第一篇:机械设计无碳小车课程设计说明书
目录
一、设计任务书
„„„„„„„„„„„„„„„„„„1
二、总体结构设计 „„„„„„„„„„„„„„„„„„1
三、总传动比的设计与分配 „„„„„„„„„„„„„„2
四、转向轮轴运动参数的计算 „„„„„„„„„„„„„3
五、对轴进行结构设计与校核 „„„„„„„„„„„„„3
六、轴承的选择与寿命计算 „„„„„„„„„„„„„„3
七、润滑剂的选择 „„„„„„„„„„„„„„„„„„3
八、工艺设计方案 „„„„„„„„„„„„„„„„„„4
九、成本分析方案 „„„„„„„„„„„„„„„„„„5(1)生产成本概述 „„„„„„„„„„„„„„„„„5(2)单件小批量生产类型的成本分析 „„„„„„„„„5
十、工程管理方案 „„„„„„„„„„„„„„„„„„8(1)概述 „„„„„„„„„„„„„„„„„„„„„8(2)生产过程组织 „„„„„„„„„„„„„„„„„8
十一、徽标设计 „„„„„„„„„„„„„„„„„„„11
十二、参考文献 „„„„„„„„„„„„„„„„„„„12
十三、心得体会 „„„„„„„„„„„„„„„„„„„13
十四、附件 „„„„„„„„„„„„„„„„„„„„„15
一、设计任务书
命题:以重力势能驱动的具有方向控制功能的自行小车 功能设计要求: 给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。该自行小车在前行时能够自动避开赛道上设置的障碍物(每间隔1米,放置一个直径20mm、高200mm的弹性障碍圆棒)。以小车前行距离的远近、以及避开障碍的多少来综合评定成绩。给定重力势能为5焦耳(取g=10m/s2),竞赛时统一用质量为1Kg的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差500±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落。要求小车前行过程中完成的所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量形式。小车要求采用三轮结构(1个转向轮,2个驱动轮),具体结构造型以及材料选用均由参赛者自主设计完成。要求满足:①小车上面要装载一件外形尺寸为¢60×20 mm的实心圆柱型钢制质量块作为载荷,其质量应不小于400克;在小车行走过程中,载荷不允许掉落。②转向轮最大外径应不小于¢30mm。
二、总体结构设计
根据本届大赛命题要求,我们首先确定如下设计思路: 1.驱动机构
根据能量守恒定律,要尽可能多的利用重物的重力势能,就必须简化结构,因此该系统不设储能装置,直接由重物通过细绳拉动后轴驱动。
2.转向机构
控制转向是该小车的核心问题之一,普通凸轮只能控制转向轮规则摆动,在不需要转向的时候小车仍会转向,因此我们在此处将凸轮机构进行了进一步的优化,通过引入“太空豆”控制转向信号,使得前轮在我们需要的时候转向,并以此实现小车的预编程功能。
3.驱动过程
在起始时原动轮的转动半径较大,起动转矩大,有利起动。起动后,原动轮半径变小,转速提高,转矩变小,和阻力平衡后小车匀速运动。在重块行程末端,原动轮的半径再次变小,绳子的拉力不足以使原动轮匀速转动,但是由于物块的惯性,仍会减速下降,原动轮的半径变小,总转速比提高,小车缓慢减速,直到停止,物块停止下落,正好接触小车。
三、总传动比的设计与分配
后轮半径:r= 68.5mm;绕线轮半径:r1=3 mm;前轮半径:r2=15.1mm 后轮与绕线轮传动比:i=137:6 前轮与后轮传动比:i’=137:30.2
四、转向轮轴运动参数的计算 前轮最大摆角21.15°
五、对轴进行结构设计与校核 1.示意图
六、轴承的选择与寿命计算 1.轴承型号:角接触球轴承,内径Φ4 2.示意图:
3.计算轴承径向力
小车总重量M(小车自重800g、重物1kg、徽标400g、);M=2.2kg;轴承数量n=3;轴承径向力F=7.19N;
七、润滑剂的选择
选用机油进行润滑(SH0386-1992)
八、工艺设计方案 1.确定生产纲领
根据大赛命题要求,转向轮部分实行单件小批量生产。2.对零件进行工艺分析
由于转向轮和轮轴均为圆柱件,故采用车削加工方式 轮轴:车削加工、钳工、车削加工。转向轮:车削加工、快速成型、钳工。3.选择毛坯
根据大赛对前轮的要求D>30mm,故选择外径Φ30.7的尼龙棒、根据设计要求前轮轴选Φ12的45钢毛坯。4.拟订工艺路线
轮轴:下料---车Φ4的轴---在Φ4的轴上攻丝---车削多余部分 转向轮:下料---钻Φ4孔---加工外径Φ30的转向轮---去除边上的毛刺
5.确定各工序加工余量
前轮的外轮廓要大于Φ30以满足题目要求。6.确定各工序所使用的设备、刀具和量具 车床、快速成型机、游标卡尺、各种车床刀具 7.确定各加工工序的技术要求及检验方法
1.车圆弧面要求比较光滑,目测。2.轮与轮轴使用过盈配合。
九、成本分析方案(1)生产成本概述
在制造企业中,产品的总成本通常包括生产成本、管理成本、财务成本和销售成本等。在本次竞赛中,由于只涉及零件的加工过程,为了简化分析,在进行成本分析方案设计时,只考虑零件的生产成本。
生产成本,又称制造成本,它包括围绕生产过程以及为此所提供的劳务所发生的各项直接费用、分摊的各项间接费用,其组成如下所示:
直接材料费:生产过程中直接消耗于产品生产的各种物资 直接人工费:生产过程中直接从事产品生产的人员工资 制造费用
:发生在生产单位的制造费用
产品的生产类型不同,其工艺差别很大,成本分析方法也不同。下面以单件小批量生产类型对小车转向轮及其轮轴进行说明。(2)单件小批量生产类型的成本分析
单件小批量生产的成本分析应根据该类型生产的工艺及管理特征来进行。单件小批量生产的组织形式一般采用通用机床,并按机群式布置;毛坯可考虑采用型材,在市场上直接购得。其零件的加工过程一般采用工序集中原则,工艺过程相对较短。成本分析从直接材料费、直接人工费和制造费用考虑。
1、直接材料费用F零件
根据零件材料的种类,可通过市场询价确定材料的市场价格,再计算零件毛坯体积,利用式(3-1)计算零件的直接材料费用F零件。
F零件=p*m=p*(V*§)元(3-1)
其中,p为材料单价、m为零件毛坯重量、V为毛坯体积,§为材料比重。
所以,F轮轴=0.0042元/克*89.3克=0.37506元 所以,F轮
=0.025元/克*74克=1.85元
2、直接人工费S 对于单件小批量生产,直接操作机床的人工工资可按计件工资发放,可以根据不同设备操作工人的市场价格,利用式(3-2),得到单件小批量生产的直接人工费。
n S=∑Pi*Si(3-2)
I=1
其中,Pi为第i种设备的操作工人数;Si为第i种设备的操作工人工资。
所以,S轮轴= P车*S车+ P钳*S钳
=20元/小时*0.5小时+20元/小时*0.1小时 =12元
S轮
= P快速成型*S快速成型+ P钳*S钳
=20元/小时*0.5小时+20元/小时*0.2小时 =14元
3、制造费用M
制造费用是设备与厂房折旧费用、间接管理人员工资、能源、水等消耗所产生的费用,以及其它间接费用以分摊形式计入产品中。在单件小批量生产条件下,上述成本项目无法按成本发生法计算,通常简化为机床的小时费率来计算制造费用。因此,可根据零件工艺过程各工序的时间定额和所用机床的小时费率来计算。零件的制造费用M可用式(3-3)计算。
M=T1*Q1+T2*Q2+„+Tn*Qn
(3-3)
其中,T1、T2„Tn为设备1,设备2.,„,设备n的加工时间,Q1,Q2,„Qn为设备1,设备2,„设备n的机床小时费率。所以,M车=T车*Q车=0.5小时*10元/小时=5元
M快速成型=T快速成型*Q快速成型=0.5小时*20元/小时=10元
