第一篇:数控维修论文
浅谈数控机床故障诊断过程与特点
姓名:江森
班别:06数控
学号:2006984108
[论文关键词]故障 故障诊断 诊断原则 诊断方法 诊断特点
[论文摘要]数控机床的故障诊断是数控机床维修的关键。一般来说,随着故障类型的不同,采取的故障诊断的方法也就不同。本文以示教机上故障诊断试验为例从数控机床故障诊断的内容、原则、方法等方面入手来简要阐述一下数控机床故障的诊断过程。
数控机床是将电子技术、测量技术、自动化技术、电子半导体技术、计算机技术及电机技术等集与一体的自动化设备,具有高精度、高效率和高柔性的特点。数控机床是一种过程控制设备,要求他在实时控制的每一时刻都准确无误地工作,任何部分的故障与失效,都会使机床停机,从而造成生产停顿,严重地影响和制约生产效率的提高。在很多行业中数控机床设备处于关键的工作岗位,若在其出现故障后不及时维修及排除故障,就会造成较大的经济损失。因此,对于数控系统这样原理复杂、结构精密的装置进行维修很有必要。加强数控机床的故障诊断与维修的力量,可以提高数控机床的可靠性,有利于数控机床的推广和使用。
数控机床是机、电、液、气相结合的复杂设备,尽管故障原因各不相同,但在故障发生后,大体的思路步骤是相同的。发生故障后,一、进行故障现场调查。
二、进行故障信息整理、分析。
三、进行故障诊断与排除。
四、进行经验总结、记录。
下面以数控车床主轴启动后立即停止为例说明数控机床故障诊断的一般过程。
一、进行故障现场调查。调查的内容包括
1、故障的种类
2、故障的频繁程度
3、外界状况
4、有关操作情况
5、机床情况
6、运转情况
7、机床和系统之间接线情况
8、CNC装置的外观检查。经过调查,该类故障属于主轴类故障,只出现过一次,外界一切正常,操作人员反映一开机就出现这种情况。
二、进行故障信息整理、分析。对于一些简单的故障,原因不是很多时,可采用形式逻辑推理的方法,分析、确定和排除故障。经过故障现场调查我们怀疑有以下几种原因①系统输出的脉冲时间不够②变频器处于点动状态③主轴线路的控制元器件损坏④主轴电机短路,造成热继电器保护⑤主轴控制回路没有带自锁电路,而把参数设置为脉冲信号输出,使主轴不能正常运转。找出可能出现的原因,就逐项排除。
三、进行故障诊断与排除。
故障诊断一般遵循以下几个原则:
1、先外部后内部。现代数控系统的可靠行越来越高,数控系统本身的故障率越来越低,而大部分故障的发生都是非系统本身原因引起的。由于数控机床是集机械、液压、电气为一体的机床,其故障的发生也会由这三种综合反映出来,维修人员应该先由外向内逐一进行排查,尽量避免随意的启封、拆卸,否则会扩大故障,使机床丧失精度、降低性能,系统外
部的故障逐一是由于检测开个、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。
2、先机械后电气。一般来说,机械故障较易发觉,而数控系统及电气故障的诊断难度较大,在故障检修之前首先注意排除机械的故障
3、先静态后动态。先在机床断电断电静止状态,通过了解、观察、测试、分析,确认通电后不会造成故障扩大,发生事故后,方可给机床通电,在运行状态下,进行动态的观察、检验和测试,查找故障。而对通电后发生破坏性故障的,必须先排除危险后,方可通电。
4、先简单后复杂。当出现多种故障互相交织,一时无从下手时,应先解决容易的问题,后解决难度较大的问题,往往简单问题解决后,难度大的问题也可能变的容易。
数控机床在故障检测过程中,应充分利用数控系统的自诊断功能来进行判断,同时还要灵活运用故障检查的一些常用方法。常见的故障检查方法有: 1.常规检查法
常规检查法主要是利用人的手、眼、耳、鼻等器官对故障发生时的各种光、声、味等异常现象的观察以及认真察看系统的每一处,遵循“先外后内”的原则,诊断故障采用望、听、嗅、问、模等方法,由外向内逐一检查,往往可将故障范围缩小到一个模块或一块印刷线路板。这要求维修人员具有丰富的实际经验,要有多学科的较宽的知识和综合判断的能力。2.自诊断功能法
现代的数控系统虽然尚未达到智能化很高的程度.但已经具备了较强的自诊断功能。能随时监视数控系统的硬件和软件的工作状况。一旦发现异常,立即在CRT上显示报警信息或用发光二极管指示出故障的大致起因。利用自诊断功能,也能显示出系统与主机之间接口信号的状态,从而判断出故障发生在机械部分还是数控系统部分,并指示出故障的大致部位。这个方法是当前维修工作最有效的一种方法。
3.功能程序测试法
所谓功能程序测试法就是将数控系统的常用功能和特殊功能,如直线定位、圆弧插补、螺旋切削、固定循环、用户宏程序等用手工编程或自动编程方法,编制成一个功能程序测试程序,送入数控系统中,然后启动数控系统使之运行,借以检查机床执行这些功能的淮确性和可靠性,进而判断出故障发生的可能起因。本方法对于长期闲置的数控机床第一次开机时的检查以及机床加工造成废品但又无报警的情况下,一时难以确定是编程错误或是操作错误,还是机床故障的原因是一个较好的判断方法。
4.备件替换法
备件替换法是一种简单易行的方法,也是现场判断时最常用的方法之一。所谓备件替换法就是在分析故障大致起因的情况下,维修人员可以利用备用的印刷线路板、模板,集成电路芯片或元器件替换有疑点的部分,从而把故障范围缩小到印刷线路板或芯片一级。它实际上也是在验证分析的正确性。但在备用板交换之前,应仔细检查备用板是否完好,并应检查备用板的状态应与原板状态完全一致。这包括检查用板上的选择开关,短路棒的设定位置以及电位器的位置。总之,一定要严格地按照有关系统的操作、维修说明书的要求进行操作。
在确定对某部分要进行替换前,应认真检查与其连接的有关线路和其他相关的电器,确认无故障后才能将新的替换上去,防止外部故障引起替换上去的部件损坏。5.转移法
所谓转移法就是将数控系统中具有相同功能的两块印刷线路板、模板、集成电路
芯片或元器件互相交换,观察故障现象是否随之转移。借此,可迅速确定系统的故障部位。这个方法实际上就是备件替换法的一种。因此,有关注意事项同备件替换法所述。
6.参数检查法
众所周知,数控参数能直接影响数控机床的性能。参数通常是存放在磁泡存储器或存放在需由电池保持的CMOS RAM中,一旦电池不足或由于外界的干扰等因素,会使个别参数丢失或变化,发生混乱,使机床无法正常工作。此时,通过校对、修正参数,就能将故障排除。当机床长期闲置重新工作时无缘无故地出现不正常现象或有故障而无报警时,就应根据故障特征,检查和校对有关参数。
经过长期运行的数控机床,由于其机械传动部件磨损,电气元件性能变化等原因,也需对其有关参数进行调整。有些机床的故障往往就是由于未及时修改某些不适应的参数所致。当然这些故障都是属于软故障的范畴。
7.测量比较法
数控系统生产厂在设计印刷线路板时,为了调整、维修的便利,在印刷线路板上设计了多个检测端子。用户也可利用这些端子比较测量正常的印刷线路板和有故障的印刷线路板之间的差异。可以检测这些测量端子的电压和波形,分析故障的起因和故障的所在位置。甚至,有时还可对正常的印刷线路板人为地制造“故障”,如断开连线或短路、拔去组件等,以判断真实故障的起因。为此,维修人员应在平时积累印刷线路板上关键部位或易出故障部位在正常时的正确波形和电压值。因为数控系统生产厂往往不提供有关这方面的资料。
8.敲击法
当数控系统出现的故障表现为若有若无时,往往可用敲击法检查出故障的部位所在。这是由于数控系统是由多块印刷线路板组成,每块板上有许多焊点,板间或模块间又通过插接件及电线相连。因此,任何虚焊或接触不良,都可能引起故障。当用绝缘物轻轻敲打有虚焊及接触不良的疑点处,故障肯定会重复再现。
9.局部升温法
数控系统经过长期运行后元器件均要老化,性能会变坏。当它们尚未完全损坏时,出现的故障会变得时有时无。这时可用热吹风机或电烙铁等来局部升温被怀疑的元器件,加速其老化,以便彻底暴露故障部件。当然,采用此法时,一定要注意元器件的温度参数,不要将原来是好的器件烤坏。
10.原理分析法
根据数控系统的组成原理,可从逻辑上分析各点的逻辑电平和特征参数(如电压值或波形),然后用万用表、逻辑笔、示波器或逻辑分析仅进行测量、分析和比较,从而对故障定位。运用这种方法,要求维修人员必须对整个系统或每个电路的原理有清楚的、较深的了解。
根据上面的原则和方法,我们逐项对可能出现的原因进行查探并排除。第一个可能故障为系统输出的脉冲时间不够,我们调整系统的M代码输出时间后启动主轴,发现问题仍然存在,接着查找下一可能原因,变频器可能处于点动状态,参阅变频器的使用说明书,设置好参数后启动主轴,问题仍然存在我们怀疑是主轴电机短路,造成热继电器保护。于是查找短路原因,使热继电器复位后启动主轴,发现主轴正常运转,问题解决。
四、要做一个经验总结和记录。故障排除以后,维修工作还不能算完成,尚需从技术与管理两方面分析故障产生的深层原因,采取适当措施避免故障再次发生。必要时可根据现场条件使用成熟技术对设备进行改造与改进。最后,对此次
维修的故障现象、原因分析、解决过程、更换元件、遗留问题等要做好记录。
数控机床与普通机床在故障诊断上有什么区别呢?
