第一篇:高等数学(二)第一分册线性代数P23习题解答
P.23 §1.1 习题解答
1、求下列行列式中元素a12,a31,a33的余子式及代数余子式:
210311001751(ⅱ)(ⅰ)4
111解:M42121A2424212(1)11111
M103112
A1)31101031(1212
M213341
A(1)3321213341412、用定义计算行列式:
123(ⅰ)31
2231123解:31212232331 231312123522118
23310012115 解:M12231
01211 A12231
012107
M31015 012107
A31015 012317
M33105 002317
A33105 002112(ⅱ)031 224112解:031 2231010242422320
1210210300130011212212110002100211210021110000 1(ⅲ)1100
11解:11001201301012012(21)2132(1)32610 10***30***405132(ⅳ)40510012
10解:405100120120022001108246
3、用定义计算下列行列式,再按第二列或第三列展开,比较所得到的值是否相同
12321312503211403(ⅰ)01
2(ⅱ)11
1(ⅲ)
011100101223(1)10 解:(ⅰ)0121112111211
(ⅱ)11111001213123411
12540(ⅲ)***1411(31113420132011)
(34462)14
4、用定义计算下列行列式
132281(ⅰ)396
(ⅱ)057 1175001aa2a31aa2(ⅲ)bb2b3
(ⅳ)1bb2
cc2c31cc2132解:(ⅰ)3969633211328787001175757596281
(ⅱ)05725710 00101aa2a33
(ⅲ)bb2b3ab2ba32a3c2c3c2c3ba2c2c3cab2b3
c
a(b2c3c2b3)b(a2c3a3c2)c(a2b3a3b2)
abc(ab)(bc)(ca)
1aa22
(ⅳ)1bb2bba2aa2cc2acc2bb2
1cc2
(bc2b2c)(ac2a2c)(ab2a2b)
(ab)(bc)(ca)
第二篇:线性代数习题及解答
线性代数习题一
说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||||表示向量的长度,T表示向量的转置,E表示单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
a11a12a133a113a123a131.设行列式a21a22a23=2,则a31a32a33=()
a31a32a33a21a31a22a32a23a33A.-6 B.-3 C.3
D.6 2.设矩阵A,X为同阶方阵,且A可逆,若A(X-E)=E,则矩阵X=()A.E+A-1 B.E-A C.E+A
D.E-A-
13.设矩阵A,B均为可逆方阵,则以下结论正确的是()
A.AA-1B可逆,且其逆为B-1 B.AB不可逆 C.AB-1D.B可逆,且其逆为A-1 AA-1B可逆,且其逆为B-1 4.设1,2,…,k是n维列向量,则1,2,…,k线性无关的充分必要条件是A.向量组1,2,…,k中任意两个向量线性无关
B.存在一组不全为0的数l1,l2,…,lk,使得l11+l22+…+lkk≠0 C.向量组1,2,…,k中存在一个向量不能由其余向量线性表示 D.向量组1,2,…,k中任意一个向量都不能由其余向量线性表示
5.已知向量2(1,2,2,1)T,32(1,4,3,0)T,则=()A.(0,-2,-1,1)T B.(-2,0,-1,1)T C.(1,-1,-2,0)T
D.(2,-6,-5,-1)T
6.实数向量空间V={(x, y, z)|3x+2y+5z=0}的维数是()A.1
B.2)
(C.3 D.4 7.设是非齐次线性方程组Ax=b的解,是其导出组Ax=0的解,则以下结论正确的是
()
A.+是Ax=0的解 C.-是Ax=b的解 8.设三阶方阵A的特征值分别为A.2,4,C.
B.+是Ax=b的解 D.-是Ax=0的解
11,3,则A-1的特征值为()24B.1 3111, 24311,3 241D.2,4,3 9.设矩阵A=21,则与矩阵A相似的矩阵是()
1A.1123
01B.102
2C.
D.
21
10.以下关于正定矩阵叙述正确的是()A.正定矩阵的乘积一定是正定矩阵 C.正定矩阵的行列式一定大于零
二、填空题(本大题共10小题,每空2分,共20分)
请在每小题的空格中填上正确答案,错填、不填均无分。
11.设det(A)=-1,det(B)=2,且A,B为同阶方阵,则det((AB))=__________.