4、生产成本C 单件小批量生产成本即为以上三者相加,即: C=F+S+M
所以,C= F轮轴+ F轮+S轮轴+S轮+M车+M快速成型
=0.37506元+1.85元+12元+14元+5元+10元
元
=43.2
3十、工程管理方案 1.概述
为实现安全、文明生产,包装按期供货,降低总成本,提高经济效益,需进行工程管理的设计。工程管理设计放啊的主要内容包括:生产过程组织形式、人力资源配置、进度计划与控制、质量管理、现场管理、成本管理等几个方面。成本费用以在前一部分计算,在此不再累述。2.生产过程组织
生产过程空间组织设计:该设计主要是按专业化分工原则把工作组织起来,使产品生产过程能有效运行。专业化分工包括三种形式:工艺专业化,产品对象专业化,成组生产。空间组织设计的重点是设施布置,与专业化分工湘对应,由于我们的作品属于单件小批量生产,因此我们将按工艺原则来布置生产,当需要用到某种机床,即选择相应机床进行加工。
生产过程时间组织设计:该设计方式可采用顺序移动方式、平行移动方式、平行顺序移动方式,移动方式的选取主要由生产空间组织形式来决定。由于我们的作品生产周期短,不连续加工,所以我们将选用平行移动方式。3.人力资源配置
当接到通知后,我们马上查阅资料进行构思,寻找出一个符合命题要求的制做方案。当我们的方案通过学校审核后,我们便开始组建团队,在团队组建过程中我们充分考虑人员特长组合以及课余时间 4.生产进度计划与控制
生产周期:按照产品结构、工艺特点,主要考虑产品零件中的主要件和关键件在工艺上的逻辑关系,我们将生产周期设定为3小时。5.质量管理
质量管理一般以全面质量管理思想为核心,以ISO9000系列标准为依据,强调全员全过程质量管理;确保质量管理中的管理职责、质量体系和过程控制;在此基础上形成质量体系文件。
按照工序控制设置原则:要注意先车削外圆和攻丝,最后再切断轴端,这样不会夹伤工件。要保证前轮的表面粗糙度小于等于R3.2 车削加工轮轴时,另外,要保证轴中的粗糙度小于等于R1.6,使得前轮与轴尽量减小摩擦。6.现场管理
现场管理是对现场中的生产要素和管理目标要素进行设计综合治理,主要包括:“5S”管理、目视管理、看板管理、定置管理。
“5S”管理:以整理、整顿、清扫、清洁和素养为内容的活动。通过规范现场、现物,营造一目了然的工作环境,培养员工良好的工作习惯,是一种独特的管理方法,其最终目的是提升人的品质。
目视管理:利用形象直观而又色彩适宜的各种视觉感知信息来组织现场生产活动,达到提高劳动生产率的一种管理手段,也是一种利用视觉来进行管理的科学方法。所以目视管理是一种以公开化和视觉显示为特征的管理方式。
看板管理:准时生产方式的看板旨在传达信息:“何物,何时,生产多少数量,以何方式生产、搬运”。看板的信息包括:零件号码、品名、制造编号、容器形式、容器容量、发出看板编号、移往地点、零件外观等。及时生产方式的看板在生产线上分为两类:领取看板和生产看板。
定置管理:是其他各项专业管理在生产现场的综合运用和补充企业在生产活动中,研究人、物、场所三者关系的一门科学。它是通过整理,把生产过程中不需要的东西清除掉,不断改善生产现场条件,科学地利用场所,向空间要效益;通过整顿,促进人与物的有效结合,使生产中需要的东西随手可得,向时间要效益,从而实现生产现场管理规范化与科学化。
十一、徽标设计
★时代背景:随着世界经济的飞速发展和人们物质需求的日益增长,环境污染也日益严重,许多国家都出台了相关政策促进节能减排。“无碳环保”成了当今世界不变的主题。
★创意:该徽标造型既是对本次大赛主题的直观反映,亦是我们团队对祖国未来的美好愿景:120度的箭头是象形的“C”,也就是化学元素中的碳。徽标外形既是循环使用标志的变形也有降低碳含量的意义。然而能量是守恒的,如果要减少含碳能源的使用,我们就必须依靠一双勤劳的双手。就像本次大赛的重物的能量需要我们用手举高来获取一样,我们倡导大家伸出双手来支持环保,让伟大祖国真正走上可持续发展的道路!★材料:45钢
★制作说明:先采用雕刻机雕刻成型,再使用钳工加工修饰。
+
十二、参考文献
=
朱
理主编
《机械原理》 张建中、何晓玲主编
《机械设计课程设计》 徐锦康主编
《机械设计》
陈轶鸣主编
《新编机械设计课程设计图册》 王昆、何小柏、汪信远主编《机械设计课程设计》 机械设计手册编委会编写的《机械设计手册》 朱
理主编
《车工工艺学》 王忠宗主编 《成本分析与费用控制技巧》 希尔顿主编 《成本管理》 刘建长、程坚、施卓晨主编 《成本会计》 王文胜主编 《高效成本管理》 周鑫、张磊光主编 《机械加工技术》 贺月光、高成发 主编
《工程测量技术》 刘钟莹 主编的《工程估价》 马楠 主编的《工程估价》 左用泰司 主编的的《工程管理》
十三、心得体会
经过了一个多月的努力,我们的小车终于完成了她的处女航。从最初的零件设计和小车定位计算到绘制零件图,点点滴滴虽然包含心酸和汗水,但是当我们体会到学以致用的乐趣时,这些都不算什么了。通过这一阶段的自主学习,我们明白了动手实践的重要性。理论和实践有时候很有很大差距的,比如小车的转向问题,我们在理论上计算了小车的轨迹,但事实上小车的运行路线远不像我们想象的那样简单,还有很多无法避免的影响因素;包括加工工艺、小车的起始角度、方向,这些因素都是无法达到我们要求的那样精确。
通过对“无碳小车”的自主设计加工,以及对各零部件的加工工艺分析,让我们知道加工工艺的好坏直接影响工件的成型和后续加工的连贯。
制定一个良好的加工工艺是保证零件达到要求性能的前提,也需要我们真正的开动脑筋。例如:我们使用的普通车床,所有的操作都是人为的控制,要想做出比较满意的零件,首先要有一个科学合理的工序安排。我们拿到一个需要加工零件的零件图时,不要急于下料加工,分析工序很重要,我们必须先制定好合理的加工工序,使待加工零件达到相应的设计标准和性能指标。同时还可以提升自己的逻辑思维能力,提高生产效率。
工程管理方案的撰写过程让我们还体会到了查找资料的乐趣,学会了怎样找到自己需要的参考书籍以及参考示例。团队成员的密切配合使得我们的工作效率得到了极大的提高。当然,在整个项目进程中,大家也避免不了分歧,大家都有自己的想法,也提出了自己认为可行的方案。经历了数十次失败后我们最终寻找到一套符合需要的方案。使得项目组成员在综合分析能力、实践动手能力、以及创新思维和创新能力的培养方面取得了长足的进步。
实践是检验真理的唯一标准,在今后的日子里,我们会更加注意把理论与实践相结合,努力学习好科学文化知识,为工程实际的应用夯实基础。
第二篇:机械设计大赛 无碳小车 设计说明书
目录
前言
第1章、绪论…………………………………………………………...4
1.1 参赛主题………………………………………………...4
1.2 功能分析………………………………………………...4
1.3 设计方法………………………………………………...4
第2章、轨迹和行走机构选型与计算………………………………6
2.1
轨迹和行走机构选型………………………………….6
2.2
轨迹参数计算………………………………………….7
第3章、控制机构选型与计算………………………….………….10
3.1
控制机构选型………………………………………...10
3.2
放大机构的设计…………………...…………………12
3.3
凸轮的设计………………………………………...…13
第4章、传动机构选型与计算……………………………………16
4.1
传动机构选型………………..……………………….16
4.2
齿轮系的设计…………………….…………………..16
4.2
尺寸参数校核………………………..……………….17 第5章、动力机构选型与计算………………………………………19
5.1
绕绳轮安装位臵分析……………………………..….19
5.2
力分析…………………………………………..…….20
