信号的它的星座图,和误码率曲线。可以通过这些来判断程序是否正确。
图2-5数字传输系统接收端
而对接收端的程序框图进行分析:
1、初始化
实现USRP初始化和配置USRP的参数,此时注意与发送对应。如图所示。
图2-6初始化框图
2、信号检测
《通信原理》课程设计报告
2.设计内容
1)完成信道编码即(7,4)分组编码的过程,此时需要完成Exercises Encode-74.vi,学习(7,4)分组码译码的过程。
2)将脉冲调制模块的QPSK/BPSK程序图补充完整 3)学习信源编码即霍夫曼编译码的过程 3.实现步骤
1)发送端接收端程序结构:
图2-6发送端(1)
图2-7发送端(2)
发送端程序框图:
《通信原理》课程设计报告
设置生成矩阵,然后输入前面板的生成矩阵内,打开程序框图,进行设计。
图2-9分组码程序框图
设计图如下:
输入后将长串输入数据流进行长度为4的分块。也即为4维数组。和G矩阵相乘,之后再转化为一维数组。由于矩阵乘法是数值相加的过程,而分组编码是异或过程,因此需要将矩阵内每个元素除二取余,余数即为正确的异或过程。
分组码译码: 首先设计校验矩阵H。接着设计程序框图如下:
图2-10解调程序框图
《通信原理》课程设计报告
入信号平均能量,将此能量与符号能量相乘乘上信号幅值,得到输出信号
图2-12 BPSK设计
BPSK。BPSK解调如图所示。输入数据流对2取余,输出到下一个框图,0对应1,1对应-1.4)利用USRP设备实现图像发送 首先设置硬件设备,选择好天线,然后打开发送端和接收端。得到结果如下:
图2-13发送和接收图像
在图像传输过程中会出现噪声干扰,通过增大增益可以使噪声减小。
《通信原理》课程设计报告
(备注:此处要求手写,不得拷贝,要有自己的心得体会)
本人签名:
年
月
月
日指导教师意见
第四篇:通信原理课设
沈阳理工大学通信系统课程设计
摘 要
摘要:所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。这里高频振荡波就是携带信号的运载工具,也叫载波。振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。在线性调制系列中,最先应用的一种幅度调制是全调幅或常规调幅,简称为调幅(AM)。为了提高传输的效率,还有载波受到抑制的双边带调幅波(DSB)和单边带调幅波(SSB)。在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。
本课程设计主要利用MATLAB集成环境下的Simulink仿真平台,设计一个AM调制与相干解调通信系统,分别在理想信道和非理想信道中运行,并把运行仿真结果输入显示器,根据显示结果分析所设计的系统性能。经过调制,初步实现了设计目标,并且经过适当的完善后,实验成功。
关键词: MATLAB7.1 ;Simulink仿真平台;AM调制;相干解调
沈阳理工大学通信系统课程设计
目录 课程设计目的…………………………………………………………1 课程设计要求…………………………………………………………1 相关知识………………………………………………………………1 课程设计分析…………………………………………………………2 仿真……………………………………………………………………6
6结果分析………………………………………………………………10 参考文献………………………………………………………………12
沈阳理工大学通信系统课程设计
1.课程设计的目的
1.掌握模拟系统AM调制和解调原理。2.掌握模拟系统AM调制和解调的设计方法。
3.掌握用MATLAB分析系统时域、频域特性的方法,进一步锻炼应用MATLAB进行编程仿真的能力。
4.熟悉基于Simulink的动态建模和仿真的步骤和过程。
2.课程设计的要求
利用Matlab软件进行振幅调制和解调程序设计,输出显示调制信号、载波信号以及已调信号波形,并输出显示三种信号频谱图。对产生波形进行分析,并通过参数的改变,观察波形变化,分析实验现象。
3.相关知识 3.1 AM调制原理
幅度调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。幅度调制器的一般模型如图2.1所示。