数控机床故障诊断由两部分组成:①数控机床本体,也就是主轴传动机构、进给传动机构、床身、工作台以及辅助运动单元、液压气动系统、润滑系统、冷却装置等机械故障诊断于维修;②数控系统、PLC控制单元、伺服系统与位置检测装置、机床强电等电气系统故障诊断与维修。其中检测装置维护的好坏将直接影响到机床的运动精度和定位精度,而电气系统的故障诊断与维修是维护故障诊断的重点部分。数控机床与普通机床区别在,数控机床拥有数控系统、PLC控制单元、伺服系统与位置检测装置等自动化控制和精度控制系统。对于机械故障,数控机床和普通机床的诊断方法一样。但是数控机床还可以充分利用自诊断功能法、功能程序测试法、参数检查法等方法进行诊断。随着数控机床诊断技术的发展,数控机床还可以进行通讯诊断、自修复系统、人工智能与专家系统、神经网络诊断、多传感器信息融合技术、智能化集成诊断等先进的诊断方法。在我们日常使用机床中,数控机床与普通机床很多故障诊断方法都基本相同,机械部分的故障诊断方法一样,而数控机床我们就可以看成时普通机床加上一个数控系统、PLC控制单元、伺服系统与位置检测装置组成,所以他们相同的部分就在机床本体,但是数控机床的本体可能由于数控系统方面的原因造成,所以诊断时就需要注意。
我们可以得到数控机床故障诊断的特点:
数控机床一般由CNC装置、输入/输出装置、伺服驱动系统、机床电器逻辑控制装置、机床等组成,数控机床的各部分之间有着密切的联系。CNC装置将数控加工程序信息按两类控制量分别输出:一类是连续控制量,送往伺服驱动系统;另一类是离散的开关控制量,送往机床电器和逻辑控制装置。伺服驱动系统位于CNC装置与机床之间,它一方面通过电信号与CNC装置连接,另一方面通过伺服电机、检测元件与机床的传动部件连接。机床电器逻辑控制装置的形式可以是继电器控制线路,或者是可编程控制器控制线路,它接收CNC装置发出的开关命令,主要完成主轴启停、工件装夹、工作台交换、换刀、冷却、液压、气动和润滑系统及其他机床铺助功能的控制。另外要将主轴启停结束、工件夹紧、工作台交换结束、换刀到位等信号传送回CNC装置。数控机床本身的复杂性使其故障具有复杂性和特殊性。引起数控机床故障的因素是多方面的,有些故障的现象是机械方面的,但是引起故障的原因却是电气方面的;有些故障的现象是电气方面的,然而引起故障的原因是机械方面的;有些故障是由电气方面和机械方面共同引起的。在进行数控机床故障的诊断时,要重视机床各部分的交接点。
参考文献:
[1]王贵成主编.数控机床故障诊断技术.化学工业出版社;2007 [2]韩鸿鸾主编.数控机床维修实例[M].中国电力出版社;2006 [3]毕敏杰主编.机床数控技术[M].北京: 机械工业出版社;1996
第二篇:数控维修论文系列
摘要
针对现有常规CK5116A立式车床数控的缺点提出数控改装方案和单片机系统设计,提高加工精度和扩大机床使用范围,并提高生产率。本论文说明了普通车床的数控化改造的设计过程,较详尽地介绍了CK5116A机械改造部分的设计及数控系统部分的设计。采用以8031为CPU的控制系统对信号进行处理,由I/O接口输出步进
第三篇:数控维修报告
工业自动化技术 强化训练Ⅱ实践报告
数控机床电气故障检测与排除
作 者 姓 名:
指 导 老 师:
所 在 学 院:
机械工程学院
提 交 日 期:
2016.9.19
目录
第一章 绪论..............................................................................................................................1 第二章 电路连接......................................................................................................................2 2.1 自锁电路.....................................................................................................................2 2.2 互锁电路.....................................................................................................................3 2.3电气元器件..................................................................................................................4 2.3.1步进电机...........................................................................................................4 2.3.2 空气开关..........................................................................................................6 2.3.3步进驱动器.......................................................................................................7 2.3.4 变频器..............................................................................................................7 2.3.5 变压器..............................................................................................................8 2.3.6伺服电机...........................................................................................................9 2.3.7继电器...............................................................................................................9 2.3.8交流接触器.....................................................................................................10 第三章 数控机床电气故障检测与排除..............................................................................11 3.1故障处理前的工作....................................................................................................11 3.2故障检测与排除........................................................................................................11 