5.3
前轮转向阻力矩的计算………………………...……23
5.4
弹簧劲度系数的计算……………………………….23
5.5
尺寸参数的获取…………………………...………23
5.6
质量属性参数的确定………………..…………….26
5.7
参数的计算…………………………………….…..27
5.8
绕绳轮最大半径的确定……………….…………..29
第6章、微调机构简介………………………………….……….….30
第7章、误差分析及效率计算………………………….…………..31
7.1 误差分析
………………………………...……….31
7.1.1 设计误差……………………………..……………31
7.1.2 参数误差…………………………………………31
7.1.3 加工与装配误差……………………...………….31
7.2 传动效率的计算…………………………….…………32
7.2.1 动力机构效率的计算……………...…………….32
7.2.2 传动机构效率的计算…………………………..33
7.2.3 控制机构效率的计算……………………….….34 第8章、仿真分析………………….………………………..………35
第9章、综合评价及改进方案……………………..………………37
9.1 综合评价………………………….…..…………..37
9.2 改进方案………………………………...………..39
第10章、参考文献…………………………………………..…….40
第11章、附录……………………………………………..…………..40
11.1 机构运动简图及装配图………………...…………………40
11.2 小车三维装配图及爆炸图……………………….………..42
第1章、绪论
1.1 参赛主题
第三届全国大学生工程训练大赛的竞赛主题为“无碳小车越障竞赛”。这次竞赛包含两个竞赛项目。第一个项目与往届竞赛相同,为小车走“S”形线路绕杆。竞赛项目二为小车走“8”字形线路绕杆。通过商量,我们选择的竞赛项目为项目二。
1.2 功能分析
根据本次竞赛规定,竞赛项目二是小车在半张标准乒乓球台(长1525mm、宽1370mm)上,绕相距一定距离的两个障碍沿8字形轨迹绕行,绕行时不可以撞倒障碍物,不可以掉下球台。障碍物为直径20mm、长200mm的2个圆棒,相距一定距离放臵在半张标准乒乓球台的中线上。
小车是在重物下落所带来的重力势能的作用下实现运动和转向。因此,小车需具备能量转换装臵、转向控制装臵、驱动机构等。
1.3 设计方法
在小车的设计过程中,应该充分综合考虑到材料、加工制造、生产成本等个方面因素,以保证小车的设计更加符合实际,削减理论 与实际之间的差距。
小车实现绕“8”字功能,应有相应的轨迹,因此,在进行小车的机构设计时可采用从小车的理论轨迹入手,逆向进行机构设计的方法。在进行机构设计时,应采用发散思维,注意机构的选型与组合,应充分考虑到各机构间的相互关系以及整体效应,注意及时对机构进行调整。
小车的设计方法是保证小车技术含量的关键,在设计方法上,我们在关键部分采用参数化组合设计,以保证设计精度和方案的可行性。再设计流程上,我们循序渐进步步为营,同时兼顾全局。下面是我们的设计流程图。
图1-1 第2章、轨迹和行走机构选型及其
计算
2.1 轨迹和行走机构的选型
为了获得最优的理论轨迹,我们采用列举法,进行逐一筛选。经过商议,列举了以下几种轨迹:
1、双纽线
2、互补正弦曲线
3、相切圆
4、形“8”字折线
5、其他形似“8”的曲线等 双纽线:
其直角坐标以及极坐标方程为:(x2 + y2)2 = 2a2(x2 − y2),ρ^2=a^2*cos2θ,由此可知极坐标下曲线上任何一点的曲率半径为R2a3cos2。
通过分析,双纽线是所有曲线中经过相同距离的俩个桩的路程是最短的,同时双纽线曲率又大变小再变大在变小,再回到出发点,运动过程没有曲率突变,所有路程都光滑过渡。但是,由于双纽线本身的复杂性,导致控制机构的设计的难度相当大,通过绘图计算,发现四杆机构不能同时满足转向及时间上的控制,而用凸轮机构则导致 凸轮的轮廓曲线太过复杂。互补正弦曲线,相切圆,折线
正弦曲线可以用四杆机构实现,但是由于在端点处存在去两次曲率突变。相切圆、“8”字折线可以很简答的实现,但是也存在曲率突变的问题,这些问题都会严重影响小车的稳定性,因此不采用这些轨迹作为理论曲线。轨迹敲定:
为了保证小车能够稳定实现八字运动,我们最终确定小车的理论轨迹为俩段圆弧通过俩段公切线连接。这样既保证了小车运动过程的平稳性,又同时使得轨迹规律性强,易于控制。
针对这个想法,我们设定了俩种轨迹分别如图(2-1)、(2-2)所示。
图2-1
图2-2 考虑到小车的行走机构,我们拟定了三种小车行走机构的方案,如下:
方案
一、后轮单轮驱动,其他俩轮从动 方案
二、后轮定时驱动,前轮从动 方案
三、后轮同时驱动,前轮从动
针对方案一,左轮与主动轴通过键连接,后轮通过轴承与主动轴相连,即可实现转弯时的差速,简单有效。
针对方案二,采用齿轮系分别驱动左右后轮,其中用互补的的不完全齿轮定时驱动左轮右轮。针对方案三,通过在后轮主动轴上安装差速器来实现差速。通过分析,方案一不能实现轨迹图(2-1),方案二不能实现轨迹图(2-2),方案三则能实现俩种轨迹。由于方案二和方案三需要增加许多齿轮,大大的增加了成本和机构复杂度。况且,方案二的定时控制难度较大,而根据经验方案三可靠度不高,因此,考虑到经济效益以及可靠度,放弃了这两种方案。最终选定的轨迹如图(2-2)所示,实现的方式为方案一。
2.2 轨迹参数计算
理论轨迹的计算及参数确定:
假设:小车尺寸参数:小车宽为2c,轮距为b,前轮最大转角为
轨迹参数:中心距为2p,圆弧半径为R,直线斜率为k,设定不可行区域为直径为200mm的圆。
小车运动场地尺寸:长1525mm,宽1370mm。根据以上参数,建立直角坐标系,理论轨迹下,可列出以下方程:
2p+2R+2c1500 ……..………………………………..(2-1)
2(R+2c)1350…………………………………………..(2-2)
R100+c ………………………………………….……..(2-3)
又小车转弯时左轮曲率半径满足关系:=
bc…………(2-4)tan
转弯时,小车曲率半径满足R
根据以上式子,线性规划取合理的值,所得结果如下:
=250mm,2p=600mm,R=250,=38.66
2c=150mm,b=200mm.根据以上参数,可作出小车左右轮的轨迹图(2-1)如图所示: 10
图2-1
由于左轮驱动,右轮从动,故需计算左轮有关参数,如图粉色曲线所示。测量计算得:主动轮一个周期走过的路程为 S=3219.23mm,其中直线路程为:S1=331.66*2=663.32mm,弧线路程为:S21278.00*2=2556 第3章、控制机构选型及计算
3.1
控制机构选型
根据小车运动的轨迹,可知小车前轮转向为间歇运动,因此可用不完全齿轮机构,槽轮机构,凸轮机构等做小车前轮转向的控制机构。
在假定小车速率恒定运动的情况下,设小车驱动轮的速率恒定为v,周期为T。忽略过渡阶段,设小车走直线的时间为t1,走弧线的时间为t2。根据小车一个周期内的轨迹可绘制出小车运动循环图
表3-1 小车运动循环分析 0~ t1 t1~ t1+ t2
t1+ t2~2 t1+ t2
2t1+t2~2(t1+ t2)小车启动,走直由直线过渡到轨迹由弧线过轨迹由直线再转线,前轮转角为曲线,并走直渡到直线,前轮回到弧线,前轮左0度。线,前轮右转度。
回转度。
转度。历时t2后回到起始点。
根据上表分析,由于t1t2,故排不采用槽轮机构。不完全齿轮以及凸轮机构均可实现.令:T=60s,后轮半径R1=70mm,前轮R2=20mm,左轮周长C=2R1 则:左轮一周期内所转过的圈数为:r1= 半个周期内,走直线所需圈数:r2=