图3.1—1 幅度调制模型
在图2-1中,若假设滤波器为全通网络(=1),调制信号mt叠加直流A0后再与载波相乘,则输出的信号就是常规双边带(AM)调幅.AM调制器模型如图2-2所示
图3.1—2 AM调制模型
AM信号波形的包络与输入基带信号mt成正比,故用包络检波的方法很容易恢复原始调制信号。但为了保证包络检波时不发生失真,必须满足A0mtmax,否
沈阳理工大学通信系统课程设计
则将出现过调幅现象而带来失真。AM信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜像。显然,无论是上边带还是下边带,都含有原调制信号的完整信息。故AM信号是带有载波的双边带信号,它的带宽信号带宽的两倍。
3.2 相干解调
由AM信号的频谱可知,如果将已调信号的频谱搬回到原点位置,即可得到原始的调制信号频谱,从而恢复出原始信号。解调中的频谱搬移同样可用调制时的相乘运算来实现。相干解调的关键是是必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。
4.课程设计分析
4.1双边带幅度调制
在DSB-AM系统中,已调信号的幅度正比与消息信号。这种调制通过使用乘法器完成,将消息信号吗m(t)与载波Accos(2πfct),如图4.1—1所示,表示为:
u(t)=Acm(t)cos(2πfct)
(1)
图 4.1—1 DSB-AM调制原理结构框图
其中
c(t)=Accos(2πfct)
(2)
是载波,而m(t)是消息信号。若以单频正弦信号调制为例,那么典型波形如图4.1—2所示。
沈阳理工大学通信系统课程设计
现取u(t)的傅立叶变换,可以得到DSB-AM信号的频域表示为:
(3)
其中M(f)是m(t)的傅立叶变换。很明显可以看出,这种调制方式将消息信号的频谱进行了搬移,并在幅度上乘以Ac/2,传输带宽Br是消息信号带宽的两倍,也就是说:
Br=2W
(4)
图3显示了一个典型的消息信号的频谱及其相对应的DSB-AM已调信号的频谱。
图4.1—2 消息信号与DSB-AM已调信号的频谱
已调信号的功率为
(5)
其中Pm是消息信号的功率。在DSB-AM通信系统中,信噪比SNR等于基带的SNR,也就是:
沈阳理工大学通信系统课程设计
(6)
其中PR是接收到的功率(在接收端已调信号的功率),N0是噪声功率谱密度(假定为白噪声),W是信号噪声的带宽。
4.2双边带抑制载波幅度调制
4.2.1.DSB信号的表达式、频谱及带宽
在幅度调制的一般模型中,若假设滤波器为全通网络(=1),调制信号
中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号,或称抑制载波双边带(DSB-SC)调制信号,简称双边带(DSB)信号。
DSB调制器模型如图4.2.1—1所示。可见DSB信号实质上就是基带信号与载波直接相乘,其时域和频域表示式分别为
图4.2.1—1DSB-SC调制模型
(7)
(8)
DSB信号的包络不再与
成正比,故不能进行包络检波,需采用相干解调;除不再含有载频分量离散谱外,DSB信号的频谱与AM信号的完全相同,仍由上下对称的两个边带组成。故DSB信号是不带载波的双边带信号,它的带宽与AM信号相同,也为基带信号带宽的两倍,即
4.2.2.DSB信号的解调
DSB信号只能采用相干解调,其模型与AM信号相干解调时完全相同,此时,乘法器输出
沈阳理工大学通信系统课程设计
经低通滤波器滤除高次项,得
(9)
即无失真地恢复出原始电信号。
抑制载波的双边带幅度调制的好处是,节省了载波发射功率,调制效率高;调制电路简单,仅用一个乘法器就可实现。缺点是占用频带宽度比较宽,为基带信号的2倍。
沈阳理工大学通信系统课程设计
5.仿真
5.1双边带频带幅度调制的系统仿真
图5.1-1双边带频带幅度调制的系统仿真框图
图5.1-2 DSB AM Modulator Passband(双边带频带幅度调制器)的主要参数
沈阳理工大学通信系统课程设计
图5.1-3 DBS AM Demodulator Passband(双边带频带幅度解调器)的主要参数