3.2.1 故障FA02.......................................................................................................11 3.2.2 故障FA13.......................................................................................................12 3.2.3 故障FA15.......................................................................................................12 3.2.4故障FA07........................................................................................................12 3.2.5故障FA08........................................................................................................12 第四章 PLC..............................................................................................................................14 4.1程序编写....................................................................................................................14 4.2回零程序更改............................................................................................................15 第五章 实践感想..................................................................................................................17
第一章 绪论
第一章 绪论
随着电子技术和自动化技术的高速发展,数控技术的应用越来越广泛。以微处理器为基础,以大规模集成电路为标志的数控设备,给机械制造业的发展创造了条件,并带来了很大的效益。但同时,由于它们的先进性、复杂性和智能化高的特点,在故障诊断、维修理论、技术和手段上都发生了飞跃的变化。数控维修技术不仅是保障正常运行的前提,对数控技术的发展和完善也起到了巨大的推动作用,因此,目前它已经成为一门专门的学科。
任何一台数控设备都是一种过程控制设备,这就要求它在实时控制的每一时刻都准确无误地工作。任何部分的故障与失效,都会使机床停机,从而造成生产停顿。因而对数控系统这样原理复杂、结构精密的装置进行维修就显得十分必要了。尤其对引进的CNC机床,大多花费了几十万到上千万美元。在许多行业中,这些设备均处于关键的工作岗位,若在出现故障后不及时维修排除故障,就会造成较大的经济损失。
现有的维修状况和水平,与国外进口设备的设计与制造技术水平还存在很大的差距。造成差距的原因在于:人员素质较差,缺乏数字测试分析手段,数域和数域与频域综合方面的测试分析技术等有待提高等等。本文针对数控机床电气系统的特点与故障的检查分析以及诊断维修进行简要的探讨,并通过故障案例分析进行总结。
工业自动化技术强化训练Ⅱ实践报告
第二章 电路连接
2.1 自锁电路
图2-1
所谓自锁电路,顾名思义就是能够锁住电路,保持通电的电路。在通常的电路中,按下开关,电路通电;松开开关,电路又断开。具体来讲,就是一旦按下开关,就能够保持持续通电,直接按下其他开关使之短路为止;这样的电路,成为自锁电路。继电器自锁电路,可以将开关串联在继电器的主要出点上。与此同时,将继电器的一个空余的副触点与开关并联。这样一来,按下开关,副触点吸和,电路通电;松开开关后,由于副触点已经吸和,并向继电器主触点的线圈供电,线圈反过来又保持副触点吸和。在将线路从继电器输出端引出,电路就可以保持持续的通电。电路的工作情况如下:起动时,合上断路器QF,引入24V开关电源。按下起动按钮SB2,KM1的吸引线圈通电动作,KM的衔铁吸合。其中,KM1的主触头闭合,使电动机接通电源起动运转;与SB2并联的KM动合辅助触头闭合,从而使KM的吸引线圈经SB1-SB2和SB1-KM两条电路供电。这样,当手松开,SB2自动复位时,KM的吸引线圈仍可通过其动合辅助触头继续供电,从而保证电动机的连续运行。这种依靠接触器自身辅助触头而使其本身线圈保持通电的现象,称为自锁或保持。
第二章 电路连接
2.2 互锁电路
图2-2互锁电路实物图
电气控制回路要先将分别控制正反转停止的两个按钮串联接好,随后将两个分别控制正反转启动的两个按钮并联接好后与停钮的一端接好,停钮的另一端准备与电源连接,然后再把分别正转反转主接触器的常开辅助接点分别并联在各自相对应的启动按钮两端,之后再将各自主接触器的常闭辅助接点串联到对方的启动回路中,也就是说正转的常闭串接在反转启动按钮的一端,相对应反转的常闭接点要与正转的启动按钮一端串联,起到互锁的作用,(就是说正转运行时期接触器常闭辅助接点会将反转的启动回路断开,反之则依然是这个道理,为的是防止同时期按下下按钮会造成一次回路的相间短路),然后将两个常闭接点的另一端分别与所对应的启动回路的主接触器的线圈一段进行连接(就是说控制正转地启动的回路就串接正转接触器的线圈一段,反转起动控制回路就与反转的主接触器线圈一端串接)将两个线圈的另一端并联接在一起后接入热继电器的常闭接点的一端,热继电器常闭接点的另一端准备与中性点N或另一相线连接,这要看主接触器线圈的电压(220V就与中性点N连接,380v的话就接另外一相线),还需要在控制回路的最前端即停止按钮准备接电源的一端在接相线制前要经过一个控制保险,现在只能说控制回路接好了。下面就接主回路,主回路需要2个接触器,分别用于正转和反转时接通主回路,所以将两个接触器主触头的上端分别与三相交流电源的3条相线连接,而主触头的下端对应的触头上则要将其中任意两条线互换一下,然后按照互换以后的顺序接入电动机绕组连接好以后的3个连接片上,另
工业自动化技术强化训练Ⅱ实践报告
外还要在接触器到电机接线盒接线处之间先行串接热继电器的主接点,同时还要在电源引线与接触器上口之间串接熔断器。短路保护由熔断器担负,过载有热继电器承担。大致原理是保证电机正转时反转不能接通,而反转时正转也不能接通,否则同时吸合接触器就会使三相交流电在接触器下口形成短路,所以要在回路中加闭锁,再有就是无论反转还是正转都要求随时可以停止电机运行,因此停止按钮要串联,起纽要并联。互锁,说的是几个回路之间,利用某一回路的辅助触点,去控制对方的线圈回路,进行状态保持或功能限制。一般对象是对其他回路的控制。
图2-3 互锁电路图
2.3电气元器件
2.3.1步进电机
将电脉冲信号转变为角位移或线位移的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机是一种感应电机,它的工作原理是利用电子电路,4
第二章 电路连接
将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