S1 CSC 12 走曲线所需圈数:r=
3S2 C代入数据即可求得: r1=7.3194r r2=0.7541r r3=2.9262r 根据以上计算,可知,如果用不完全齿轮,在保证一定精度的情况下,导致齿轮过大,且须附加锁止机构,因此成本科及复杂度较高。而小车实现理论轨迹所需控制简单,只需在必要的时候驱动前轮转向即可,而不需考虑转向这个过程。如果用凸轮摇块机构,只需凸轮有四段圆弧即可,所以,凸轮轮廓曲线简单,加工难度大大降低,加工精度也可相应提高。
因此,可初步设计出凸轮摇块机构如图所示:
凸轮推程与推杆到摇块的距离满足关系:=dtan
由于=38.66,考虑到安装,d10mm,则:=8.00mm。
图3-1
3.2
放大机构的设计
由2.1可知,=8.00mm,推程过大,导致凸轮过渡区域过大,严重影响控制精度。为此,设计一个放大机构来保证控制精度。故须增加放大机构。
图3-2 为了后续设计的方便,我们对整个控制机构做了逐步分析计算以确定其大体尺寸参数。如图所示;
图3-3 14 设四杆长度依次为:a,b,c,d,各杆的方向向量为:a,b,c,d。根据几何关系有:
a+b=c+d……………………………………………………….(3-1)acos11bcos21dcos41ccos31…………………………..(3-2)
acos13bcos23dcos43ccos33…………………………..(3-3)1113=…………………………………………………………...(3-4)b2(ac)2d2……………………………………………………….(3-5)1DEtan31………………………………………………………..(3-6)2DEtan33………………………………………………………..(3-7)根据小车尺寸,考虑到安装问题,选定合适参数,令a=20mm,DE20mm,又=38.66,可求得控制机构各尺寸参数如下: b=30mm,c=84mm,1=3.76mm,2=4.08mm。
3.3 凸轮的设计:
凸轮推程为1=3.76mm,回程2=4.08mm,凸轮基圆半径为0,偏距e=0。T=60s,小车走直线所对应凸轮的转角为1=
S1180=36.88,走S2弧线所对应的凸轮的转角为2=1801=143.12。则推杆的运动规律如下表所示:
表3-2 凸轮运动循环分析
序号 1
凸轮运动转角 0~36.88
推杆运动规律 如图位臵2所示,前轮转角位0,推杆处于推程为2的位臵。
36.88~180
推杆由2上升到
1+2,之后保持远休 180~216.88 回程,通过圆弧过渡,回到2位臵,并保持休止 216.88~360 推杆继续回程,推程变为0后保持休止状态
根据推杆的运动规律,为了提高精确度,减少过渡时间,并且保证过渡平滑减少冲击,同时考虑到整体尺寸,设定凸轮基圆半径033.92mm,滚子半径为7mm,则大圆弧半径为138mm,小圆弧半径为230.20mm,可设计图轮轮廓曲线如下图(3-4)所示:
图3-4 根据以上设计,可绘制控制机构总体部署如图(3-5)所示:图3-5
第4章、传动机构及计算
4.1 传动机构的选型
重物下落产生的动力需要经过一定的传动机构调速后传动到凸轮以驱动前轮转向机构使前轮转向。凸轮做整周定速运转,这就要求传动机构末端构件能做整周圆周运动,而传动机构前端也是整周运转构件,所以,可以考虑使用带轮、齿轮、链轮为传动主机构。由于小车整体尺寸比较小,传动距离较短,所以带轮以及链轮机构不能表现其优势,而且这俩种机构传动效率低,精度不够高。再考虑到结构方面,齿轮机构是最好的选择。
4.2 齿轮系的设计
左轮转速:n1S7.3606rpm C凸轮转速:n21rpm 总传动比为:i127.3606
5059 2020因此,传动机构由两级直齿圆柱齿轮传动。
考虑到小车整体尺寸以及加工精度和难度问题,取齿轮的模数为m=1.5。标准齿轮ha1,c0.25,各齿轮参数如下表:
表4-1 齿轮参数
序号 M Z
Alpha(压d/毫da/毫df/毫db/毫b(齿力角)/度 米
米
米
米
宽)/毫米 2 3 4 1.5 1.5 1.5 1.5 20 50 20 59 20 20 20
30.00 33.00 26.25 28.19 20 75.00 78.00 71.25 70.48 10 30.00 33.00 26.25 28.19 20 88.50 91.50 84.75 83.16 10
4.3齿轮尺寸校核:
各齿轮模数等参数都一致,且Zmin=,17,如果齿数最大的齿轮满足齿厚条件,则其他各齿轮也将满足条件。m=1.5,z=59,alpha=20,ha1,c0.25 则,分度圆齿厚:s=齿顶圆半径 ra基圆半径rbdb 2m 2da 2b齿顶圆压力角:aarccos
rrainvatanaa
invtan
则齿顶厚度:sasra2rainvainv r 19 求得:a24.65,inv0.0149,inva0.0287 代入式:得sa1.173mm满足齿厚条件条件。
所以,所有齿轮都不会有齿廓变尖的情况。整理设计后的齿轮系传动机构如下图所示:
图4-1 第5章、动力机构选型及计算
动力机构是驱动小车运动以及驱动前轮转向的原动力机构,其输入能量为铁块下落所提供的重力势能,输出为驱动轴的转动动能。就机构的实现形式而言,用绕绳轮直接连接驱动轴作为动力输出机构最为简便,能量损耗最低。因此,动力机构的关键在于绕绳轮的设计。
小车的运动过程分为启动—稳定运转—停止三个阶段,在启动阶段,小车需要较大的驱动力矩来推动小车前进,稳定运转阶段要求小车的加速度很小,即驱动轮的转速基本稳定不变,停车阶段主要是能量消耗完毕,动能逐渐减少的零,是自动的过程。因此,需要初步计算出小车的启动驱动力矩以及稳定运驱动转力矩。
5.1 绕绳轮安装位臵的确定
理论上,绕绳轮安装在任何一根轴上都能实现小车的驱动和转向,但是,考虑到传动效率以及车体稳定性问题,把绕绳轮安装在驱动轮轴上最合适。
理由如下:如图(4-1)定轴齿轮系
设:后轮驱动阻力矩为:Mr1,前轮转向阻力矩为:Mr2
1、假设绕绳轮桩在齿轮2的轮轴上,重物下落通过绕绳轮产生的驱动力矩为Me,则传递到齿轮1所在轮轴上的力矩变为:MMeR1,因R2此齿轮副转动存在扭矩改变的问题,而Mr2 Mr1,若果绕绳轮不安 装在驱动轮轮轴上的话,会导致齿轮系传力负荷过大,一方面会降低传动效率,另一方面会加速齿轮磨损,而且对齿轮的各方面性能 要求更高。因此,把绕绳轮安装在驱动轮轮轴最合适。
5.2
控制过程力分析
根据小车的轨迹,前轮转向机构一个周期共分为四个阶段,只有在过渡阶段存在力的改变,转向力矩的计算;
前轮转向阻力矩为:Mr2。
摩擦系数:各构件材料均采用5A05铝合金,滑动摩擦系数为:f10.14,与木板的滚动摩阻系数:10.36/mm,摩擦圆半径为,各构件长为:li,转动副销钉半径为R,弹簧的劲度系数为k,推杆最大推程p,暂态推程为x。对转向控制机构做力分想,析:
阶段4:
图5-1 过渡阶段4,各构件的状态如图(5-1)所示,对构件分别做力分析 受力分析图(5-3)如下
图5-2-1 23
图5-2-2
图5-2-3
图5-2-4
图5-2-5 对构件1有:
FR21l1cos1Mr2………………………………(5-1)对构件2有:
FR12FR32………………………………………………..(5-2)对构建3有:
2FR23…………………………...(5-3)(l3cos)FR43l3对构件4有:
FR34cos2FnFf54sin3FN54…………………………..(5-4)对构件5有:
Me5FR45d………………………………………………(5-5)联立上述5式,求得:
1Mr2l3cos2cos2Fn2l3l1cos1d………………………(5-6)cos3fsin3
Me5忽略摩擦的情况下:
同样对各构件分别做力分析可求得:
1Mr2l3cos2cos2Fn2l3l1cos1d…………………………(5-7)cos3
Me5其中:
2fR………………………………………….………..….…(5-8)代入数值得:=0.66mm…………………….................................(5-9)
Fnkx……………………………………………………….(5-10)
5.3
前轮转向阻力矩的计算:
前轮在车体重力的作用下发生变形,由于力很小,前轮变形极小,故可假设前轮与地面接触面为一半径为R深为h的圆柱。则,前轮转动的阻力矩为:
积分得:
Mr2(0RFC2r2f)dr……………………(5-11)2R
Mr2
其中:R2FCR………………………………………(5-12)3FC…………………………………………(5-13)
5.4 弹簧劲度系数的计算:
为了保证第二过渡阶段弹簧能驱动前轮转向,其劲度系数与阻力矩满足以下关系:
Mr2kx2………………………………………………...…..(5-14)Mr2kxl321………………...………………………………………..(5-15)l312 5.5 参数的获取:
在过渡阶段,前轮的转角处于渐变阶段,为了获取合适的参数,我们采用作图法来获取特殊点参数,以求得最大的驱动力矩。由于实际加工与装配过程中会有较大的误差,因此,这些理论计算的出的数据只能作为一个参考,实际绕绳轮的大小可能还需经过一定的调整。如下图(5-4)所示:
通过作一系列的辅助线,量取相应的尺寸即可。凸轮转动中心到对应位臵滚子的转动中心的距离即连心线长为h0,到滚子与凸轮接触处切线的法线的距离为d,连心线与法线的夹角为3。
图5-3 测得阶段四与阶段二的参数如下表:
表5-1 阶段四数据
h d 13.01 10.06
3
2 1 2
8.60 39.64
19.84 14.70
1.48 2.46
11.90 6.35
24.30 14.98
1.47 4.65
表5-2 阶段二数据
h d 13.41 9.93
3
2 1 2
42.95 43.98
18.12 13.05
1.69 2.72
2.98 2.76
15.74 26.17
4.85 7.82 5.6
质量相关参数的确定:
通过三维造型,设计好零件并组装成装配图之后,定义了各个零件的质量属性,通过proe分析测量,获得了小车的质量,重心(如图(5-5)线圈内的坐标系)等数据,记录如下:
图5-4 体积 = 5.7502203e+05 毫米^3 曲面面积 = 3.0700972e+05 毫米^2平均密度 = 4.0046427e-09 公吨 / 毫米^3 质量 = 2.3027578e-03 公吨
根据 PRT_CSYS_DEF 坐标边框确定重心: X
Y
Z 4.9962801e+01 1.5108786e+02 7.8382376e+01 毫米
5.7 参数的确定
根据以上参数,可以计算出,在加上铁块后,各个轮子所受正压力:设,前轮为C,后轮左轮为A,右轮为B。如图(5-6)所示:
图5-5 参照坐标系在m处,测得小车重心坐标系在n处。对小车整体受力分析有:
FAFBFCG……………………………………………………..(5-16)GyGFCyc………………………………………………………..(5-17)GxGFBxB………………………………………………………(5-18)xB150,yC200,xG79,yG50,G22.57N
代入数值,求得:
FC5.64N
FB11.87N
FA5.06N
代入式
:Mr20.0003 Nm(R=0.089mm)……………………(5-19)38.66,第四过渡阶段14.08mm,第二过渡阶段23.74mm,k=24.32 N/m 左轮的滚动摩阻:Mr11(FAFBFC),代入数值:得Mr18.13Nmm 第四阶段:Me558.20Nmm
55.75Nmm 第二阶段:x4.08
Fn0.14N0
0.165N
Me5=72.06Nmm 68.56Nmm 因此,加在绕绳轮上的最大阻力矩为:MR80.19Nmm…………(5-20)5.8 绕绳轮最大半径的确定:
如图所示:绕绳轮的半径为R1 铁块重力为G=9.8N
平衡状态下绕绳轮的受力关系满足下式:
GR1MR
代入数据,解得:
R1=8.18mm
图5-6 至此,所车体有构件尺寸均已确定。
第6章
微调机构简介
由于存在加工误差和转配误差,并且,小车转向存在过渡阶段,因此,小车实际运动轨迹将会与理论轨迹有一定的偏差,为了是小车尽可地能实现尽量多的完整8字绕行,必要的微调机构是比不可少的。
小车转弯的曲率半径由车体尺寸以及前轮转角决定,但是,车子一旦加工完成,车体尺寸无法改动,因此,可以通过改变前轮转角来调整小车的形势轨迹。如图所示:
图6-1 控制前轮转向的摇杆通过螺钉固定连接,但是螺钉相对于摇杆的位臵式可调的,通过改变其相对位臵来改变摇杆的长度,从而调节前轮的转角。
第7章、误差分析及效率计算
7.1 误差分析
7.1.1 设计误差
在进行小车的设计时,添加了一些理想化设计,如在假定小车做匀速运动的情况下完成整个轨迹,据此选定和似的参数,设计出了前轮转向控制机构。实际中,小车不可能做完全的匀速运动,必定会有速度的波动,此外,由于小车在转弯时,不可能突变,过渡阶段很关键地影响着小车的运动轨迹,虽然,我们通过放大机构来提高精度,但是,任然存在一定的误差,因此,在控制机构的设计上存在误差。
7.1.2 参数误差
在第5章所进行的力分析时,采用了参数化设计,涉及到许多的参数,如铝合金与木板的滑动摩擦因素以及滚动摩阻系数等,在计算前轮的变形时,使用的尼龙许用应力也与现实存在一定的差距。因此,在绕绳轮的设计上存在一定的误差,但是这个误差可以通过更换绕绳轮来的待解决。
7.1.3 加工误差及装配误差
加工误差和装配误差的存在,必定会导致小车运动的偏差,然而
这个误差是可以调节的。在进行结构设计时,我们考虑到加工的问题,使设计出的零件尽可能地易于加工,减少成本,因而大大的减少了加工误差。然而,对装配的误差考虑较少,造成整体结构不够紧凑,装配误差比较大。因此,在后续的过程程中,应当对整体结构做相应的调整优化。
7.2 效率的计算
小车主体由动力机构、传动机构和转向控制机构串联而成。令各机构的机械效率为
1、2、3,则小车整体的机械效率为:
总123
7.2.1动力机构的机械效率
如图
所示,绕绳轮与后轮转轴直接固定连接,绳子与定滑轮以及绕绳轮只存在滚动摩擦(或者存在极少量的滑动摩擦,故可忽略不计),因此能量的损耗只在于滑轮与滑轮轴之间的摩擦损耗。滑轮和滑轮轴的材料都是采用5A05铝合金,其滑动摩擦因数为f=0.14,滑轮半径R1=22mm,滑轮与滑轮轴组成的转动副的摩擦圆曲率半径为0.66mm。
对滑轮受力分析如下图(7-1)所示:
图7-1 对转动中心由平衡条件可得:
TR1FrGR1………………………………………….(7-1)
FrGT……………………………………………………..(7-2)联立可求得:
T=GR1……………………………………………...(7-3)R1忽略摩擦的情况下,同理可求得:
TG……………………………………………….……(7-4)又,1T……………………………………………………….(7-5)T联立
代入数据,求得:195.9%..............................................(7-6)
7.2.2
传动机构效率的计算
查阅资料可知,8级精度的直齿圆柱齿轮在有席油润滑的情况下
的传动效率为97%。由于,传动机构为两级齿轮副传动,因此,可计算出传动机构的总机械效率为:
297%97%=94.1%............................................................(7-7)