图5.1-4 DBS AM(双边带幅度调制)频谱仪(Spectrum Scope)的主要参数
沈阳理工大学通信系统课程设计
5.2双边带抑制载波幅度调制系统仿真
图5.2-1 双边带抑制载波幅度调制的系统仿真框图
图5.2-2 DSB-SC AM 信号发生器(Signal Generator)的主要参数
沈阳理工大学通信系统课程设计
图5.2-3 DSB-SC AM Modualtor Passband(双边带频带抑制幅度调制器)的主要参数
图5.2-4 DSB-SC AM的频谱仪(Spectrum Scope)的主要参数
沈阳理工大学通信系统课程设计
6.结果分析
6.1双边带频带幅度调制的系统仿真结果
图6.1-1双边带频带幅度调制后的频域图
图6.1-2双边带频带幅度调制仿真系统中示波器的波形图
沈阳理工大学通信系统课程设计
6.2双边带抑制载波幅度调制系统仿真结果
图6.2-1 双边带频带抑制幅度调制后调制信号的频域图
图6.2-2 双边带抑制幅度调制后调制信号的时域图
沈阳理工大学通信系统课程设计
7.参考文献
【1】桑林,郝建军,刘丹,【数字通信】,北京邮电大学出版社,2002 【2】苗云长等主编,【现代通信原理及应用】,电子工业出版社,2005 【3】吴伟铃,庞沁华,【通信原理】,北京邮电大学出版社,2005 【4】张圣勤,【MATLAB7.0实用教程】桑林,郝建军,刘丹,数字通信,北京邮电大学出版社,2002 【5】邵玉斌,【Matlab/Simulink通信原理建模与仿真实例分析】,清华大学出版社,2008 【6】沈伟慈。【通信电路】,西安电子科技大学出版社,2007
第五篇:通信原理课设概况
沈阳理工大学通信系统课程设计报告
一.设计平台
Simulink是Matlab环境下的一部分,它通过使用框图的方式编辑建模,比较直观。Simulink是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中【2】。
Simulink是Matlab最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。
Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试【3】。
Simulink是一种可视化工具。构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。Simulink与MATLAB;紧密集成,可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。
二、设计目的:
① 分别设计AM,FM调制与解调通信系统,分别在理信道和非理想信道中运行,并得出仿真结果,分析比较三种不同的调制方式所存在的不同。② 熟悉MATLAB文件中M文件的使用方法,包括函数、原理和方法的应用。③ 增强在通信原理仿真方面的动手能力与自学能力。
三、设计内容和实验要求
④ 系统建模
⑤ 确定仿真算法 ⑥ 建立仿真模型 ⑦ 设计仿真程序 ⑧ 运行仿真程序
⑨ 输出仿真结果并进行分析
沈阳理工大学通信系统课程设计报告
四、模拟通信系统简介
通信系统是为了有效可靠的传输信息,信息由信源发出,以语言、图像、数据为媒体,通过电(光)信号将信息传输,由信宿接收。通信系统又可分为数字通信与模拟通信。基于课程设计的要求,下面简要介绍模拟通信系统。
信源是模拟信号,信道中传输的也是模拟信号的系统为模拟通信。模拟通信系统的模型如图5.1所示。
图4.1模拟通信系统模型
调制器: 使信号与信道相匹配, 便于频分复用等。发滤波器: 滤除调制器输出的无用信号。收滤波器: 滤除信号频带以外的噪声,一般设N(t)为高斯白噪声,则Ni(t)为窄带白噪声。
4.1AM,FM调制原理
4.1.1
AM调制原理
幅度调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。幅度调制器的一般模型如图.2所示。
图4.2 幅度调制模型
在图4.2中,若假设滤波器为全通网络(=1),调制信号mt叠加直流A0后再与载波相乘,则输出的信号就是常规双边带(AM)调幅.AM调制器模型如图4.3所示
图4.3 AM调制模型
