第一篇:双级圆柱齿轮减速器设计说明书
两级圆柱齿轮减速器设计说明书
一、设计任务书 1.设计任务
设计带式输送机传送机构传动系统。要求传动系统中含有两级圆柱齿轮减速器。具体工作任务:
(1)绘制减速器装配图一张;(2)绘制零件工作图2张;
(3)编写设计计算说明书1份。2.传动系统方案
图中各部件为:
1.电动机;2.连轴器;3.减速器; 4.连轴器;5.滚筒; 6.输送带
3.原始数据
输送带有效拉力F=3000N;
输送带工作速度v=1.3m/s(允许误差±5%); 输送机滚筒直径d=355mm; 减速器设计寿命5年。4.工作条件
两班制,常温下连续工作;空载启动,工作载荷有轻微振动;电压为380/220V三相交流电。
二、传动系统总体设计 1.电机的选择
按设计要求及工作条件选用Y系列三相异步电机,卧式封闭结构,电压330V。1)电动机容量的选择
根据已知条件计算工作机所需有效功率
PwFv30001.310003.9kW
设:4w——输送机滚筒轴(4轴)至输送带之间的传送效率;
c——联轴器效率,c0.99(参考文献1附表B-10);
g——闭式圆柱齿轮传动效率,g0.97(参考文献1附表B-10);
两级圆柱齿轮减速器设计说明书
由传动系统方案知:
i01i341
则两级圆柱齿轮传动比
ii12i3413.73
为便于两级圆柱齿轮减速器采用浸油润滑,当两对齿轮的配对材料相同、齿面硬度HBS350、齿宽系数相等时,考虑齿面接触强度接近相等的条件,取高速级传动比
i12(1.3~1.5)i4.38
那么
i23ii3.13
12那么各传动比分配结果如下:
i011,i124.38,i233.13,i341
3.传动系统的运动和动力参数计算
传动系统各轴的转速、功率和转矩计算如下: 0轴(电机轴)
n0nm960r/min
P0Pr4.59kW
T04.5909550Pn955096045.66Nm
01轴(高速轴)
n1n0i960r/min 01P1Pr014.54kW
T4.5419550P1n9550196045.16Nm
2轴(中间轴)
n2n1i219.18r/min
12P2P1124.36kW
两级圆柱齿轮减速器设计说明书
根据参考文献2图8-35查得寿命系数ZN10.92,ZN20.96 因为一对齿轮均为软齿面,故工作硬化系数ZW1 一般设计中取润滑系数ZL1
根据参考文献2表8-8,当失效概率小于1/100时,取接触强度最小安全系数SH'min1
将以上数值带入许用接触应力计算公式
[H1]ZN1H',lim1S0.92560515MPa
H'min1[ZN2H',lim20.96500H2]SH'min1480MPa
(3)按齿面接触强度条件计算中心距a 由参考文献2中式8-45
'a(u1)500KTZ'''231ZEHZZmm au[H]初设螺旋角'10(由最后几何条件确定)理论传动比i12'u'4.38 高速轴转矩T145.16Nm
齿宽系数a0.35(见参考文献1表4-3)初取载荷系数K'1.85
弹性系数Z189.8MPa(据参考书目2表8-7)初取节点区域系数Z'H2.475 初取重合度系数Z'E0.80 初取螺旋角系数Z'0.992 将以上数据带入中心距计算公式
两级圆柱齿轮减速器设计说明书
齿轮精度取8级
按参考文献2图8-21,KV1.13
○3齿向载荷分布系数K 按参考文献2图8-24,软齿面,不对称布置,(u1)ad20.96,K1.14
○4齿间载荷分配系数K 端面重合度[1.883.2(1z11.68
1z)]cos2纵向重合度bsinm1.60
n由参考文献2式(8-38),重合度1.681.603.28K1.43
KKAKVKK11.131.141.431.84K'
原设计偏于安全,不再重新进行有关计算。(5)验算轮齿弯曲强度
1)根据参考文献2图8-32(c)查得
F',lim1240MPa
F',lim2200MPa
2)接触应力变化总次数
N160n1Lh609601240001.382109
N8260n2Lh60219.181240003.1610
根据参考文献2图8-45查得寿命系数YN10.88,YN20.93(2)根据参考文献2表8-8得SF'min1.25(3)齿形系数,根据参考文献2图8-28 YFa12.6,YFa22.2
(4)应力修正系数,根据参考文献2图8-29 YSa11.62,YSa21.83
两级圆柱齿轮减速器设计说明书
大齿轮材料为45钢(正火),硬度HBS2=170~217(2)确定许用接触应力[HP3]和[HP4] 由文献2知接触应力计算公式为:
[H]H',limSH'minZNZWZLMPa
根据参考文献2图8-33(c)查得
H',lim3560MPa 500MPa H',lim4根据接触应力变化总次数
N360n2Lh60219.181240003.1610N460n3Lh6070.021240001.011088
根据参考文献2图8-35查得寿命系数ZN30.96,ZN41 因为一对齿轮均为软齿面,故工作硬化系数ZW1 一般设计中取润滑系数ZL1