7.2.3转向控制机构传动效率的计算
过渡阶段,前轮转向控制机构的传动效率可有式
计算可得。联立式 有:
3Me5………………………………………………………(7-8)Me5取最大传动力矩位臵的参数做计算,求得:
3=93.6%..................................................................................(7-9)综合式(7-6)、(7-7)、(7-9)可得:
总84.5%..................................................................................(7-10)
第8章、仿真分析
通过对小车进行机构连接,我们对小车做了运动仿真分析。输出了仿真动画,以及小车前轮的转速,角加速度和角位移图象,如下图所示:
图8-1
通过测量,发现前轮最大转角分别为:34.96度、38.46度。与理论设计的角度38.66存在一定的误差。在时间上,通过测量,过渡阶段主要分配在小车走弧线的阶段,过渡阶段的时间为3.5秒,走直线的时间为6.02秒,走弧线的时间为20.37秒。
小车前轮角速度和角加速度图象如图(8-2)所示,通过测量,小车前轮的最大加速度如图第一个波峰所示,为16.05度/秒。变速阶段与小车前轮角位移改变阶段相对应。
图8-2
小车前轮角加速度图象如左图(8-3)所示,显然,在个别位臵加速度较大,大体变化不大,因此,小车在转向时不会出现急转弯导致小车失衡的情形。
图8-3
第9章、综合评价及方案改进
通过对小车的设计以及运动仿真分析,我们对小车做了整体的综合评价,并提出了改进方案。
9.1 综合评价
9.1.1
不足处
1、小车主要由凸轮四杆机构,齿轮传动机构,以及绕绳轮动力机构组成,机构组成较复杂,零件装配定位难度大。
2、小车整体机构分布不够紧凑,零件分布不够均匀。
3、小车各机构采用串联方式连接,传动效率不够高。
9.1.2
优点
1、小车整体设计采用优化参数设计,控制精度高。
2、在进行机构或零件设计时充分考虑到加工与制造,因此零件相对简单,加工难度低,加工精度高,成本低。
3、小车运动过渡阶段平稳缓和,运行稳定性高。
9.2 方案改进
针对以上分析,我们提出了一下改进方案:
1、保证加工精度和一定加工成本的前提下,优化结构设计,使小车整体结构尽可能的紧凑。
2、在保证实现预定功能的前提下,优化机构设计,尽可能地提高整体机械效率,减少摩擦损耗。
3、优化机构布局,使小车重心尽可能地靠里,增强小车抵抗外界 干扰的能力。
第10章、参考文献
【1】濮良贵,纪名刚.机械设计.8版.北京 : 高等教育出版社,2006.【2】孙恒,陈作模.,葛文杰.机械原理.7版.北京:高等教育出版社,2006.【3】黄靖远,高志,陈祝林.机械设计学.3版.北京:机械工业出版社,2006.【4】周增文,汤酚则,张亮峰.机械加工工艺基础.长沙:中南大学出版社.2003.【5】徐绍军,云忠.工程制图.2版.长沙:中南大学出版社.2010.41
第11章、附录
附录
1、机构运动简图及装配图
11.1.1 机构运动简图
图11-1
11.1.2 装配图
图11-2
1、摇杆1
2、连杆
3、摇杆2
4、推杆
5、推杆座
6、弹簧
7、凸轮
8、轴承座1
9、齿轮3
10、齿轮2
11、轴承座2
12、齿轮2
13、后轮轴
14、后轮
15、齿轮1
16、轴1
17、轴2
18、车板
11.2三维装配图及爆炸图
图11-3
图11-4 44
图11-5 45
第三篇:无碳小车说明书
无碳小车说明书
(本小组选择的竞赛项目是竞赛项目二)
一、小车整体说明
小车整体结构上面,我们根据小车功能要求和机器的构成(原动机构、传动机构、执行机构、控制部分),把小车分为驱动部分、转向部分两个模块进行分析和设计。
在此基础上,小车采用三轮机构,后轮驱动,前轮转向,重物下落的过程中通过齿轮传动机构,将重物的重力势能转化为小车运动的动能,在后轮驱动下,再通过转向机构中的凸轮传动,将后轮的行走转化为前轮的转向,以便达到预期的要求。
考虑到竞赛项目二要求的桩距是(400±100)mm,小车车身在允许范围内应尽可能小,并且行走的轨迹也要尽可能的短,这样才能够避免小车车身碰到障碍物或者小车驶出乒乓球桌。
二、驱动部分
原理分析:根据小车功能要求,给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。该自行小车在半张标准乒乓球台(长1525mm、宽1370mm)上,绕相距一定距离的两个障碍沿8字形轨迹绕行,绕行时不可以撞倒障碍物,不可以掉下球台。以小车绕行的圈数、以及碰倒或避开障碍的多少来综合评定成绩。在设计要求中,驱动部分是将物块重力势能转化为小车的动能,并在有限的动能下,使小车能够移动尽可能多的距离,让成绩达到尽可能好。
机构分析:为达到既定要求,首先,在驱动机构上,我们通过一个绳轮驱动机构将重物的重力势能转化为小车后轮的驱动动能,具体就是将绳子绕过高40cm的定滑轮,一端连在重物上,另一端固定的绕在驱动轴上,通过重物下落带动驱动轴转动,进而实现后轮的驱动。然后,为了使小车运动的距离达到尽可能长,我们使用了一个齿轮传动机构,通过齿轮的运转和传递,使得在绳长确定即能量一定的情况下,小车后轮转动的圈数越多,进而尽可能的增加绕行的圈数,但在这个过正中,不能因为摩擦力的情况而发生自锁现象,在这些情况下,我们抉择出最佳的传动比和传力绳。驱动结构简图如下
三、传动转向部分
要实现尽可能多的使小车重复完成绕八字运动,传动及转向结构是关键,此处我们来分析一下转向机构。
基本原理:
1、传动机构:传动机构的功能是把动力和运动传递到转向机构和驱动轮上。要使小车绕的圈数更多及按设计的轨道精确地行驶,传动机构必需达到传递效率高、传动稳定、结构简单重量轻等要求。在这些要求上我们想过以下几种方法来解决:
1、不用其它额外的传动装置,直接由动力轴驱动轮子和转向机构,此种方式效率最高、结构最简单。在不考虑其它条件时这是最优的方式。
2、.带轮具有结构简单、传动平稳、价格低廉、缓冲吸震等特点但其效率及传动精度并不高。不适合本小车设计。
3.齿轮具有效率高、结构紧凑、工作可靠、传动比稳定但价格较高。因此在第一种方式不能够满足要求的情况下优先考虑使用齿轮传动。
2、转向机构:转向机构是本小车设计的关键部分,直接决定着小车的功能。转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性。能够将旋转运动转化为满足要求的来回摆动,带动转向轮左右转动从而实现拐弯避障的功能。
能实现该功能的机构有:凸轮机构摇杆、曲柄连杆摇杆、曲柄摇杆、差速转弯等等。
凸轮:凸轮是具有一定曲线轮廓或凹槽的构件,它运动时,通过高副接触可以使从动件获得连续或不连续的任意预期往复运动。优点:只需设计适当的凸轮轮廓,便可使从动件得到任意的预期运动,而且结构简单、紧凑、设计方便;缺点:凸轮轮廓加工比较困难。在本小车设计中由于:凸轮轮廓加工比较困难、尺寸不能够可逆的改变、精度也很难保证、重量较大、效率低能量损失大(滑动摩擦)