AM信号波形的包络与输入基带信号mt成正比,故用包络检波的方法很容易恢复原始调制信号。但为了保证包络检波时不发生失真,必须满足A0mtmax,否则将出现过调幅现象而带来失真。AM信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜
沈阳理工大学通信系统课程设计报告
像。显然,无论是上边带还是下边带,都含有原调制信号的完整信息。故AM信号是带有载波的双边带信号,它的带宽信号带宽的两倍。
4.1.2 FM调制原理
[1] 频率调制的一般表达式为:
(4-1)
FM和PM非常相似,如果预先不知道调制信号的具体形式,则无法判断已调信号是调频信号还是调相信号。
图 5.4
m(t)()dtPMSFM(t)
图 4.5 图(5.4)所示的产生调频信号的方法称为直接调频法,图(5.5)所示的产生调频信号的方法称为间接调频法[4]。由于实际相位调制器的调节范围不可能超出,因而间接调频的方法仅适用于相位偏移和频率偏移不大的窄带调制情形,而直接调频则适用于宽带调制情形。
根据调制后载波瞬时相位偏移的大小,可将频率调制分为宽带调频(WBFM)与窄带调频(NBFM)。宽带与窄带调制的区分并无严格的界限,但通常认为由调频所引起的最大瞬时相位偏移远小于30°时,(4-2)
称为窄带调频。否则,称为宽带调频。
为方便起见,无妨假设正弦载波的振幅A=1,则由式(4-1)调频信号的一般表达式,得
SFM(t)cos[ctKFm(t)d]ttcosctcos[KFm()d]sincsin[KFm()d](4-3)
t通过化解,利用傅立叶变化公式可得NBFM信号的频域表达式:
在NBFM中,由于下边频为负,因而合成矢量不与载波同相,而是存在相位偏移,当最大相位偏移满足式(4-2)时,合成矢量的幅度基本不变,这样就形成了FM信号。
ms=
(5-4)
沈阳理工大学通信系统课程设计报告
图4-5 NBFM信号频谱
五、几种调制方式间的比较
5.1几种不同的模拟调制方式
假定所有调制系统在接收机输入端具有相等的信号功率,且加性噪声都是均值为0、双边功率谱密度为/2的高斯白噪声,基带信号带宽为,在所有系统都满足
例如,为正弦型信号。综合前面的分析,可总结各种模拟调制方式的信号带宽、制度增益、输出信噪比、设备(调制与解调)复杂程度、主要应用等如下表所示。表中还进一步假设了AM为100%调制。
沈阳理工大学通信系统课程设计报告
5.2几种模拟调制的性能比较
就抗噪性能而言,WBFM最好,DSB、SSB、VSB次之,AM最差。NBFM与AM接近。如6.5中所示出了各种模拟调制系统的性能曲线,图中的圆点表示门限点。门限点以下,曲线迅速下跌;门限点以上,DSB、SSB的信噪比比AM高4.7dB以上,而FM(=6)的信噪比比AM高22dB。
就频带利用率而言,SSB最好,VSB与SSB接近,DSB、AM、NBFM次之,WBFM最差。
5.3几种模拟调制的特点及应用
AM调制的优点是接收设备简单;缺点是功率利用率低,抗干扰能力差,信
沈阳理工大学通信系统课程设计报告
号带宽较宽,频带利用率不高。因此,AM制式用于通信质量要求不高的场合,目前主要用在中波和短波的调幅广播中。
DSB调制的优点是功率利用率高,但带宽与AM相同,频带利用率不高,接收要求同步解调,设备较复杂。只用于点对点的专用通信及低带宽信号多路复用系统。
SSB调制的优点是功率利用率和频带利用率都较高,抗干扰能力和抗选择性衰落能力均优于AM,而带宽只有AM的一半;缺点是发送和接收设备都复杂。SSB制式普遍用在频带比较拥挤的场合,如短波波段的无线电广播和频分多路复用系统中。
VSB调制性能与SSB相当,原则上也需要同步解调,但在某些VSB系统中,附加一个足够大的载波,形成(VSB+C)合成信号,就可以用包络检波法进行解调。这种(VSB+C)方式综合了AM、SSB和DSB三者的优点。所以VSB在数据传输、商用电视广播等领域得到广泛使用。
FM波的幅度恒定不变,这使得它对非线性器件不甚敏感,给FM带来了抗快衰落能力。利用自动增益控制和带通限幅还可以消除快衰落造成的幅度变化效应。这些特点使得NBFM对微波中继系统颇具吸引力。WBFM的抗干扰能力强,可以实现带宽与信噪比的互换,因而WBFM广泛应用于长距离高质量的通信系统中,如空间和卫星通信、调频立体声广播、短波电台等。WBFM的缺点是频带利用率低,存在门限效应,因此在接收信号弱、干扰大的情况下宜采用NBFM,这就是小型通信机常采用NBFM的原因。