根据参考文献2表8-8,当失效概率小于1/100时,取接触强度最小安全系数SH'min1
将以上数值带入许用接触应力计算公式
[H3]ZN3H',lim3SH'minZN4H',lim4SH'min0.96560115001537.6MPa
[H4]500MPa
(3)按齿面接触强度条件计算中心距a 由参考文献2中式8-45
'''500KT1ZEZHZZa(u1)3au[H]'mm 2理论传动比i23'u'3.13 转矩T2189.97Nm
齿宽系数a0.35(见参考文献1表4-3)
两级圆柱齿轮减速器设计说明书
○1使用系数KA,按参考文献2表8-5,KA1 ○2动载系数KV 齿轮圆周速度vd3n23.1498219.1860000600001.12ms
齿轮精度取8级
按参考文献2图8-21,KV1.13
○3齿向载荷分布系数K 按参考文献2图8-24,软齿面,不对称布置
dbd0.71,K1.11
3○4齿间载荷分配系数K 端面重合度1[1.883.2(z11.79
1z)]2纵向重合度r1.79
由参考文献2式(8-38),重合度r1.791.793.58K1.44
KKAKVKK11.131.111.441.80K'
原设计偏于安全,不再重新进行有关计算。(5)验算轮齿弯曲强度
1)根据参考文献2图8-32(c)查得
F',lim3240MPa
F',lim4200MPa
2)接触应力变化总次数
N360n2Lh60219.181240003.16108
N460n3Lh6070.021240001.01108
根据参考文献2图8-45查得寿命系数YN30.92,YN40.96(6)根据参考文献2表8-8得SF'min1.25
两级圆柱齿轮减速器设计说明书
四、减速器轴的设计 1.轴的布置
a1140mm,a2200mm
bh154mm,bh249mm,bl175mm,bl270mm
考虑相邻齿轮沿轴向不发生干涉,计入尺寸s11mm
考虑齿轮与箱体内壁沿轴向不发生干涉,计入尺寸k10mm 为保证滚动轴承放入箱体轴承座孔内,计入尺寸c4mm 初取轴承宽度为n120mm,n222mm,n322mm 3根轴的支撑跨距分别为
l12(ck)bh1sbl1n12(410)54117520188mm l22(ck)bh1sbl1n22(410)54117522190mm l32(ck)bh1sbl1n32(410)54117522190mm
2.高速轴的设计
A.选择轴的材料及热处理
小齿轮采用齿轮轴结构。选用45号钢调质。
B.轴的受力分析 轴的受力简图如图:
两级圆柱齿轮减速器设计说明书
Md1A0.RBylABFa12Fr1lAC0.得到
RBy=120.23N MB0.Fr1lBCFd1a12RAylAB0.得到
RAy=509.30N 合成支撑反力为:RA1334.48N,RB474.66N(3)计算弯矩 水平面内:
MAXMBX0.MCxRBxlBC62908Nmm
竖直面内:
MAyMBy0.MCyRAylAC25974Nmm MCyRBylBC16472Nmm
两级圆柱齿轮减速器设计说明书
减速器高速轴的结构如下图:
3.中间轴的设计
A.选择轴的材料及热处理 选用45号钢调质。
B.轴的受力分析 轴的受力简图如图:
lABl3190mm
lbl1BCck2n3252mm
lAClABlBC138mm
(1)计算齿轮的啮合力
FT2189.87t22000d20002239.06N1589.31NFr2Ftannt2cos1589.31tan20cos1152'59''N591.13NFa2Ft2tan1589.31tan1152'59''334.44N
F2000T22000189.97t3d3983876.94NFr3Ft3tann3876.94tan201411.10N(2)求支撑反力 在水平面内,有
两级圆柱齿轮减速器设计说明书
MRAylAC12752Nmm MFr3lBD(RByFr3)lBC40460Nmm
CyCyMDyRBylBD109813Nm
合成弯矩:
MAMB0
MM22CCxMCy17951NmmM22CMCxMCy42386.6Nmm MDM2DXM2DY219268Nmm
(4)合成扭矩T=Ft2·d2/2=189970N·mm
(5)轴的初步计算 根据参考文献2式16-6,d310M2(T)2[]mm
根据参考文献2表16-7,轴的材料为45号钢调质处理,b637MPa
两级圆柱齿轮减速器设计说明书
lABl3190mm
ll1BCckb2n3262.5mm
lAClABlBC127.5mm
(1)计算齿轮的啮合力
F32000571.47t42000Td4302N3784.57N
Fr1Ft1tann3784.57tan20N1377.47N(2)求支撑反力 在水平面内,有
MB0.Ft4lBCRAxlAB0得到RAx=3784.57N MA0.RBxlABFt4lAC0得到RBy=2539.65N 在竖直面内,有
两级圆柱齿轮减速器设计说明书
(4)合成扭矩TFt4d4/2571470Nmm
(5)轴的初步计算 根据参考文献2式16-6,d310M2(T)2[]mm