三相异步电机:如图2-4三相异步电机(Triple-phase asynchronous motor)是靠同时接入380V三相交流电源(相位差120度)供电的一类电动机,由于三相异步电机的转子与定子旋转磁场以相同的方向、不同的转速成旋转,存在转差率,所以叫三相异步电机。当电动机的三相定子绕组 通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同.当导体在磁场内切割磁力线时,在导体内产生感应电流,“感应电机”的名称由此而来。感应电流和磁场的联合作用向电机转子施加驱动力。我们让闭合线圈ABCD在磁场B内围绕轴xy旋转。如果沿顺时针方向转动磁场,闭合线圈经受可变磁通量,产生感应电动势,该电动势会产生感应电流(法拉第定律)。根据楞次定律,电流的方向为:感应电流产生的效果总是要阻碍引起感应电流的原因。因此,每个导体承受相对于感应磁场的运动方向相反的洛仑兹力F。
图2-4三相异步电机
工业自动化技术强化训练Ⅱ实践报告
图2-5步进电机
2.3.2 空气开关
又名空气断路器,是断路器的一种。是一种只要电路中电流超过额定电流就会自动断开的开关。空气开关是低压配电网络和电力拖动系统中非常重要的一种电器,它集控制和多种保护功能于一身。除能完成接触和分断电路外,尚能对电路或电气设备发生的短路、严重过载及欠电压等进行保护,同时也可以用于不频繁地启动电动机。工作原理:如图2-6空气开关当线路发生一般性过载时,过载电流虽不能使电磁脱扣器动作,但能使热元件产生一定热量,促使双金属片受热向上弯曲,推动杠杆使搭钩与锁扣脱开,将主触头分断,切断电源。当线路发生短路或严重过载电流时,短路电流超过瞬时脱扣整定电流值,电磁脱扣器产生足够大的吸力,将衔铁吸合并撞击杠杆,使搭钩绕转轴座向上转动与锁扣脱开,锁扣在反力弹簧的作用下将三副主触头分断,切断电源。
如图2-6空气开关
第二章 电路连接
2.3.3步进驱动器
步进电机驱动器是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速和定位的目的。广泛应用于雕刻机、水晶研磨机、中型数控机床、脑电绣花机、包装机械、喷泉、点胶机、切料送料系统等分辨率较高的大、中型数控设备上。
如图2-7中科F223步进电机驱动器
2.3.4 变频器
变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。工作原理:如图2-8变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
工业自动化技术强化训练Ⅱ实践报告
如图2-8变频器
2.3.5 变压器
变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。工作原理:如图2-9变压器Satons变压器主要应用电磁感应原理来工作。具体是:当变压器一次侧施加交流电压U1,流过一次绕组的电流为I1,则该电流在铁芯中会产生交变磁通,使一次绕组和二次绕组发生电磁联系,根据电磁感应原理,交变磁通穿过这两个绕组就会感应出电动势,其大小与绕组匝数以及主磁通的最大值成正比,绕组匝数多的一侧电压高,绕组匝数少的一侧电压低,当变压器二次侧开路,即变压器空载时,一二次端电压与一二次绕组匝数成正比,即U1/U2=N1/N2,但初级与次级频率保持一致,从而实现电压的变化
如图2-9变压器
第二章 电路连接
2.3.6伺服电机
伺服电机(servo motor)是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。工作原理:伺服系统(servo mechanism)是使物体的位置、方位、伺服电机(图1)状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。
图2-10伺服电机
2.3.7继电器
继电器是当输入量达到规定条件时,其一个或多个输出量产生预定跃变的元器件。对于电磁继电器,可简单的理解为:在输入端施加规定的电信号,其输出端接通和断开被控制电路的一种开关。继电器一般都有能反映一定输入变量(如电流、电压、功率、阻抗、频率、温度、压力、速度、光等)的感应机构(输入部分);有能对被控电路实现“通”、“断”控制的执行机构(输出部分);在继电器的输入部分和输出部分之间,还有对输入量进行功能处理,对输入、输出部分进行耦合隔离和对输出部分进行驱动的中间机构(驱动部分)。作为控制元件,概括起来,继电器有如下几种作用:a)扩大控制范围 b)放大 c)综合信号 d)自动、遥控、监测。线圈通电,动铁芯在电磁力作用下动作吸合,带动动触点动作,使常闭触点分开,常开触点闭合;线圈断电,动铁芯在 9
工业自动化技术强化训练Ⅱ实践报告
弹簧的作用下带动动触点复位,继电器的工作原理是当某一输入量(如电压、电流、温度、速度、压力等)达到预定数值时,使它动作,以改变控制电路的工作状态,从而实现既定的控制或保护的目的。在此过程中,继电器主要起了传递信号的作用。
如图2-11继电器
2.3.8交流接触器
如图2-12交流接触器主要为CJ系列中的CJX2系列,CJ20系列,CJT1系列3TB,B系列等一些目前最常用的产品,1、CDC1系列交流接触器主要用于交流50Hz(或60Hz)、额定工作电压至660V,额定工作电流至370A的电力系统中接通和分断电路,并可与适当的热过载继电器或电子式保护装置组合成电磁起动器,以保护可能发生过载的电路。当线圈通电时,铁芯被磁化,吸引衔铁向下运动,使得常闭触头断开,常开触头闭合。当线圈断电时,磁力消失,在反力弹簧的作用下,衔铁回到原来位置,即使触头恢复到原来状态。
如图2-12交流接触器
第三章
数控机床电气故障检测与排除
第三章 数控机床电气故障检测与排除
3.1故障处理前的工作
首先,观察显示器,看是否正常,假如显示器上显示“准备未绪”,则是急停出现故障,需解决急停故障才能操作操作板检查其它故障。若显示正常,则进一步对机床进行操作,对X,Y,Z轴进行操作,在操作板上对其实现动作,看是否有相应动作,对其作出故障判断。接着按下照明灯按钮和冷却液按钮,看是否正常工作。一般遵照以下几点:
1.询问调查在接到机床现场出现故障要求排除的信息时,首先应要求操作者尽量保持现场故障状态,不做任何处理,这样有利于迅速精确地分析故障原因。同时仔细询问故障指示情况及故障产生的背景情况,依此做出初步判断
2.现场检查到达现场后,首先要验证操作者提供的各种情况的准确性、完整性,从而核实初步判断的准确度。不要急于动手处理,仔细调查各种情况,以免破坏了现场,使排除故障增加难度。
3.故障分析根据已知的故障状况分析故障类型,从而确定
排除故障原则。由于大多数故障是有指示的,所以一般情况下,对照机床配套的诊断手册和使用说明书,可以列出产生该故障的多种可能的原因。
4.确定原因对多种可能的原因中找出本次故障的真正原因,当然可能需要多次测试,这是对维修人员对该机床熟悉程度、知识水平、实践经验和分析判断能力的综合考验。
3.2故障检测与排除
3.2.1 故障FA02 1)故障现象:照明灯不能正常工作。
2)故障分析过程:KM4常开触点与工作灯的连接断开;继电器KA6线圈连接断开。3)故障检测过程:通过故障现象发现照明灯不能正常工作,所以查找并检测照明灯的相关电路。2检测继电器KA6线圈的电路,发现继电器KA6线圈的电路正常;1用○○万用表选直流24v电压档检测照明灯的相关电路:测出XB2–45和XB2–46,XB1–44和XB2–44,XB1–79和XB2–79两端点间没有电压,所以这三处的两端点间没有断点,再检测XB2–77和XB2–78两端点间有电压,XB2–77和XB2–78两端点间有断点,所以故障原因是KM4常开触点与工作灯的连接断开。
4)故障分析结果: KM4常开触点与工作灯的连接断开。