六.MATLAB生成图像
6.1双边带频带幅度调制的系统仿真
图6.1-1双边带频带幅度调制的系统仿真框图 参数设置表
沈阳理工大学通信系统课程设计报告
6.2双边带抑制载波幅度调制的系统仿真
图6.2-1双边带抑制载波幅度调制的系统仿真框图
参数设置表
6.3单边带幅度调制系统仿真
图6.3-1单边带幅度调制系统仿真框图
沈阳理工大学通信系统课程设计报告
6.4FM频率调制系统仿真
图6.4-1 FM频率调制系统仿真框图
参数设置表
沈阳理工大学通信系统课程设计报告
6.5仿真结果
图6.5-1双边带频带幅度调制的系统频域图 图6.5-2双边带频带幅度调制的系统时域图
6.5-3双边带抑制载波幅度调制的系统频域图 6.5-4双边带抑制载波幅度调制的系统时域图
沈阳理工大学通信系统课程设计报告
图6.5-5单边带幅度调制系统频域图 图6.5-6单边带幅度调制系统时域图
图6.5-7单边带幅度调制系统频域图 图6.5-8单边带幅度调制系统时域图
6.6程序仿真结果
6.6.1AM仿真结果
沈阳理工大学通信系统课程设计报告
沈阳理工大学通信系统课程设计报告
沈阳理工大学通信系统课程设计报告
6.6.2FM仿真结果
沈阳理工大学通信系统课程设计报告
沈阳理工大学通信系统课程设计报告
沈阳理工大学通信系统课程设计报告
6.6.3程序清单:
AM :
fm=100;fc=500;fs=5000;Am=1;A=2;N=512;K=N-1;n=0:N-1;t=(0:1/fs:K/fs);yt=Am*cos(2*pi*fm*t);figure(1)subplot(1,1,1),plot(t,yt),title('频率为3000的调制信号f1的时时域波');y0=A+yt;y2=y0.*cos(2*pi*fc*n/fs);y3=fft(y2,N);% fft 变换 q1=(0:N/2-1)*fs/N;mx1=abs(y3(1:N/2));
沈阳理工大学通信系统课程设计报告
figure(2)subplot(2,1,1);plot(t,y2);title('已调信号的时时域波');subplot(2,1,2);plot(q1,mx1);title('f1已调信号的频谱');%绘图 yc=cos(2*pi*fc*t);figure(3)subplot(2,1,1),plot(t,yc),title('载波fc时域波形')N=512;n=0:N-1;yc1=Am*cos(2*pi*fc*n/fs);y3=fft(yc1,N);q=(0:N/2-1)*fs/N;mx=abs(y3(1:N/2));figure(3)subplot(2,1,2),plot(q,mx),title('载波fc频谱')y4=0.01*randn(1,length(t));%用RANDN产生高斯分布序列 w=y4.^2;%噪声功率 figure(4)subplot(2,1,1);plot(t,y4);title('高斯白噪声时域波形')y5=fft(y4,N);q2=(0:N/2-1)*fs/N;mx2=abs(y5(1:N/2));subplot(2,1,2),plot(q2,mx2),title('高斯白噪声频域波形')y6=y2+y4;figure(5)subplot(2,1,1),plot(t,y6),title('叠加后的调制信号时域波形')q3=q1;mx3=mx1+mx2;subplot(2,1,2),plot(q3,mx3),title('叠加后的调制信号频谱波形')%调制 yv=y6.*yc;%乘以载波进行解调 Ws=yv.^2;p1=fc-fm;[k,Wn,beta,ftype]=kaiserord([p1 fc],[1 0],[0.05 0.01],fs);%Fir数字低通滤波
window=kaiser(k+1,beta);%使用kaiser窗函数
b=fir1(k,Wn,ftype,window,'noscale');%使用标准频率响应的加窗设计函数 yt=filter(b,1,yv);yssdb=yt.*2-2;figure(6)