3B.正定矩阵的行列式一定小于零 D.正定矩阵的差一定是正定矩阵
112.设3阶矩阵A=42t23,B为3阶非零矩阵,且AB=0,则t=__________. 1-131k13.设方阵A满足A=E,这里k为正整数,则矩阵A的逆A=__________. 14.实向量空间R的维数是__________.
15.设A是m×n矩阵,r(A)=r,则Ax=0的基础解系中含解向量的个数为__________. 16.非齐次线性方程组Ax=b有解的充分必要条件是__________. n17.设是齐次线性方程组Ax=0的解,而是非齐次线性方程组Ax=b的解,则A(32)=__________. 18.设方阵A有一个特征值为8,则det(-8E+A)=__________.
19.设P为n阶正交矩阵,x是n维单位长的列向量,则||Px||=__________.
20.二次型f(x1,x2,x3)x15x26x34x1x22x1x32x2x3的正惯性指数是__________.
三、计算题(本大题共6小题,每小题9分,共54分)
222121.计算行列式142126142. 114121222.设矩阵A=35,且矩阵B满足ABA=4A+BA,求矩阵B.
-1-1-123.设向量组1(3,1,2,0),2(0,7,1,3),3(1,2,0,1),4(6,9,4,3),求其一个极大线性无关组,并将其余向量通过极大线性无关组表示出来.
124.设三阶矩阵A=24533,求矩阵A的特征值和特征向量. 4225.求下列齐次线性方程组的通解.
x1x35x40 2x1x23x40xxx2x023412242026.求矩阵A=3010360110110的秩.
1
2四、证明题(本大题共1小题,6分)
a1127.设三阶矩阵A=a21a12a22a32a13a23的行列式不等于0,证明: a33a31a13a11a121a21,2a22,3a23线性无关.
aaa313233
线性代数习题二
说明:在本卷中,A表示矩阵A的转置矩阵,A表示矩阵A的伴随矩阵,E表示单位矩阵。的行列式,r(A)表示矩阵A的秩。
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或T
*
A表示方阵A未选均无分。
1.设3阶方阵A的行列式为2,则
12A()A.-1 B.14 C.14 D.1 x2x1x22.设f(x)2x22x12x2,则方程f(x)0的根的个数为()
3x23x23x5A.0 B.1 C.2
D.3 3.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若AB,则必有(A.A0 B.AB0
C.A0
D.AB0
4.设A,B是任意的n阶方阵,下列命题中正确的是()A.(AB)2A22ABB2
B.(AB)(AB)A2B2
C.(AE)(AE)(AE)(AE)D.(AB)2A2B2
a1ba1b2a1b35.设A1a2b1aa0,b2b22b3,其中aii0,i1,2,3,则矩阵A的秩为(a3b1a3b2a3b3A.0 B.1 C.2
D.3 6.设6阶方阵A的秩为4,则A的伴随矩阵A*的秩为()A.0
B.2))C.3 D.4 7.设向量α=(1,-2,3)与β=(2,k,6)正交,则数k为()A.-10 C.3
B.-4 D.10 x1x2x348.已知线性方程组x1ax2x33无解,则数a=()2x2ax421A.C.1 2B.0 D.1 1 29.设3阶方阵A的特征多项式为A.-18 C.6
EA(2)(3)2,则A()
B.-6 D.18 10.若3阶实对称矩阵A(aij)是正定矩阵,则A的3个特征值可能为()A.-1,-2,-3 C.-1,2,3
B.-1,-2,3 D.1,2,3
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。错填、不填均无分。
3011.设行列式D42,其第3行各元素的代数余子式之和为__________.2253212.设Aaabb,B,则AB__________.aabb1032013.设A是4×3矩阵且r(A)2,B0,则r(AB)__________.10314.向量组(1,2),(2,3)(3,4)的秩为__________.15.设线性无关的向量组α1,α2,…,αr可由向量组β1,β2,…,βs线性表示,则r与s的关系为__________.x1x2x3016.设方程组x1x2x30有非零解,且数0,则__________.xxx031217.设4元线性方程组Axb的三个解α1,α2,α3,已知1(1,2,3,4)T,23(3,5,7,9)T,r(A)3.则方程组的通解是__________.18.设3阶方阵A的秩为2,且A25A0,则A的全部特征值为__________.2111a019.设矩阵A0有一个特征值2,对应的特征向量为x2,则数a=__________.413220.设实二次型f(x1,x2,x3)xTAx,已知A的特征值为-1,1,2,则该二次型的规范形为__________.三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵A(,22,33),B求
(,2,3),其中,,2,3均为3维列向量,且A18,B2.AB.111011122X101122.解矩阵方程0.110432123.设向量组α1=(1,1,1,3),α2=(-1,-3,5,1),α3=(3,2,-1,p+2),α4=(3,2,-1,p+2)问p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.T
T
T
T2x1x2x3124.设3元线性方程组x1x2x32, 4x5x5x1231(1)确定当λ取何值时,方程组有惟一解、无解、有无穷多解?