根据参考文献2表16-7,轴的材料为45号钢调质处理,b637MPa 根据参考文献2表16-3,插值得[1]58.7MPa 取折算系数0.6 代入得,d310M2(T)2[]38.87mm
(6)轴的结构设计
按经验公式,减速器输入端的轴端直径
dd(0.3~0.35)dm(0.3~0.35)20060~70mm
参考联轴器标准轴孔直径,取dd72mm
安装齿轮、联轴器处轴肩结构尺寸按参考文献1表5-1确定。减速器低速轴的结构如下图:
两级圆柱齿轮减速器设计说明书
根据参考文献2表17-8,冲击载荷系数fp1.5。当量动载荷
Prfp(XFrYFa)1.5(0.563507.752.30334.44)N4100.33N
11ChnjsPrLP60Lr(106)22157.96Cr故所选轴承满足寿命要求。
6209轴承:D85mm,damin52mm,B19mm 3.低速轴滚动轴承的选择
Fr2702.64N,n70.02rmin,Lh2.51630012000h。
初选滚动轴承6013GB/T276,基本额定动载荷Cr32000N,基本额定静载荷C0r24800N。
根据参考文献2表17-8,冲击载荷系数fp1.5。当量动载荷
PrfpFr1.52702.644053.96N11
CjsPrLPr(60Lhn106)14976Cr故所选轴承满足寿命要求。
6013轴承:D100mm,damin72mm,B18mm
六、键和联轴器的选择 1.高速轴键和联轴器的选择
(1)高速轴的工作转矩T145.16Nm,工作转速为n1960r/min。
根据参考文献2表18-1,取工作情况系数K1.75。计算转矩TcKT79.03Nm
根据参考文献2附录c-16,选联轴器为 LX3联轴器YA3882YA3282GB/T50142003。
许用转矩[T]1250Nm,许用转速[T]4750r/min
两级圆柱齿轮减速器设计说明书
选A型普通平键。
d3171mm,L3170mm,L31705~10mm60~65mm '根据参考文献2表16-8选取201263GB1096:
b20mm,h12mm,L63mm
根据参考文献2表16-9查得许用挤压应力[p]110MPa
pFA4000Tdhl62.39MPa[p]
满足要求。
(2)根据参考文献2表18-1,取工作情况系数K1.75。计算转矩TcKT1069.28Nm
根据参考文献2附录c-16,选联轴器为 LX4联轴器YA55112YA48112GB/T4323。
许用转矩[T]2500Nm,许用转速[n]3870r/min 均符合要求。
(10)选A型普通平键。
d3255mm,L11112mm,L111125~10mm102~107mm '根据参考文献2表16-8选取1610100GB1096:
b16mm,h10mm,L100mm,l84mm
根据参考文献2表16-9查得许用挤压应力[p]110MPa
pFA4000Tdbl4000571.4755108449.48MPa[p]
满足要求。
七、减速器润滑方式润滑剂及密封装置的选择
(一)润滑:
由参考文献1建议,齿轮采用浸油润滑;当齿轮圆周速度v12m/s时,圆柱齿轮浸油深度以一个齿高、但不小于10mm为宜,大齿轮的齿顶到油底面的距离≥30~50mm。轴承润滑采用脂润滑,润滑脂的加入量为轴承空隙体积的13~12,采
(二)密封:
防止外界的灰尘、水分等侵入轴承,并阻止润滑剂的漏失。参阅参考文献1,高低速轴密封圈为毡圈密封。箱体与箱座接合面的密封采用密封胶进行密封。
第二篇:机械设计课程设计--单级直齿圆柱齿轮减速器设计说明书
机械课程设计说明书
单级直齿圆柱齿轮减速器设计
设计题目 单级直齿圆柱齿轮减速器设计
学 院
___________________________ 专业班级 ___________________________ 设 计 人 ___________________________ 学 号
___________________________ 指导教师
_________________________ 完成日期
_________________________
目 录
一、前言…………….…………………………………………2
二、设计任务…………….……………………………………2
三、计算过程及计算说明…………………………………….3
(一)电动机选择…………………………………………….3
(二)计算总传动比及分配各级的传动比………………….4(三)运动参数及动力参数计算…………………………….4(四)传动零件的设计计算…………………………………...5
(五)轴的设计计算及轴承的选择计算……………………...9(六)键联接的选择及校核计算…………………………………….13
四、减速器的润滑与密封……………………………………………..14 五 减速器箱体及其附件………………………………………………..15
六、设计小结……………………………………………………17
七、参考资料……………………………………………………19
一、前言(一)设计目的:
通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。(二)传动方案的分析:
机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。-
本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了一级传动,传动为单级直齿圆柱齿轮减速器。齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。
二、设计任务
设计一台用带式运输的直齿圆柱齿轮减速器运输机运送沙子单向连续运转载荷,有轻微冲击,环境有轻度粉尘,使用期限八年,两班制工作(每班8小时,每年按300天计算)。
原始数据:运输带工作拉力F=1800N;带速V=1m/s;滚筒直径D=200mm,带速允许误差<5%。具体要求:
1、电动机类型确定
2、单机减速器的齿轮、轴、轴承、箱体等的设计及强度计算
3、A1装配图一张
4、编写一份设计说明书
三、计算过程及计算说明
(一)电动机选择
1、电动机类型的选择: Y系列三相异步电动机
2、电动机功率选择(1)传动装置的总功率:
η总=0.96×0.99×0.99×0.97×0.99×0.96=0.86(2)电机所需的工作功率: P工作=FV/1000η总 =1800×1/1000×0.86 =2.09KW
3、确定电动机转速: 计算滚筒工作转速: n筒=60×1000V/πD =60×1000×1/π×200 =95.49r/min 按手册推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I‘1=3~6。取V带传动比I’2=2~4,则总传动比理时范围为I‘a=6~24。故电动机转速的可选范围为n’d=I‘a×n筒=573~2291r/min 符合这一范围的同步转速有750、1000、和1500r/min等。
根据容量和转速,由有关手册查出有三种适用的电动机型号,综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y112M-6。其主要性能:额定功率:2.2KW,满载转速940r/min,质量45kg
(二)计算总传动比及分配各级的传动比 总传动比:i总=n电动/n筒=940/95.49=10 i2=i/2.5=4(三)、运动参数及动力参数计算
1、计算各轴转速(r/min)V带高速轴 nI=n电机=940r/min 减速器高速轴nII=nI/iV带=940/2.5=376(r/min)减速器低速轴nIII=nII/ i减速器=376/4=94(r/min)
2、计算各轴的输入功率(KW)V带低速轴 PI=P工作=2.2KW 减速器高速轴 PII=PI×η带=2.2×0.96=2.11KW 减速器低速轴 PIII=PII×η轴承×η齿轮= 2.03KW
3、计算各轴扭矩(N•m)电动机输出轴 TI=9550×PI/nI =9550×202/940=22.35N•m 减速器高速轴 TII=9550×PII/nII =9550×2.11/376=53.59N•m 减速器低速轴 TIII=9550×PIII/nIII =9550×2.03/94=206.23N•m(四)传动零件的设计计算
1、齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS,取260HBS。大齿轮选用45钢,调质,齿面硬度220HBS;根据课本P74表6-5选8级精度。齿面精糙度Ra≤1.6~3.2μm(2)按齿面接触疲劳强度设计
由d1≥76.43(kT1(u+1)/φdu[σH]2)1/3 确定有关参数如下:传动比i齿=4 取小齿轮齿数Z1=24。则大齿轮齿数: Z2=iZ1=4×24=96 齿数比:u=i0=4 由课本取φd=0.75(3)转矩T1 T1=22350N•mm(4)载荷系数k 由课本取k=1.2(5)许用接触应力[σH] [σH]= σHlimZNT/SH由课本查得: σHlimZ1=710Mpa σHlimZ2=620Mpa 由课本P133式6-52计算应力循环次数NL NL1=60n1rth=60×458.2×1×(16×365×8)=1.28×109 NL2=NL1/i=1.28×109/6=2.14×108 由课本P135图6-34查得接触疲劳的寿命系数: ZNT1=0.92 ZNT2=0.98 通用齿轮和一般工业齿轮,按一般可靠度要求选取安全系数SH=1.0 [σH]1=σHlim1ZNT1/SH=710×0.92/1.0Mpa =653.2Mpa [σH]2=σHlim2ZNT2/SH=620×0.98/1.0Mpa =607.6Mpa 故得:
d1≥76.43(kT1(u+1)/φdu[σH]2)1/3 =76.43[1.2×22350×(6+1)/0.75×4×607]1/3mm =46.21mm 模数:m=d1/Z1=46.21/24=1.93mm 根据课本取标准模数:m=2mm(6)校核齿根弯曲疲劳强度 根据课本 式