沈阳理工大学通信系统课程设计报告
subplot(2,1,1),plot(t,yssdb),title('经过低通已调信号的时域波形采样')y9=fft(yssdb,N);q=(0:N/2-1)*fs/N;mx=abs(y9(1:N/2));subplot(2,1,2),plot(q,mx),title('经过低通已调信号频域波形')%解调 ro=y9-yt;W=(yt.^2).*(1/2);R=W/w r=W/ro G=r/R FM:
dt=0.001;%设定时间步长 t=0:dt:1.5;%产生时间向量
am=5;%设定调制信号幅度 fm=5;%设定调制信号频率 mt=am*cos(2*pi*fm*t);%生成调制信号 fc=50;%设定载波频率 ct=cos(2*pi*fc*t);%生成载波 kf=10;%设定调频指数 int_mt(1)=0;for i=1:length(t)-1 int_mt(i+1)=int_mt(i)+mt(i)*dt;%求信号m(t)的积分 end %调制,产生已调信号 sfm=am*cos(2*pi*fc*t+2*pi*kf*int_mt);%调制信号 %***************************************** %*************添加高斯白噪声************** sn1=10;%设定信躁比(小信噪比)sn2=30;%设定信躁比(大信噪比)sn=0;%设定信躁比(无信噪比)db=am^2/(2*(10^(sn/10)));%计算对应的高斯白躁声的方差
n=sqrt(db)*randn(size(t));%生成高斯白躁声
nsfm=n+sfm;%生成含高斯白躁声的已调信号(信号通 %过信道传输)
%***************************************** %****************FM解调******************* for i=1:length(t)-1 %接受信号通过微分器处理
diff_nsfm(i)=(nsfm(i+1)-nsfm(i))./dt;end diff_nsfmn = abs(hilbert(diff_nsfm));%hilbert变换,求绝对值得到瞬时幅度(包络检波)
zero=(max(diff_nsfmn)-min(diff_nsfmn))/2;
沈阳理工大学通信系统课程设计报告
diff_nsfmn1=diff_nsfmn-zero;%***************************************** %**************时域到频域转换************** ts=0.001;%抽样间隔 fs=1/ts;%抽样频率
df=0.25;%所需的频率分辨率,用在求傅里叶变换
%时,它表示FFT的最小频率间隔
%*****对调制信号m(t)求傅里叶变换***** m=am*cos(2*pi*fm*t);%原调信号 fs=1/ts;if nargin==2 n1=0;else n1=fs/df;end n2=length(m);n=2^(max(nextpow2(n1),nextpow2(n2)));M=fft(m,n);m=[m,zeros(1,n-n2)];df1=fs/n;%以上程序是对调制后的信号u求傅里变换
M=M/fs;%缩放,便于在频铺图上整体观察
f=[0:df1:df1*(length(m)-1)]-fs/2;%时间向量对应的频率向量
%************对已调信号u求傅里变换********** fs=1/ts;if nargin==2 n1=0;else n1=fs/df;end n2=length(sfm);n=2^(max(nextpow2(n1),nextpow2(n2)));U=fft(sfm,n);u=[sfm,zeros(1,n-n2)];df1=fs/n;%以上是对已调信号u求傅里变换
U=U/fs;%缩放 %****************************************** %***************************************** disp('按任意键可以看到原调制信号、载波信号和已调信号的曲线')