工业自动化技术强化训练Ⅱ实践报告
3.2.2 故障FA13 1)故障现象:系统界面显示 “准备未绪”,手动方式下分别作X、Y、Z轴移动操作时,相应进给电机不能转动;相应坐标显示没有变化。
2)故障分析过程:(1)XS8-17与567之间的连接断开;(2)继电器KA1线圈连接断开;(3)JD01-25与505之间的连接断开;(4)HXS8与HGD之间的连接断开。
3)故障检测过程:测点XB1-80和点XB1-52之间电压值为0,这说明连接没有断开;测点XB1-54和点XB2-54之间的电压值为24v,再测点XB2-52和XB2-51之间的电压值为24v,这说明继电器KA1线圈出现断开。
4)故障排除:更换继电器KA1线圈。
3.2.3 故障FA15 1)故障现象:手动方式下分别作X、Y、Z轴移动操作时,相应进给电机不能转动;相应坐标显示有变化;系统无其他报警显示。
2)故障分析过程:(1)继电器KA2线圈连接断开,导致KA2不能吸合,KM1、KM2、KM3都不能吸合,系统没电源;(2)继电器KA3线圈连接断开,导致KA2、KA3不能吸合,KM1、KM2、KM3都不能吸合,系统没电源;(3)变压器T1与041之间的连接断开,无24VAC电压输出;(4)继电器KA2触点与042之间的连接断开。
3)故障检测过程:测点XB2-57和点XB2-90之间电压为0,这说明连接正常。测点XB2-64和点XB2-89之间电压为24v,这说明继电器KA3线圈连接断开,导致KA2、KA3不能吸合,KM1、KM2、KM3都不能吸合,系统没电源。
4)故障排除:更换继电器KA3线圈。
3.2.4故障FA07 1)故障现象:照明灯不能正常工作。
2)故障分析过程:(1)KM4常开触点与工作灯的连接断开;(2)继电器KA6线圈连接断开。
3)故障检测过程:测点XB1-44和点XB2-44之间电压为0,测点XB-50和点XB2-79之间有电压可确定故障出现在开关KA6,再测点XB-78和点XB2-77这两点之间没有电压出现,可确定继电器KA6线圈出现故障。
4)故障排除:更换继电器KA6线圈。
3.2.5故障FA08 1)故障现象:冷却泵不能正常工作。
第三章
数控机床电气故障检测与排除
2)故障分析过程:(1)继电器KA5触点连接断开;(2)继电器KA5线圈连接断开;(3)接触器KM5触点连接断开。
3)故障检测过程:测点XB2-19和点XB2-33之间电压值为0。这说这两点连接正常。测点XB2-33和点XB2-75之间出现电压值,这说明继电器KA5触点断开。
4)故障排除:更换继电器KA5。
工业自动化技术强化训练Ⅱ实践报告
第四章 PLC
4.1程序编写
4.1.1 程序编写方法
1.深入了解和分析被控对象的工艺条件和控制要求
a .被控对象就是受控的机械、电气设备、生产线或生产过程。
b.控制要求主要指控制的基本方式、应完成的动作、自动工作循环的组成、必要的保护和联锁等。对较复杂的控制系统,还可将控制任务分成几个独立部分,这种可化繁为简,有利于编程和调试。2.确定 I/O 设备
根据被控对象对 PLC控制系统的功能要求,确定系统所需的用户输入、输出设备。常用的输入设备有按钮、选择开关、行程开关、传感器等,常用的输出设备有继电器、接触器、指示灯、电磁阀等。3.选择合适的 PLC 类型
根据已确定的用户 I/O 设备,统计所需的输入信号和输出信号的点数,选择合适的 PLC 类型,包括机型的选择、容量的选择、I/O模块的选择、电源模块的选择等。4.分配 I/O 点
分配 PLC 的输入输出点,编制出输入 / 输出分配表或者画出输入 / 输出端子的接线图。接着九可以进行 PLC程序设计,同时可进行控制柜或操作台的设计和现场施工。5.设计应用系统梯形图程序
根据工作功能图表或状态流程图等设计出梯形图即编程。这一步是整个应用系统设计的最核心工作,也是比较困难的一步,要设计好梯形图,首先要十分熟悉控制要求,同时还要有一定的电气设计的实践经验。6.将程序输入 PLC 当使用简易编程器将程序输入 PLC时,需要先将梯形图转换成指令助记符,以便输入。当使用可编程序控制器的辅助编程软件在计算机上编程时,可通过上下位机的连接电缆将程序下载到PLC中去。
7.进行软件测试
程序输入 PLC 后,应先进行测试工作。因为在程序设计过程中,难免会有疏漏的地方。因此在将 PLC连接到现场设备上去之前,必需进行软件测试,以排除程序中的错误,同时也为整体调试打好基础,缩短整体调试的周期。
第四章 PLC
8.应用系统整体调试
在 PLC软硬件设计和控制柜及现场施工完成后,就可以进行整个系统的联机调试,如果控制系统是由几个部分组成,则应先作局部调试,然后再进行整体调试;如果控制程序的步序较多,则可先进行分段调试,然后再连接起来总调。调试中发现的问题,要逐一排除,直至调试成功。
4.2回零程序更改
1.PLC题目的要求:
X,Y,Z三轴一键回零后照明灯打开。2.PLC编程的过程:
对于一键回零照明灯打开程序设计的过程:先在操作面板上调出一键回零照明灯打开的PLC程序,然后在电脑上上打开相关的控制软件,并通过说明书查找出相关的I/O口和相关的地址,找出照明灯是Y0.2和照明灯的指示灯是Y15.0,回零键G4.7,X轴回零F0.0,Y轴回零F0.1,Z轴回零F0.2。一键回零是F43.3,X,Y,Z回零分别是G2.1,G2.1,G2.3。然后在三轴回零程序通过并联F1按钮的触发点的PLC程序,然后正规化该程序,最后重新全部导入该程序到机床的操作系统上,并通过操作检测程序是否正确。程序操作正常后还原机床的原程序。
在三轴回零程序通过并联F1按钮的触发点并且在三轴回零的PLC程序后通过辅助器串联照明灯打开的PLC程序,然后正规化该程序,最后重新全部导入该程序到机床的操作系统上,并通过操作检测程序是否正确。如图二,图三所示
工业自动化技术强化训练Ⅱ实践报告
图二
图三
第五章
实践感想
第五章 实践感想
进入大四的课程就是强化训练,为期一个月,在这一个月里,学到的东西是比较多,接触到了自己从未接触过的知识,学到了一些学习的方法。在强化训练中,是以小组形式进行的,所以团队之间的合作很重要,当意见不和时容易产生矛盾和争吵,学到了如何团队合作和避免团队矛盾。在这一个月里,学了电子元器件的知识,自锁和互锁电路的连接,数控机床电气故障检测与排除,部分机床PLC程序编写。
在进行这些知识学习中,前期发现自己有很多问题,态度不够端正,不够重视实操。在自锁电路进行电路连接时,没有提前预习,没有去看电路图,在电路连接时才看,导致在连接电路时似懂非懂,元器件什么都不知道。所以在互锁电路时,自己就做了预习,熟悉元器件和电路原理,在接线过程中按部就班,顺利接好了电路。这就是有做准备和没做准备的区别。在进行机床电气故障检测与故障排除的时候,在进行小组训练的时候,认为这些都比较简单,很少自己动手去操作,到了后期随机出题的时候,才知道这并不容易,一个故障有可能是三个电路出现问题,一个电路有问题可能导致多个故障,这给我们检测都是有难度的,那时候训练都是满脸困惑的,明明是自己没检查出来还觉得自己没有错,导致故障不能排除。
在这次强化训练中,认识到了团队合作的重要性,在学习过程中可以互相学习,不能针锋相对,要注意听取队友的建议和想法,而不是一意孤行,而且很有可能让你茅塞顿开,更能清楚的去解决这个问题。也让我认识到独立学习的重要性,学会自己一个人去解决问题,当遇到一个比较难的问题时,如何去解决这个问题,而不是一味的去请教老师和同学,要学会独立思考,独立去解决问题。
在这次强化训练中,学到最重要的是就是要端正学习态度,不能轻视。在学习中要注重独立思考和团队合作。
第四篇:数控论文
谈数控技术的现状及发展
作者:辽宁科技大学 06机械8班
丁洪帅
内容摘要:
随着科学技术的高速发展,制造业领域发生了根本的变化。数控技术的广泛应用大大提高了生产效率和产品质量,使得机械加工进入了柔性自动化时代。数控技术集传统的机械制造、计算机、现代控制、传感技术、信息处理、光机电技术于一体,是现代制造技术的基础。它的应用和发展不仅给机械制造界带来深刻的变化,而且给其他领域带来了变革。数控设备在现代工业中得到广泛的应用,其数量和数控化率高低已成为衡量一个国家工业现代化水平的重要标志。本文将对数控技术的含义、现状、未来发展以及我国数控技术的未来发展空间这四个方面进行探讨。
关键词:
数控技术,现实发展状况,未来发展及变革空间,我国数控技术的发展 正文:
一,数控的基本理解
数控技术是指用数字、文字和符号组成的数字指令来实现一台或多台机械设备动作控制的技术。它所控制的通常是位置、角度、速度等机械量和与机械能量流向有关的开关量。数控的产生依赖于数据载体和二进制形式数据运算的出现。1908年,穿孔的金属薄片互换式数据载体问世;19世纪末,以纸为数据载体并具有辅助功能的控制系统被发明;1938年,香农在美国麻省理工学院进行了数据快速运算和传输,奠定了现代计算机,包括计算机数字控制系统的基础。数控技术是与机床控制密切结合发展起来的。1952年,第一台数控机床问世,成为世界机械工业史上一件划时代的事件,推动了自动化的发展。
数控技术也叫计算机数控技术,目前它是采用计算机实现数字程序控制的技术。这种技术用计算机按事先存贮的控制程序来执行对设备的控制功能。由于采用计算机替代原先用硬件逻辑电路组成的数控装置,使输入数据的存贮、处理、运算、逻辑判断等各种控制机能的实现,均可通过计算机软件来完成。
二,数控技术的现状
近年来我国企业的数控机床占有率逐年上升,在大中企业已有较多的使用,在中小企业甚至个体企业中也普遍开始使用。在这些数控机床中,除少量机床以fms模式集成使用外,大都处于单机运行状态,并且相当部分处于使用效率不高,管理方式落后的状态。
2001年,我国机床工业产值已进入世界第5名,机床消费额在世界排名上升到第3位,达47.39亿美元,仅次于美国的53.67亿美元,消费额比上一年增长25%。但由于国产数控机床不能满足市场的需求,使我国机床的进口额呈逐年上升态势,2001年进口机床跃升至世界第2位,达24.06亿美元,比上年增长27.3%。
近年来我国出口额增幅较大的数控机床有数控车床、数控磨床、数控特种加工机床、数控剪板机、数控成形折弯机、数控压铸机等,普通机床有钻床、锯床、插床、拉床、组合机床、液压压力机、木工机床等。出口的数控机床品种以中低档为主。
同时,新产品开发有了很大突破,技术含量高的产品占据了主导地位。数控机床产量的大幅度增长也是我国数控领域的基本现状之一。数控机床发展的关键配套产品有了较大的突破,近年来通过政府的支持,数控机床“"套餐”“开始摆上“餐桌”。如北京航天机床数控系统集团公司建立了具有自主知识产权的新一代开放式数控系统平台;烟台第二机床附件厂开发了为数控机床配套的多种动力卡盘和过滤排屑装置;济南第二机床集团公司的数控龙门镗铣床、数控落地镗铣
床及数控锻压设备等30多个系列100多个品种的数控”“套餐”",吸引了人们广泛关注。
三,数控技术的发展空间
从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面:
第一,高速、高精加工技术及装备的新趋势:
效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定为21世纪的中心研究方向之一。
在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。
在可靠性方面,国外数控装置的MTBF值已达6 000h以上,伺服系统的MTBF值达到30000h以上,表现出非常高的可靠性。
第二.,5轴联动加工和复合加工机床快速发展:
采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。
当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。
第三,智能化、开放式、网络化成为当代数控系统发展的主要趋势:
21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。
数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。
网络化数控装备是近两年国际著名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。
第四,重视新技术标准、规范的建立:
(1)关于数控系统设计开发规范
如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范(OMAC、OSACA、OSEC)的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临。
(2)关于数控标准
数控标准是制造业信息化发展的一种趋势。数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何(how)加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要。为此,国际上正在研究和制定一种新的CNC系统标准ISO14649(STEP-NC),其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化。
第五,数字式交流伺服成为主流,数字式交流伺服系统体积小,性能好,调试方便,克服了过去模拟伺服系统用电位器调节的不便。通过数字设定可优化速度,电流环,可进行转矩限制,进行加减速控制,另外可以和外
部计算机通讯,备份伺服参数,并在上位机显示电流,扭矩波形,便于观察。
四,我国数控技术发展
我国数控技术发展应该结合我国的具体实际,在一下几个方面多家改进: 首先,中国厂多人众,极需正确的方针、政策对数控机床的发展进行有力的指引。应学习美、德、日经验,政府高度重视、正确决策、大力扶植。在方针政策上,应讲究科学精神、经济实效,以切实提高生产率、劳动生产率为原则。
其次,在方法上,深入用户,精通工艺,低中高档并举,学习日本,批量生产,占领市场,减少进口,扩大出口。
再次,在步骤措施上,必须使国产数控系统先进、可靠,狠抓产品质量与配套件过关,打好技术基础。近期重在打基础,建立信誉,扩大国产数控机床的国内市场份额,远期谋求赶超世界先进水平,大步走向世界市场。
最后,必须狠抓根本,坚持“以人为本”,加速提高人员素质、培养各种专家人才,从根本上改变目前低效、落後的状态。人是一切事业成败的根本,层层都要重视“培才、选才、用才”,建立学习型企业,树立企业文化,加速培育新人,培训在职人员,建立师徒相传制度,举办各种技术讲座、训练班和专题讨论会,甚至聘请外国专家、顾问等,尽力提高数控。
数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。数控技术的未来发展空间是很广阔的,数控技术的发展离不开整个社会服务体系的完善,包括人材培训,维修服务等方面的配合,这也是我国社会需要加紧步伐的部分,中国今后要加速发展数控机床产业,既要深入总结过往的经验教训,切实改善存在的问题,又要认真学习国外的先进经验,沿正确的道路前进。
第五篇:数控论文
学院
毕业论文
题 目 数控零件加工工艺设计 专 业 数控技术 年 级 2009级 学生姓名 指导教师
2011.06.29
摘 要