(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示).25.已知2阶方阵A的特征值为1(1)求B的特征值;(2)求B的行列式.26.用配方法化二次型性变换.四、证明题(本题6分)27.设A是3阶反对称矩阵,证明
22f(x1,x2,x3)x122x22x34x1x212x2x3为标准形,并写出所作的可逆线
11及2,方阵BA2.3A0.习题一答案
习题二答案
线性代数习题三
说明:在本卷中,A表示矩阵A的转置矩阵,A表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩A的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1.设A为3阶矩阵,|A|=1,则|-2A|=()A.-8 B.-2 C.2 D.8
TT
*12.设矩阵A=1,B=(1,1),则AB=()111A.0 B.(1,-1)C. D.111 3.设A为n阶对称矩阵,B为n阶反对称矩阵,则下列矩阵中为反对称矩阵的是()A.AB-BA B.AB+BA C.AB D.BA
12*-14.设矩阵A的伴随矩阵A=34,则A=()
A.143112112142 B.C.D.3431 342122225.下列矩阵中不是初等矩阵的是()..101001100A.010 B.010 C.030 0001000016.设A,B均为n阶可逆矩阵,则必有()
100 D.010
201A.A+B可逆 B.AB可逆 C.A-B可逆 D.AB+BA可逆 7.设向量组α1=(1,2), α2=(0,2),β=(4,2),则()A.α1, α2,β线性无关 B.β不能由α1, α2线性表示
C.β可由α1, α2线性表示,但表示法不惟一 D.β可由α1, α2线性表示,且表示法惟一 8.设A为3阶实对称矩阵,A的全部特征值为0,1,1,则齐次线性方程组(E-A)x=0的基础解系所含解向量的个数为()A.0 B.1 C.2
D.3 2x1x2x309.设齐次线性方程组x1x2x30有非零解,则为()xxx0231A.-1 B.0 C.1 D.2 10.设二次型f(x)=xAx正定,则下列结论中正确的是()A.对任意n维列向量x,xAx都大于零 B.f的标准形的系数都大于或等于零 C.A的特征值都大于零 D.A的所有子式都大于零
二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.行列式
TT0112的值为_________.1212.已知A=23,则|A|中第一行第二列元素的代数余子式为_________.1113
313.设矩阵A=,P=,则AP=_________.012414.设A,B都是3阶矩阵,且|A|=2,B=-2E,则|AB|=_________.15.已知向量组α1,=(1,2,3),α2=(3,-1,2), α3=(2,3,k)线性相关,则数k=_________.16.已知Ax=b为4元线性方程组,r(A)=3, α1, α2, α3为该方程组的3个解,且
-113251,13,则该线性方程组的通解是_________.37491117.已知P是3阶正交矩,向量3,0,则内积(P,P)_________.2218.设2是矩阵A的一个特征值,则矩阵3A必有一个特征值为_________.1219.与矩阵A=03相似的对角矩阵为_________.12T
20.设矩阵A=,若二次型f=xAx正定,则实数k的取值范围是_________.2k
三、计算题(本大题共6小题,每小题9分,共54分)012021.求行列式D=101221010210的值.01012022.设矩阵A=100,B210,求满足矩阵方程XA-B=2E的矩阵X.001000112223.若向量组11,21,36,40的秩为2,求k的值.13k2k232224.设矩阵A110,b1.1210(1)求A;(2)求解线性方程组Ax=b,并将b用A的列向量组线性表出.25.已知3阶矩阵A的特征值为-1,1,2,设B=A+2A-E,求(1)矩阵A的行列式及A的秩.(2)矩阵B的特征值及与B相似的对角矩阵.2-
1x12y12y2y326.求二次型f(x1,x2,x3)=-4 x1x2+ 2x1x3+2x2x3经可逆线性变换x22y12y2y3所得的标准形.x2y3
3四、证明题(本题6分)27.设n阶矩阵A满足A=E,证明A的特征值只能是1.2线性代数习题三答案