沈阳理工大学通信系统课程设计报告
pause %**************figure(1)****************** figure(1)subplot(3,1,1);plot(t,mt);%绘制调制信号的时域图
xlabel('时间t');title('调制信号的时域图');subplot(3,1,2);plot(t,ct);%绘制载波的时域图 xlabel('时间t');title('载波的时域图');subplot(3,1,3);plot(t,sfm);
%绘制已调信号的时域图 xlabel('时间t');title('已调信号的时域图');%****************************************** disp('按任意键可以看到原调制信号和已调信号在频域内的图形')pause %************figure(2)********************* figure(2)subplot(2,1,1)plot(f,abs(fftshift(M)))%fftshift:将FFT中的DC分量移到频谱中心 xlabel('频率f')title('原调制信号的频谱图')subplot(2,1,2)plot(f,abs(fftshift(U)))xlabel('频率f')title('已调信号的频谱图')%****************************************** disp('按任意键可以看到原调制信号、无噪声条件下已调信号和解调信号的曲线')pause %**************figure(3)****************** figure(3)subplot(3,1,1);plot(t,mt);%绘制调制信号的时域图
xlabel('时间t');title('调制信号的时域图');subplot(3,1,2);plot(t,sfm);%绘制已调信号的时域图 xlabel('时间t');title('无噪声条件下已调信号的时域图');nsfm=sfm;for i=1:length(t)-1 %接受信号通过微分器处理 diff_nsfm(i)=(nsfm(i+1)-nsfm(i))./dt;
沈阳理工大学通信系统课程设计报告
end diff_nsfmn = abs(hilbert(diff_nsfm));%hilbert变换,求绝对值得到瞬时幅度(包络检波)
zero=(max(diff_nsfmn)-min(diff_nsfmn))/2;diff_nsfmn1=diff_nsfmn-zero;subplot(3,1,3);%绘制无噪声条件下解调信号的时域图
plot((1:length(diff_nsfmn1))./1000,diff_nsfmn1./400,'r');xlabel('时间t');title('无噪声条件下解调信号的时域图');%***************************************** disp('按任意键可以看到原调制信号、小信噪比高斯白噪声条件下已调信号和解调信号已调信号的曲线')pause %**************figure(4)****************** figure(4)subplot(3,1,1);plot(t,mt);%绘制调制信号的时域图
xlabel('时间t');title('调制信号的时域图');db1=am^2/(2*(10^(sn1/10)));%计算对应的小信噪比高斯白躁声的方差
n1=sqrt(db1)*randn(size(t));%生成高斯白躁声
nsfm1=n1+sfm;%生成含高斯白躁声的已调信号(信号通 %过信道传输)
for i=1:length(t)-1 %接受信号通过微分器处理
diff_nsfm1(i)=(nsfm1(i+1)-nsfm1(i))./dt;end diff_nsfmn1 = abs(hilbert(diff_nsfm1));%hilbert变换,求绝对值得到瞬时幅度(包络检波)