随着数控技术的不断发展和应用领域的扩大,数控加工技术对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。而对于数控加工,无论是手工编程还是自动编程,在编程前都要对所加工的零件进行工艺分析,拟定加工方案,选择合适的刀具,确定切削用量,对一些工艺问题(如对刀点、加工路线等)也需做一些处理。并在加工过程掌握控制精度的方法,才能加工出合格的产品。
本文根据数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。通过整个工艺的过程的制定,充分体现了数控设备在保证加工精度,加工效率,简化工序等方面的优势。
前 言
在机械加工工艺教学中,机械制造专业学生及数控技术专业学生都要学习数控车床操作技术。让学生了解相关工种的先进技术,同时培养工作岗位的前瞻性;在讲授数控知识的同时,必须要求学生掌握基本的机械加工工艺,增强系统意识,理解手动操作与自动操作之间的联系,真正把学生培养成为适应各种工作环境和岗位的多面手。数控车工基础工艺理论及技能有机融合,包括夹具的使用、量具的识读和使用、刃具的刃磨及使用、基准定位等,分类叙述了车床操作、数控车床自动编程仿真操作、数控车床编程与操作的初、中级内容。以机械加工中车工工艺学与数控车床技能训练密切结合为主线,常用量具识读及工件测量、刀具及安装、工件定位与安装、金属切削过程及精加工,较清晰地展示了数控车工必须掌握的知识和技能的训练途径。对涉及与数控专业相关的基础知识、专业计算,都进行了有针对性的论述,目的在于塑造理论充实、技能扎实的专业技能型人才。
本文以与切削用量的选择,工件的定位装夹,加工顺序和典型零件为例,结合数控加工的特点,分别进行工艺方案分析,机床的选择,刀具加工路线的确定,数控程序的编制,最终形成可以指导生产的工艺文件。在整个工艺过程的设计过程中,要通过分析,确定最佳的工艺方案,使得零件的加工成本最低,合理的选用定位夹紧方式,使得零件加工方便、定位精准、刚性好,合理选用刀具和切削参数,使得零件的加工在保证零件精度的情况下,加工效率最高、刀具消耗最低。最终形成的工艺文件要完整,并能指导实际生产。
第2章 工艺方案分析
2.1 零件图
技术要求 去除毛刺 尖角倒钝。2 未注倒角均为45。3 无热处理和硬度要求。
2.2 零件图分析 该零件表面由圆柱、顺圆弧、逆圆弧、圆锥、槽、螺纹等表面组成。尺寸标注完整,选用毛坯为45#钢,Φ55mm×150mm,无热处理和硬度要求。
2.3 确定加工方法
加工方法的选择原则是保证加工表面的加工精度和表面粗糙度的要求。由于获得同一级精度及表面粗糙度的加工方法一般有许多,因而在实际选择时,要结合零件的形状、尺寸大小和形位公差要求等全面考虑。
图上几个精度要求较高的尺寸,因其公差值较小,所以编程时没有取平均值,而取其基本尺寸。
在轮廓线上,有个锥度10度坐标P1、和一处圆弧切点P2,在编程时要求出其坐标,P1(45.29,75)P2(35,56.46)。
通过以上数据分析,考虑加工的效率和加工的经济性,最理想的加工方式为车削,考虑该零件为大批量加工,故加工设备采用数控车床。
根据加工零件的外形和材料等条件,选用CJK6032数控机床。
2.4 确定加工方案
零件上比较精密表面的加工,常常是通过粗加工、半精加工和精加工逐步达到的。对这些表面仅仅根据质量要求选择相应的最终加工方法是不够的,还应正确地确定从毛坯到最终成形的加工方案。
毛坯先夹持左端,车右端轮廓113mm处,右端加工Φ39mm、SΦ42mm、R9mm、Φ35mm、锥度为10度的外圆,Φ52mm.调头装夹已加工Φ52mm外圆,左端加工Φ25mm×33mm、切退刀槽、加工螺纹M25mm×1.5mm.该典型轴加工顺序为:
预备加工---车端面---粗车右端轮廓---精车右端轮廓---切槽---工件调头---车端面---粗车左端轮廓---精车左端轮廓---切退刀槽---粗车螺纹---精车螺纹
第3章 工件的装夹
3.1 定位基准的选择
在制定零件加工的工艺规程时,正确地选择工件的定位基准有着十分重要的意义。定位基准选择的好坏,不仅影响零件加工的位置精度,而且对零件各表面的加工顺序也有很大的影响。合理选择定位基准是保证零件加工精度的前提,还能简化加工工序,提高加工效率。
3.2 定位基准选择的原则
1)基准重合原则。为了避免基准不重合误差,方便编程,应选用工序基准作为定位基准,尽量使工序基准、定位基准、编程原点三者统一。
2)便于装夹的原则。所选择的定位基准应能保证定位准确、可靠,定位、夹紧机构简单、易操作,敞开性好,能够加工尽可能多的表面。
3)便于对刀的原则。批量加工时在工件坐标系已经确定的情况下,保证对刀的可能性和方便性。
3.3 确定零件的定位基准
以左右端大端面为定位基准。
3.4 装夹方式的选择 为了工件不致于在切削力的作用下发生位移,使其在加工过程始终保持正确的位置,需将工件压紧夹牢。合理的选择夹紧方式十分重要,工件的装夹不仅影响加工质量,而且对生产率,加工成本及操作安全都有直接影响。
3.5 数控车床常用的装夹方式
1)在三爪自定心卡盘上装夹。三爪自定心卡盘的三个卡爪是同步运动的,能自动定心,一般不需要找正。该卡盘装夹工件方便、省时,但夹紧力小,适用于装夹外形规则的中、小型工件。
2)在两顶尖之间装夹。对于尺寸较大或加工工序较多的轴类工件,为了保证每次装夹时的装夹精度,可用两顶尖装夹。该装夹方式适用于多序加工或精加工。
3)用卡盘和顶尖装夹。当车削质量较大的工件时要一段用卡盘夹住,另一段用后顶尖支撑。这种方式比较安全,能承受较大的切削力,安装刚性好,轴向定位准确,应用较广泛。
4)用心轴装夹。当装夹面为螺纹时再做个与之配合的螺纹进行装夹,叫心轴装夹。这种方式比较安全,能承受较大的切削力,安装刚性好,轴向定位准确。
3.6 确定合理的装夹方式
装夹方法:先用三爪自定心卡盘毛坯左端,加工右端达到工件精度要求;再工件调头,用三爪自定心卡盘毛坯右端Φ52,再加工左端达到工件精度要求。
第4章 刀具及切削用量
4.1 选择数控刀具的原则
刀具寿命与切削用量有密切关系。在制定切削用量时,应首先选择合理的刀具寿命,而合理的刀具寿命则应根据优化的目标而定。一般分最高生产率刀具寿命和最低成本刀具寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。
选择刀具寿命时可考虑如下几点根据刀具复杂程度、制造和磨刀成本来选择。复杂和精度高的刀具寿命应选得比单刃刀具高些。对于机夹可转位刀具,由于换刀时间短,为了充分发挥其切削性能,提高生产效率,刀具寿命可选得低些,一般取15-30min。对于装刀、换刀和调刀比较复杂的多刀机床、组合机床与自动化加工刀具,刀具寿命应选得高些,尤应保证刀具可靠性。车间内某一工序的生产率限制了整个车间的生产率的提高时,该工序的刀具寿命要选得低些当某工序单位时间内所分担到的全厂开支M较大时,刀具寿命也应选得低些。大件精加工时,为保证至少完成一次走刀,避免切削时中途换刀,刀具寿命应按零件精度和表面粗糙度来确定。与普通机床加工方法相比,数控加工对刀具提出了更高的要求,不仅需要冈牲好、精度高,而且要求尺寸稳定,耐用度高,断和排性能坛同时要求安装调整方便,这样来满足数控机床高效率的要求。数控机床上所选用的刀具常采用适应高速切削的刀具材料(如高速钢、超细粒度硬质合金)并使用可转位刀片。
4.2 选择数控车削用刀具
数控车削车刀常用的一般分成型车刀、尖形车刀、圆弧形车刀以及三类。成型车刀也称样板车刀,其加工零件的轮廓形状完全由车刀刀刃的形伏和尺寸决定。数控车削加工中,常见的成型车刀有小半径圆弧车刀、非矩形车槽刀和螺纹刀等。在数控加工中,应尽量少用或不用成型车刀。尖形车刀是以直线形切削刃为特征的车刀。这类车刀的刀尖由直线形的主副切削刃构成,如90°内外圆车刀、左右端面车刀、切槽(切断)车刀及刀尖倒棱很小的各种外圆和内孔车刀。尖形车刀几何参数(主要是几何角度)的选择方法与普通车削时基本相同,但应结合数控加工的特点(如加工路线、加工干涉等)进行全面的考虑,并应兼顾刀尖本身的强度。