σF=(2kT1/bm2Z1)YFaYSa≤[σH] 确定有关参数和系数
分度圆直径:d1=mZ1=2×24mm=48mm d2=mZ2=2×96mm=192mm 齿宽:b=φdd1=0.75×48mm=36mm 取b=40mm b1=45mm(7)齿形系数YFa和应力修正系数YSa 根据齿数Z1=20,Z2=120由表6-9相得 YFa1=2.80 YSa1=1.55 YFa2=2.14 YSa2=1.83(8)许用弯曲应力[σF] 根据课本 式:
[σF]= σFlim YSTYNT/SF 由课本图 查得:
σFlim1=290Mpa σFlim2 =210Mpa 由图6-36查得:YNT1=0.88 YNT2=0.9 试验齿轮的应力修正系数YST=2 按一般可靠度选取安全系数SF=1.25 计算两轮的许用弯曲应力
[σF]1=σFlim1 YSTYNT1/SF=290×2×0.88/1.25Mpa =408.32Mpa [σF]2=σFlim2 YSTYNT2/SF =210×2×0.9/1.25Mpa =302.4Mpa 将求得的各参数代入式(6-49)σF1=(2kT1/bm2Z1)YFa1YSa1 =(2×1×50021.8/45×2.52×20)×2.80×1.55Mpa =77.2Mpa< [σF]1 σF2=(2kT1/bm2Z2)YFa1YSa1 =(2×1×50021.8/45×2.52×120)×2.14×1.83Mpa =11.6Mpa< [σF]2 故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩a a=m/2(Z1+Z2)=2/2(24+96)=100mm(10)计算齿轮的圆周速度V V=πd1n1/60×1000=3.14×48×940/60×1000 =2.36 m/s
(五)轴的设计计算及轴承的选择计算 输入轴的设计计算
1、按扭矩初算轴径
选用40Cr调质,硬度217~255HBS 根据课本,取c=110 d≥110(2.11/382.1)1/3mm=19.44mm 考虑有键槽,将直径增大5%,则 d=19.7×(1+5%)mm=20.69 ∴选d=25mm
2、轴的结构设计
(1)轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定(2)确定轴各段直径和长度
工段:d1=25mm 长度取L1=50mm ∵h=2c c=1.5mm II段:d2=d1+2h=25+2×2×1.5=31mm ∴d2=31mm 初选用6207型深沟球轴承,其内径为35mm, 宽度为16mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长: L2=(2+20+16+55)=93mm III段直径d3=35mm L3=L1-L=50-2=48mm Ⅳ段直径d4=45mm 由手册得:c=1.5 h=2c=2×1.5=3mm d4=d3+2h=35+2×3=41mm 长度与右面的套筒相同,即L4=20mm 但此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:(30+3×2)=36mm 因此将Ⅳ段设计成阶梯形,左段直径为36mm Ⅴ段直径d5=30mm.长度L5=19mm 由上述轴各段长度可算得轴支承跨距L=100mm(3)按弯矩复合强度计算
①求分度圆直径:已知d1=48mm ②求转矩:已知T2=52780N•mm ③求圆周力:Ft 根据课本 式得
Ft=2T2/d2=52780/48=1099.583N ④求径向力Fr 根据课本P127(6-35)式得
Fr=Ft•tanα=1099.58×tan200=400.21N ⑤因为该轴两轴承对称,所以:LA=LB=50mm(7)校核危险截面C的强度 由式(6-3)
σe=Mec/0.1d33=99.6/0.1×353 =14.5MPa< [σ-1]b=60MPa ∴该轴强度足够。输出轴的设计计算
1、按扭矩初算轴径
选用45#调质钢,硬度(217~255HBS)根据课本 取c=115 d≥c(P3/n3)1/3=33.41mm 取d=35mm
2、轴的结构设计
(1)轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。(2)确定轴的各段直径和长度
初选6209型深沟球轴承,其内径为45mm,宽度为19mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长41mm,安装齿轮段长度为轮毂宽度为2mm。(3)按弯扭复合强度计算
①求分度圆直径:已知d2=192mm ②求转矩:已知T3=20300N•mm ③求圆周力Ft:根据课本P127(6-34)式得 Ft=2T3/d2=2×271×103/300=1806.7N ④求径向力Fr根据课本P127(6-35)式得 Fr=Ft•tanα=1806.7×0.36379=657.2N ⑤∵两轴承对称 ∴LA=LB=49mm(六)键联接的选择及校核计算 轴径d1=25mm,L1=50mm 查手册得,选用C型平键,得:
键A 8×7 GB1096-79 l=L1-b=50-8=42mm h=7mm 根据课本得
σp=4T2/dhl=4×48000/22×7×42 =29.68Mpa<[σR](2、输入轴与齿轮联接采用平键联接
轴径d3=35mm L3=48mm T=271N•m 查手册P51 选A型平键 键10×8 GB1096-79 l=L3-b=48-10=38mm h=8mm σp=4T/dhl=4×271000/35×8×38 =101.87Mpa<[σp](110Mpa)
3、输出轴与齿轮2联接用平键联接 轴径d2=50mm L2=50mm T=61.5Nm 查手册P51 选用A型平键 键16×10 GB1096-79 l=L2-b=50-16=34mm h=10mm 据课本P243式(10-5)得
σp=4T/dhl=4×6100/51×10×34=60.3Mpa<[σp]
四、减速器的润滑与密封 齿轮传动的润滑
高速级齿轮圆周转速为2.0m/s 低速级齿轮圆周转速为0.69m/s 所以选择脂润滑的润滑方式,可用旋盖式、压注式油杯向轴承室加注润滑脂。润滑油牌号的确定及油量计算
减速器中传动件通常用浸油(油浴)润滑
选用牌号为L-AN32的全损耗系统用油,其主要用于一般机床齿轮减速箱、中小型机床导轨。油面高度为浸过高速级大齿轮一个全齿,油量计算: V=a×b×h=543×146×57=4.52×106mm3 轴承的润滑
选用牌号为ZGN69-2的滚动轴承脂,该润滑脂适用于各种机械设备的滚动轴承润滑,适用工作温度≤90°C 脂润滑结构简单、易于密封,但润滑效果不如油润滑,故常用于开式齿轮传动、开式蜗杆传动和低速滚动轴承的润滑。
滚动轴承采用脂润滑时,润滑脂的填充量不应超过轴承空间的1/3~1/2。减速器的密封 选用毡圈密封方式。
其密封效果是靠矩形毡圈安装于梯形槽中所产生的径向压力来实现的。其特点是结构简单、价廉,但磨损较快、寿命短。它主要用于轴承采用脂润滑,且密封处轴的表面圆周速度较小的场合,对粗、半粗及航空用毡圈其最大圆周速度分别为3m/s、5m/s、7m/s,工作温度t≤90°C
五、减速器箱体及其附件(1)窥视孔和视孔盖
窥视孔应设在箱盖顶部能看见齿轮啮合区的位置,大小以手能伸入箱体内检查操作为宜。
窥视孔处应设计凸台以便于加工。视孔盖可用螺钉紧固在凸台上,并考虑密封。(2)通气器
通气器设置在箱盖顶部或视孔盖上。较完善的通气器内部制成一定曲路,并设置金属网。
选择通气器类型的时候应考虑其对环境的适应性,其规格尺寸应与减速器大小相适应。(3)油面指示器
油面指示器应设置在便于观察且油面较稳定的部位,如低速轴附近。
常用的油面指示器有圆形油标、长形油标、管状油标,油标尺等形式。
油标尺的结构简单,在减速器中较常采用。油标尺上有表示最高及最低油面的刻线。装有隔离套的油尺可以减轻油搅动的影响。
油标尺安装位置不能太低,以避免油溢出油标尺座孔。(4)放油孔和螺塞
放油孔应设置在油池的最低处,平时用螺塞堵住。采用圆柱螺塞时,座箱上装螺塞处应设置凸台,并加封油垫片。放油孔不能高于油池底面,以避免排油不净。(5)起吊装置
吊环螺钉可按照起重量选择。为保证起吊安全,吊环螺钉应完全拧入螺孔。箱盖安装吊环螺钉处应设置凸台,以使吊环螺钉孔有足够深度。
箱盖吊耳、吊钩和箱座吊钩的结构尺寸在设计时可以进行适当修改。(6)定位销
常采用圆锥销作定位销。两定位销之间的距离越远越可靠,因此,通常将其设置在箱体联接凸缘的对角处,并应作非对称布置。定位销的长度应大于箱盖、箱座凸缘厚度之和。(7)起盖螺钉
起盖螺钉设置在箱盖联接凸缘上,其螺纹有效长度应大于箱盖凸缘厚度。起盖螺钉直径可与箱盖凸缘螺钉直径相同,螺钉端部制成圆柱形并光滑导角或制成半球形。
六、设计小结
一个星期的课程设计结束了。这一个星期以来,我是感慨良多,有痛苦也有快乐,发过火,流过汗,学到的东西也很多。大家常挂在嘴边的一句话:哥画的不是图,画的是寂寞。但经过了那么多天的奋战,当我们平生最大的一幅图在我们自己的设计中成型时,我们才发现:我们画的不是寂寞,而是成功的历程。成就感在我们的心中荡漾……
首先,我要感谢顶着炎热的天气在教室里指导我们的陈老师,是他在我们几乎绝望的时候给了我们鼓励,给了我们信心,也是他在我们遇到困难的时候出现在我们的身边。
通过一个星期的学习与实践,我知道了在设计的过程中必须严肃认真,刻苦专研,一丝不苟,精益求精,才能在设计思想,方法和技能各方面获得较好的锻炼与提高。必须发挥设计的主动性,主动思考问题分析问题和解决问题设计中要正确处理参考已有资料和创新的关系。熟悉和利用已有的资料,既可避免许多重复的工作,加快设计进程,同时也是提高设计质量的重要保证。善于掌握和使用各种资料,如参考和分析已有的结构方案,合理选用已有的经验设计数据,也是设计工作能力的重要方面。机械设计应边计算,边绘图,边修改,设计计算与结构设计绘图交替进行,这与按计划完成设计任务并不矛盾,应从第一次设计开始就注意逐步掌握正确的设计方法。