zero=(max(diff_nsfmn)-min(diff_nsfmn))/2;diff_nsfmn1=diff_nsfmn1-zero;subplot(3,1,2);plot(1:length(diff_nsfm),diff_nsfm);%绘制含小信噪比高斯白噪声已调信号的时域图 xlabel('时间t');title('含小信噪比高斯白噪声已调信号的时域图');subplot(3,1,3);%绘制含小信噪比高斯白噪声解调信号的时域图
plot((1:length(diff_nsfmn1))./1000,diff_nsfmn1./400,'r');xlabel('时间t');title('含小信噪比高斯白噪声解调信号的时域图');
沈阳理工大学通信系统课程设计报告
%***************************************** disp('按任意键可以看到原调制信号、大信噪比高斯白噪声条件下已调信号和解调信号已调信号的曲线')pause %**************figure(5)****************** figure(5)subplot(3,1,1);plot(t,mt);%绘制调制信号的时域图
xlabel('时间t');title('调制信号的时域图');db1=am^2/(2*(10^(sn2/10)));%计算对应的大信噪比高斯白躁声的方差
n1=sqrt(db1)*randn(size(t));%生成高斯白躁声
nsfm1=n1+sfm;%生成含高斯白躁声的已调信号(信号通过信道传输)
for i=1:length(t)-1 %接受信号通过微分器处理
diff_nsfm1(i)=(nsfm1(i+1)-nsfm1(i))./dt;end diff_nsfmn1 = abs(hilbert(diff_nsfm1));%hilbert变换,求绝对值得到瞬时幅度(包 %络检波)
zero=(max(diff_nsfmn)-min(diff_nsfmn))/2;diff_nsfmn1=diff_nsfmn1-zero;subplot(3,1,2);plot(1:length(diff_nsfm1),diff_nsfm1);%绘制含大信噪比高斯白噪声已调信号 %的时域图
xlabel('时间t');title('含大信噪比高斯白噪声已调信号的时域图');subplot(3,1,3);%绘制含大信噪比高斯白噪声解调信号 %的时域图
plot((1:length(diff_nsfmn1))./1000,diff_nsfmn1./400,'r');xlabel('时间t');title('含大信噪比高斯白噪声解调信号的时域图');%******************结 束******************* 七·.项目设计总结
这周的课程设计很短,但收获很多。我用MATLAB进行了AM调制解调及抗噪性的研究。不但又加深了课本的知识,而且也对MATLAB的基本知识有了一定掌握。
沈阳理工大学通信系统课程设计报告
本次课程设计中实现了通信基本知识与MATLAB的结合,并在实际中设计并仿真AM调制解调的过程。
这次课程设计中我不得不对AM原理其设计步骤进行更深一层次的理解,对书中原来学到的只知其果不懂其因的理论,在设计中也有了更深刻的认识。
这次设计需要自己设计而我的MATLAB的基础不是很好。这次课程设计虽然很简单,由于没有基础,查找了很多相关的资料,并且上网搜集了很多的相关设计,但由于很多资料上面对于AM都是只简单介绍了原理以及调制解调,还都不是很全。而且这让我在编译和调试过程中除了很多次错误,这是过程,学习就是在过程中进行的,经过自己几天的劳动,再加上同学们和老师的帮助,不仅对读Simulink了很大提高,更加熟系了MATLAB的应用,也对其中的函数有了大概的了解
总之这次课程设计收获很大,是一场难得的锻炼机会。
八.参考文献
[1] 樊昌信.通信原理(第6版).国防工业出版社,2006,09 [2] 黎洪松.数字通信原理.西安电子系科技大学出版社,2005,07 [3] 任嘉伟.数字频带通信系统计算机仿真[J].电脑知识与技术,2008,07 [4] 吕跃广 通信系统仿真.电子工业出版社,2010.03 [5] 席在芳等 基于SIMULINK 的现代通信系统仿真分析[J].系统仿真学报