二是圆弧形车刀。圆弧形车刀是以一圆度或线轮廓度误差很小的圆弧形切削刃为特征的车刀。该车刀圆弧刃每一点都是圆弧形车刀的刀尖,应此,刀位点不在圆弧上,而在该圆弧的圆心上。圆弧形车刀可以用于车削内外表面,特别适合于车削各种光滑连接(凹形)的成型面。选择车刀圆弧半径时应考虑两点车刀切削刃的圆弧半径应小于或等于零件凹形轮廓上的最小曲率半径,以免发生加工干浅该半径不宜选择太小,否则不但制造困难,还会因刀尖强度太弱或刀体散热能力差而导致车刀损坏。4.3 设置刀点和换刀点
刀具究竟从什么位置开始移动到指定的位置呢?所以在程序执行的一开始,必须确定刀具在工件坐标系下开始运动的位置,这一位置即为程序执行时刀具相对于工件运动的起点,所以称程序起始点或起刀点。此起始点一般通过对刀来确定,所以,该点又称对刀点。在编制程序时,要正确选择对刀点的位置。对刀点设置原则是:便于数值处理和简化程序编制。易于找正并在加工过程中便于检查,引起的加工误差小。对刀点可以设置在加工零件上,也可以设置在夹具上或机床上,为了提高零件的加工精度,对刀点应尽量设置在零件的设计基准或工艺基谁上。实际操作机床时,可通过手工对刀操作把刀具的刀位点放到对刀点上,即“刀位点”与“对刀点”的重合。所谓“刀位点”是指刀具的定位基准点,车刀的刀位点为刀尖或刀尖圆弧中心。平底立铣刀是刀具轴线与刀具底面的交点。球头铣刀是球头的球心,钻头是钻尖等。用手动对刀操作,对刀精度较低,且效率低。而有些工厂采用光学对刀镜、对刀仪、自动对刀装置等,以减少对刀时间,提高对刀精度。加工过程中需要换刀时,应规定换刀点。所谓“换刀点”是指刀架转动换刀时的位置,换刀点应设在工件或夹具的外部,以换刀时不碰工件及其它部件为准。
4.4 确定切削用量
数控编程时,编程人员必须确定每道工序的切削用量,并以指令的形式写人程序中。切削用量包括主轴转速、背吃刀量及进给速度等。对于不同的加工方法,需要选用不同的切削用量。切削用量的选择原则是:保证零件加工精度和表面粗糙度,充分发挥刀具切削性能,保证合理的刀具耐用度,并充分发挥机床的性能,最大限度提高生产率,降低成本。第5章 典型轴类零件的加工
5.1 轴类零件加工工艺分析
(1)技术要求
轴类零件的技术要求主要是支承轴颈和配合轴颈的径向尺寸精度和形位精度,轴向一般要求不高。轴颈的直径公差等级通常为IT6-IT8,几何形状精度主要是圆度和圆柱度,一般要求限制在直径公差范围之内。相互位置精度主要是同轴度和圆跳动;保证配合轴颈对于支承轴颈的同轴度,是轴类零件位置精度的普遍要求之一。图为特殊零件,径向和轴向公差和表面精度要求较高。
(2)毛坯选择
轴类零件除光滑轴和直径相差不大的阶梯轴采用热轧或冷拉圆棒料外,一般采用锻件;发动机曲轴等一类轴件采用球墨铸铁铸件比较多。如图典型轴类直径相差不大,采用直径为60mm,材料45#钢,在锯床上按150mm长度下料。
(3)定位基准选择 轴类零件外圆表面、内孔、螺纹等表面的同轴度,以及端面对轴中心线的垂直度是其相互位置精度的主要项目,而这些表面的设计基准一般都是轴中心线。用两中心孔定位符合基准重合原则,并且能够最大限度地在一次装夹中加工出多格外圆表面和端面,因此常用中心孔作为轴加工的定位基准。
当不能采用中心孔时或粗加工是为了提高工作装夹刚性,可采用轴的外圆表面作定位基准,或是以外圆表面和中心孔共同作为定位基准,能承受较大的切削力,但重复定位精度并不太高。
数控车削时,为了能用同一程序重复加工和工件调头加工轴向尺寸的准确性,或为了端面余量均匀,工件轴向需要定位。采用中心孔定位时,中心孔尺寸及两端中心孔间的距离要保持一致。以外圆定位时,则应采用三爪自定心卡盘反爪装夹或采用限未支承,以工件端面或台阶儿面作为轴向定位基准。
(4)轴类零件的预备加工 车削之前常需要根据情况安排预备加工,内容通常有:直--毛坯出厂时或在运输、保管过程中,或热处理时常会发生弯曲变形。过量弯曲变形会造成加工余量不足及装夹不可靠。因此在车削前需增加校直工序。
切断---用棒料切得所需长度的坯料。切断可在弓形锯床、圆盘锯床和带锯上进行,也可以在普通车床切断或在冲床上用冲模冲切。
车端面和钻中心孔—对数控车削而言,通常将他们作为预备加工工序安排。(5)热处理工序 铸、锻件毛坯在粗车前应根据材质和技术要求安排正火火退火处理,以消除应力,改善组织和切削性能。性能要求较高的毛坯在粗加工后、精加工前应安排调质处理,以提高零件的综合机械性能;对于硬度和耐磨性要求不高的零件,调质也常作为最终热处理。相对运动的表面需在精加工前或后进行表面淬火处理或进行化学热处理,以提高其耐磨性。
(6)加工工序的划分一般可按下列方法进行:
①刀具集中分序法
就是按所用刀具划分工序,用同一把刀具加工完零件上所有可以完成的部位。再用第二把刀、第三把完成它们可以完成的其它部位。这样可减少换刀次数,压缩空程时间,减少不必要的定位误差。
②以加工部位分序法
对于加工内容很多的零件,可按其结构特点将加工部分分成几个部分,如内形、外形、曲面或平面等。一般先加工平面、定位面,后加工孔;先加工简单的几何形状,再加工复杂的几何形状;先加工精度较低的部位,再加工精度要求较高的部位。
③以粗、精加工分序法 对于易发生加工变形的零件,由于粗加工后可能发生的变形而需要进行校形,故一般来说凡要进行粗、精加工的都要将工序分开。
综上所述,在划分工序时,一定要视零件的结构与工艺性,机床的功能,零件数控加工内容的多少,安装次数及本单位生产组织状况灵活掌握。另建议采用工序集中的原则还是采用工序分散的原则,要根据实际情况来确定,但一定力求合理。
(7)工时在加,加工顺序的安排应根据零件的结构和毛坯状况,以及定位夹紧的需要来考虑,重点是工件的刚性不被破坏。顺序一般应按下列原则进行:
①上道工序的加工不能影响下道工序的定位与夹紧,中间穿插有通用机床加工工序的也要综合考虑。
②先进行内形内腔加工序,后进行外形加工工序。
③以相同定位、夹紧方式或同一把刀加工的工序最好连接进行,以减少重复定位次数,换刀次数与挪动压板次数。
④在同一次安装中进行的多道工序,应先安排对工件刚性破坏小的工序。
在数控车床上粗车、半精车分别用一个加工程序控制。工件调头装夹由程序中的M00或M01指令控制程序暂停,装夹后按“循环启动”继续加工。(8)走刀路线和对刀点选择
走刀路线包括切削加工轨迹,刀具运动到切削起始点、刀具切入、切出并返回切削起始点或对刀点等非切削空行程轨迹。由于半精加工和精加工的走刀路线是沿其零件轮廓顺序进行的,所以确定走刀路线主要在于规划好粗加工及空行程的走刀路线。合理确定对刀点,对刀点可以设在被加工零件上,但注意对刀点必须是基准位或已精加工过的部位,有时在第一道工序后对刀点被加工毁坏,会导致第二道工序和之后的对刀点无从查找,因此在第一道工序对刀时注意要在与定位基准有相对固定尺寸关系的地方设立一个相对对刀位置,这样可以根据它们之间的相对位置关系找回原对刀点。这个相对对对刀位置通常设在机床工作台或夹具上。
5.2 典型轴类零件加工工艺
(1)确定加工顺序及进给路线
加工顺序按粗到精、由近到远(由右到左)的原则确定。工件右端加工:既先从右到左进行外轮廓粗车(留0.5mm余量精车),然后从右到左进行外轮廓精车,最后切槽;工件调头,工件左端加工:粗加工外轮廓、精加工外轮廓,切退刀槽,最后螺纹粗加工、螺纹精加工。
(2)选择刀具
1)车端面:选用硬质合金45度车刀,粗、精车用一把刀完成。
2)粗、精车外圆:(因为程序选用 G71循环所以粗、精车选用同一把刀)硬质合金90度放型车刀,Kr=90度,Kr'=60度;E=30度,(因为有圆弧轮廓)以防与工件轮廓发生干涉,如果有必要就用图形来检验.3)车槽: 选用硬质合金车槽刀(刀长12mm,刀宽3mm)4)车螺纹:选用60度硬质合金外螺纹车刀.(3)选择切削用量