安排课程设计的基本目的,在于通过理论与实际的结合、人与人的沟通,进一步提高思想觉悟。尤其是观察、分析和解决问题的实际工作能力,以便培养成为能够主动适应社会主义现代化建设需要的高素质的复合型人才。-
作为整个学习体系的有机组成部分,课程设计虽然安排在一周进行,但并不具有绝对独立的意义。它的一个重要功能,在于运用学习成果,检验学习成果。运用学习成果,把课堂上学到的系统化的理论知识,尝试性地应用于实际设计工作,并从理论的高度对设计工作的现代化提出一些有针对性的建议和设想。检验学习成果,看一看课堂学习与实际工作到底有多大距离,并通过综合分析,找出学习中存在的不足,以便为完善学习计划,改变学习内容与方法提供实践依据。
对我们非机械专业的本科生来说,实际能力的培养至关重要,而这种实际能力的培养单靠课堂教学是远远不够的,必须从课堂走向实践。这也是一次设计工作的预演和准备。通过课程设计,让我们找出自身状况与实际需要的差距,并在以后的学习期间及时补充相关知识,为求职与正式工作做好充分的知识、能力准备,从而缩短从校园走向社会的心理转型期。课程设计促进了我系人才培养计划的完善和课程设置的调整。课程设计达到了专业学习的预期目的。在一个星期的课程设计之后,我们普遍感到不仅实际动手能力有所提高,更重要的是通过对机械设计流程的了解,进一步激发了我们对专业知识的兴趣,并能够结合实际存在的问题在专业领域内进行更深入的学习。
课程设计需要刻苦耐劳,努力钻研的精神,有时可能需要连续几个小时、十几个小时不停的工作进行攻关, 虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。最后出成果的瞬间是喜悦、是轻松、是舒了口气!-
至于此次课程设计中的不足,我将在今后的学习的加以改进,不断的完善自己,认真学习自己的专业知识,希望在毕业的时候能成为一个合格的工科人才。
七、参考资料目录
机械设计(机械设计基础)课程设计 高等教育出版社 1995年12月版 机械设计基础 湖南大学出版社 2005年8月版
第三篇:带式输送机(圆锥—圆柱齿轮减速器)设计说明书
摘要
减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。一般用于低转速大扭矩的传动设备,把电动机.内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的。
本设计对二级减速器进行了工艺过程及装配的设计,对减速器各零部件的材料进行了选择和比较,对它的各部分零件加工精度进行了设计计算,然后利用AutoCAD2004软件进行二级减速器箱体中各零件的二维制图;再将各个零件装配在一起形成二维工程装配图;最后,文章对润滑和密封的选择,润滑剂的牌号及装油量计算。
关键词:箱体;工艺;装配;设计;AutoCAD
带式输送机(圆锥一圆柱齿轮减速器)设计
目录
第一章 绪论…………………………………………………………………………………… 5 1.1 设计目的………………………………………………………………………………….5 1.2 设计任务和要求………………………………………………………………………….5 第二章 题目分析﹑传动方案的拟定……………………………………………………..5 2.1 原始条件和数据…………………………………………………………………………..5 2.2 输送带工作拉力……………………………………………………………………….6 2.3 结构简图如下……………………………………………………………………………..6 2.4 传动方案的拟定和说明………………………………………………………………….6 第三章 电动机选择,传动系统运动学和动力学计算………………………………… 6 3.1 电动机的选择……………………………………………………………………………..6 3.2 确定电动机功率…………………………………………………………………………..6 3.3 电动机输出功率………………………………………………………………………….7 3.4 确定电动机转速………………………………………………………………………….7 3.5 总转动比…………………………………………………………………………………………………………………………………………….7 3.6 分配传动比………………………………………………………………………………..8 3.7 计算传动装置的运动和动力参数…………………………………………………….8 3.8 各轴输入功率………………………………………………………………………………………………………………………………….8 3.9 各轴输入转矩………………………………………………………………………………………………………………………………… 10
3.10 电动机输出转矩…………………………………………………………………………….9