曲柄连杆摇杆 优点:运动副单位面积所受压力较小,且面接触便于润滑,故磨损减小,制造方便,已获得较高精度;两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触。缺点:一般情况下只能近似实现给定的运动规律或运动轨迹,且设计较为复杂;当给定的运动要求较多或较复杂时,需要的构件数和运动副数往往比较多,这样就使机构结构复杂,工作效率降低,不仅发生自锁的可能性增加,而且机构运动规律对制造、安装误差的敏感性增加;机构中做平面复杂运动和作往复运动的构件所长生的惯性力难以平衡,在高速时将引起较大的振动和动载荷,故连杆机构常用于速度较低的场合。在本小车设计中由于小车转向频率和传递的力不大故机构可以做的比较轻,可以忽略惯性力,机构并不复杂,利用 MATLAB 进行参数化设计并不困难,加上个链接可以利用轴承大大减小摩擦损耗提高效率。对于安装误差的敏感性问题我们可以增加微调机构来解决。曲柄摇杆 结构较为简单,但和凸轮一样有一个滑动的摩擦副,其效率低。其急回特性导致难以设计出较好的机构。差速转弯 差速拐是利用两个偏心轮作为驱动轮,由于两轮子的角速度一样而转动半径不一样,从而使两个轮子的速度不一样,产生了差速。小车通过差速实现拐弯避障。差速转弯,是理论上小车能走的最远的设计方案。和凸轮同样,对轮子的加工精度要求很高,加工出来后也无法根据需要来调整轮子的尺寸。(由于加工和装配的误差是不可避免的)综合上面分析我们选择曲柄连杆摇杆作为小车转向机构的方案。
机构分析:首先,要实现绕八字运动,可以采用圆柱凸轮+摇杆。设计适当的沟槽,圆柱凸轮做定轴转动时,通过高副接触可以使从动件获得连续不断的任意往复运动,通过分析走八字时转向轮的运动规律可以获得摇杆的运动规律,以此规律为依据可以分析出圆柱凸轮沟槽的轨迹。其次,要使八字尽可能多,这就要求我们必须减少能量损失,提高能量利用率。考虑到齿轮具有效率高,工作可靠,传动比稳定的特点,我们采用齿轮传动,通过一对啮合的直齿轮机构将驱动住的转动传递给圆柱凸轮。另外为尽量减小摩擦带来的能量损失,可通过使用润滑油润滑的方式来减小摩擦。小车传动及转向结构简图如下
四、理论分析
(1)小车轨迹形状及长度
我们是根据伯努利双扭线来设计小车的8字轨迹,它的直角方程是(x²+y²)²=a²(x²-y²),轨迹的周长C=5.244a,双纽线
考虑到小车运动的实际情况,上图中m,n两点代表两木桩,在autoCAD中画出mn=300mm,400mm,500mm的图像,求出周长。然后用EXCEL的函数功能求出不同桩距的相关数据
autoCAD绘制的双纽线
Excel表格。
(2)圆柱凸轮沟槽的确定
1/21/2通过伯努利双扭线,解出y=(-x2+(8a2x2+a4)/2-a2/2),yy,=-x+4ax/(8x2+a2)1/2,求出y,这样可以求出轮子的转角为α,因为转动杆的长度和前轮与转动副的距离一定,分别可设b,a,c,利用三角函数求得杆的转角为β=arcsin(csinα/b)(β取钝角),这样沟槽的函数h=a*sin(α+β),利用h的变化设计沟槽,使轮子按照预定的轨迹转动。
(3)小车后轮直径齿轮传动比
设小车运动轨迹长度为S,驱动轴齿轮对与凸轮同轴齿轮的传动比为i,后轮直径为D。根据设计要求,小车完成一次八字,圆柱凸轮旋转一周,后轮旋转i 周,即
i×πD=S
D=S/πi
第四篇:无碳小车说明书
目录
1.摘要..............................................................1 2.引言..............................................................1 3目的..............................................................1 4工作原理和设计理论推导............................................1 4.1总体结构.....................................................1 4.2设计方案介绍与计算分析.......................................2 4.2.1无碳小车模块机构介绍...................................3 5.设计总结.........................................................8 6.附件
1.摘要
本作品是依据工程训练综合能力竞赛命题主题“无碳小车”,提出一种“无碳”方法,带动小车运行,即给定一定重力势能,根据能量转换原理,设计一种可将该重力势能转化为机械能并用来驱动小车行走的装置。该小车通过微调装置,能够实现自动走“S“字直线绕障。此模型最大的特点是通过两个不完全齿轮驱动前轮摆动,进行可调整的周期性摆动,使前轮的摆动节拍具有可调性。本文将对无碳小车的设计过程,功能结构特点等进行详细介绍,并介绍创新点。
2.引言
随着社会科技的发展,人们的生活水平的提高,无碳对于人们来说,显得越来越重要,建设无碳社会,使得生活更加的环保,没有任何的污染。节能、环保、方便、经济,是现代社会所提倡的。现在许多发达国家都把无碳技术运用到各个领域,像交通,家具等,这也是我国当今所要求以及努力的方向。针对目前这一现状,我们设计了无碳小车模型,用重力势能转化为机械能提供了一种全新的思路,以便更好的解决以上问题。
3目的
本作品设计的目的是围绕命题主题“无碳小车”,即不利用有碳资源,根据能量转化原理,利用重力势能驱动带动具有方向控制功能的小车模型。这种模型比较轻巧,结构相对的简单,能够成功的将重力势能转化为小车的动能,从而完成小车前行过程中的所有动作。
4工作原理和设计理论推导
4.1总体结构
图 1 无碳小车总体结构
无碳小车模型的主要机构有驱动机构、转向机构、行走机构及微调机构。主要部件如下图2所示为小车整体模型。
图 2 无碳小车模型
4.2设计方案介绍与计算分析 4.2.1无碳小车模块机构介绍
1.驱动机构
本方案采用绳轮作为驱动力转换机构。我们采用了梯形轮使能量转化过程中有更合适的转矩使驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。同时做到了到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击,提高了能量利用率。绳轮机构简单,传动效率高,且在针对不同场地导致的所需动力不同的情况,可通过调节绕绳位置来改变转矩,使动力改变,增强适应性。
2.转向机构 如图,本方案采用了摇杆加两个完全相同的不完全齿轮,实现可变周期性转向。考虑到摩擦、制造、安装误差的敏感性等因素,我们最终选用了摇杆加不完全齿轮的方案。考虑到适应场地的需求,我们将原来的一个不完全齿轮改为两个,实现了不完全齿角度差的可调性。
图 3 转向机构
3.行走机构
行走机构即为三个轮子,轮子又厚薄之分,大小之别,材料之不同需要综合考虑。
有摩擦理论知道摩擦力矩与正压力的关系为
对于相同的材料 为一定值。
而滚动摩擦阻力:
MN
fMR3
NR 所以轮子越大小车受到的阻力越小,因此能够走的更远。但由于加工问题材料问题安装问题等等具体尺寸需要进一步分析确定。
由于小车是沿着曲线前进的,后轮必定会产生差速。对于后轮可以采用双轮同步驱动,双轮差速驱动,单轮驱动。
双轮同步驱动必定有轮子会与地面打滑,由于滑动摩擦远比滚动摩擦大会损失大量能量,同时小车前进受到过多的约束,无法确定其轨迹,不能够有效避免碰到障碍。
双轮差速驱动可以避免双轮同步驱动出现的问题,可以通过差速器或单向轴承来实现差速。差速器涉及到最小能耗原理,能较好的减少摩擦损耗,同时能够实现满足要运动。单向轴承实现差速的原理是但其中一个轮子速度较大时便成为从动轮,速度较慢的轮子成为主动轮,这样交替变换着。但由于单向轴承存在侧隙,在主动轮从动轮切换过程中出现误差导致运动不准确,但影响有多大会不会影响小车的功能还需进一步分析。
单轮驱动即只利用一个轮子作为驱动轮,一个为导向轮,另一个为从动轮。就如一辆自行车外加一个车轮一样。从动轮与驱动轮间的差速依靠与地面的运动约束确定的。其效率比利用差速器高,但前进速度不如差速器稳定,传动精度比利用单向轴承高。
双轮差速和单轮驱动在“S”字直线绕障和“8”字绕障中都是可行的,但是相比之下,双轮差速适合于“S“字直线绕障,而单轮驱动更加适合于8字绕障。因此我们选用双轮差速。
综上所述行走机构的轮子应有恰当的尺寸,采用单轮驱动。如果有条件可以通过实验来确定实现差速的机构方案。
4.微调机构
微调部分所要实现的功能分为两个部分:一是实现前轮最大转角αm的变化,二是实现转动周期的变化。根据所要实现的功能不同,微调机构也位于两个部分。
(1)摇杆微调机构
通过改变摇杆的长度,使被约束杆的摆动幅度增大,进而使前轮的最大转角αm发生改变。为了使αm的改变具有连续性,使小车可以适应更复杂的环境,此处采用微调滑块(配有螺母紧固滑块)式机构。其调节具有连续性,且调节精 度较高。
图 4 摇杆微调机构
(2)不完全齿轮微调机构 上文也指出,本方案采用了两个完全相同的不完全齿轮作为主动轮,两不完全齿轮之间有夹角β,此夹角的变化会造成两不完全齿轮对从动轮的作用时间间隔发生改变,即:从动轮做时停时转的间歇运动,而停、转的时间长度发生改。
通过这一点可以调节行走路线中,长度路径和转弯路径的长度。通过两个微
图 5 不完全齿轮机构
调机构的合理配合,基本可以实际行走任意路径。4.2.2无碳小车设计的理论指导
1.运动原理
如上图所示,重物下降时带动绳轮的转动,绳轮的转动带动轮的转动,通过线传动驱动转盘的转动,再通过连杆将转盘周期性的转动转化为前轮的摆动。由后轮的直线运动与前轮的摆动运动结合一起,从而实现了近似正弦曲线的运动轨迹,完成任务。
2.尺寸分析
通过调节微调装置,即:两不完全齿轮角度配合,及微调滑块的位置,可以完成走“S”字直线绕障路线,如下图:
图 6 “S"字直线绕障路线
由于采用了直线与曲线配合的行走路线,可尽量减少周期路程。(1)
v后轮后轮r后轮Bgreenvgreengreenrgreenwithandvgreenvpurplevpurplepurplerpurplepurplebluevrblueblueblue
vBBrBBgreenvgreengreenrgreenwithandvgreenvblue
vbluebluerblueblueyellowvyellowyellowryellow假设r已知,8个未知数7个方程,即只有一个自由变量:
v后轮Kr后轮rpurplergreenrbluer后轮rpurplevbluergreenrblue
记于是:,则
v后轮Kvblue,虽然不一定匀速,但可以对t积分,S后轮Ksblue
K的物理意义在于,r后轮与rpurple的地位是等同的,其大小只会影响最后的精度,而不会影响比例(虽然看上去调整后轮的半径似乎更能影响轨迹,实质上并非如此,但是的确会影响转的圈数,详见下)(2)设0,,轨迹半径为R,则直线段长:弧长为
tanR:Rtan:30.8260.453:0.5473时,比例为12/3当 6 设蓝色上有两组锯齿,每走半个“S”字,蓝色齿轮转了1圈。
另设走直线时记为P1,走弧线时记为P2,半个字中,直线段总长S1,弧线总
s1S1S2s,ss1S112是关于蓝22长,即有,由(1)的公式,可得,其中色齿轮的弧长。转1圈,可知
s1s22rblues1r2blues22(1)sblue,故rblue
可确定其比例,即位置角,同时也可得出
rblue的值无本质影响(在K不变的后轮K2r后轮K2rbluerblue)情况下)。又(其中,若增加blue的值,同时成比例增加r后轮的值,使K不变,则
K2不变,所以外轮还是转这么多圈,相当于成比例放大了。(半个周期里外轮转多少圈在这里无关紧要,在其它分析里可能有用,反正也可以表出。)
由前轮传导等等可以得出蓝色齿轮周长尺寸路程,sblue,而对应的走半个S字的S后轮由需要走的实际路程确定(后轮,B=Back),而
sblue与S后轮之间满足q前述约束关系,这个K就可以调整了。(3)关于前轮倾斜角与轨迹半径
若设前轮所处点与某一后轮所处点的距离为L,则轨迹半RL2sin2,可以实验测得。经过分析与测定,在实物测定之前,我们暂
前后轮轴距L:
150mm
后轮轴长D:
100mm 后轮半径R:
80mm 最大齿轮半径rred:
45mm 不完全齿轮半径rgray: 40mm 定数据如下:
最小齿轮半径ryellow:
8mm 其次小齿轮半径rorange:10mm 其中各齿轮的模数为2,压力角为20°。根据以上分析计算确定小车主要结构的尺寸,如各个齿轮的分度圆半径前后轮轴距,再根据主要结构框架完成各个零件的设计,具体设计见CAD装配图和零件图。
5.设计总结
经过无碳小车整体方案的设计、零件加工、无碳小车的装配以及后期的调试到完成参加比赛。在整个竞赛参与过程中通过亲手制作和对设计方案的思考让我们团队成员学习到了很多,总结无碳小车设计方案和参赛感想如下:
1.无碳小车采用双轮差速,机构简单,转弯更为容易实现。
2.使用T型绳轮,使能量转化过程中有更合适的转矩使驱动力适中。3.采用多处微调机构,便于纠正轨迹,避开障碍物。
4.使用不完全齿轮实现路径改变,相同的重力势能使小车的行程更远。5.采用大的驱动轮,滚阻系数小,行走距离远。6.方案设计过程还存在许多不足之处,例如小车制造加工精度要求相对较高,使加工零件成本高,且实际的现场加工条件很难达到实际需要的加工要求;微调各机构都很费时,且调节到适当配合需要一定技巧性等。
第五篇:无碳小车设计说明书
无碳小车设计说明书
参赛者:
施朝雄
林秋妹
指导老师:罗敏峰2014-12-16
丁天熙
一、主题
设计一种小车(“以重力势能驱动的具有方向控制功能的自行小车”),驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换而得到的。该给定重力势能由竞赛时统一使用质量为1Kg的标准砝码(¢50×65 mm,碳钢制作)来获得,要求砝码的可下降高度为400±2mm。标准砝码始终由小车承载,不允许从小车上掉落。实现小车可以按照桩距自动转弯,桩距是按每50mm 跳档在700~1300mm 范围内产生一个“S”型赛道障碍物间距值。
二、分析
1、为使得小车能够转弯,并能够绕开等距离的障碍物,需要设计一个能够自动转弯的机构。
2、根据这次的比赛要求我们需要考虑设计一个可调级方案.3、为了使得小车能够顺利转弯,还要解决小车后轮的差速问题
4、为了能够减少装配的误差使小车的摆角能够消除这些误差我们还需设计有课微调机构
三、方案确定
1.转向机构
转向机构是本小车设计的关键部分,关系到小车的整体性能.通过查阅大量资料以往常用的转弯机构有凸轮和曲柄摇杆等机构.曲柄摇杆的机构虽然简单轻便但是可能会打滑所以我们打算用圆柱凸轮的方案圆柱凸轮机构+摇杆,通过高副接触可以使从动件获得连续或不连续的任意预期往复运动,并且稳定性较强。所以我们采用圆柱凸轮机构+摇杆作为我们的转向机构。
2.调级
此次命题的难点就是小车过的桩距要可调节的,并且要从按每50mm 跳档在700~1300mm 范围内产生一个“S”型赛道障碍物间距值。
我们转向机构采用的是圆柱凸轮机构+摇杆,所以要求凸轮转一圈,小车就要通过一个s周期的路程。我们通过改变大齿轮的齿数,实现凸轮轴上和驱动轮上的齿轮传动比的改变从而实现变距,但是要实现这么多的变距,这就要求小车要携带多对齿轮。但为了减少摩擦力对能量的消耗,所以小车的负重又不能太重。这就考虑小车能不能便携式更换大齿轮,所以我们采用以下机构实现以上要求。
小齿轮组固定在驱动轴上,大齿轮可以根据要求便携式拆卸,从而组装出符合要求的传动比!
3.左右轮差速
小车转弯时左右两轮的的速度是不一样的,如果装普通的深沟球轴承,是没办法实现差速拐弯的!要解决这个问题可以有如下两种办法:
1.使用差速器。但是差速器结构复杂,加工困难 2.使用单向轴承。简单方便,而且价格合理!
所以我们采用左右两轮各装一个单向轴承!
3.微调机构
用螺丝可以实现前轮摆角的微小变化 机构如图所示
装配图
机构运动简图
大齿轮小齿轮转向杆1后轮驱动转向杆2圆柱凸轮S型三等奖