第四章 传动零件的设计计算……………………………………………………………………………………………………………9 4.1 直齿圆柱齿轮的设计…………………………………………………………………… 9 4.2 齿面接触强度设计……………………………………………………………………….9 4.3 确定公式内各计算数值………………………………………………………………… 10 4.4 计算………………………………………………………………………………………… 11 4.5 按齿根弯曲强度计算的设计公式为………………………………………………….12 4.6 确定公式内的各计算数值………………………………………………………………12 4.7 计算弯曲疲劳许用应力……………………………………………………………….13
带式输送机(圆锥一圆柱齿轮减速器)设计
4.8 设计计算……………………………………………………………………………………13 4.9 几何尺寸计算…………………………………………………………………………….14 第五章 传动的直齿,锥齿轮的设计……………………………………………………….14 5.1 按齿面接触强度设计…………………………………………………………………… 14 5.2 确定公式内各计算数值………………………………………………………………… 14 5.3 计算………………………………………………………………………………………… 15 5.4 按齿根弯曲强度设计…………………………………………………………………… 16 5.5 几何计算……………………………………………………………………………………18 第六章 轴的设计计算及校核……………………………………………………………… 18 6.1 初步确定轴的最小直径………………………………………………………………… 18 6.2 轴的结构设计…………………………………………………………………………….18 6.3 Ⅰ轴的校核……………………………………………………………………………….19 6.4 轴承Ⅰ的校核…………………………………………………………………………….21 6.5 验算轴承寿命…………………………………………………………………………….22 6.6 Ⅲ轴的校核……………………………………………………………………………….22 6.7 轴承Ⅱ的校核…………………………………………………………………………….23 6.8 求两轴的计算轴向力
和
……………………………………………………….23
6.9 求轴承当量动载荷P1和P2…………………………………………………………….23 6.10 第Ⅲ轴承的校核。………………………………………………………………………24 6.11 求轴承当量动载荷P1和P2……………………………………………………………24 第七章 键连接的选择和校核……………………………………………………………… 25 7.1 选择键连接的类型和尺寸………………………………………………………………25 7.2 校核键连接的强度……………………………………………………………………… 25 7.3 第Ⅱ轴中的小圆柱齿轮上键的选择………………………………………………… 25 7.4 第Ⅱ轴中的大圆锥齿轮上键的选择………………………………………………… 25 7.5 第Ⅲ轴中的大圆柱齿轮上键的选择………………………………………………… 25 7.6 校核第Ⅲ轴中的大圆柱齿轮上键的强度…………………………………………… 25 7.7 校核第Ⅲ轴中的最小段上键的强度………………………………………………… 26 第八章 联轴器的选择和校核……………………………………………………………… 26 8.1 类型选择,载荷计算,公称转矩…………………………………………………… 26
FF带式输送机(圆锥一圆柱齿轮减速器)设计
8.2 由表14-1,p352,查得转矩…………………………………………………………… 26 8.3 类型选择………………………………………………………………………………… 26 第九章 箱体的设计………………………………………………………………………… 26 9.1 箱体的主要结构………………………………………………………………………… 26 第十章 滑和密封的选择,润滑剂的牌号及装油量计算…………………………… 28 10.1 减速器的润滑…………………………………………………………………………… 28 10.2 减速器的密封…………………………………………………………………………… 28 第十一章 传动装置的附件及说明………………………………………………………… 29 11.1 轴承盖…………………………………………………………………………………… 29 11.2 轴承套杯………………………………………………………………………………… 29 11.3 调整垫片组……………………………………………………………………………… 29 11.4 油标……………………………………………………………………………………….29 11.5 排油孔螺塞……………………………………………………………………………… 29 11.6 检查孔盖板……………………………………………………………………………… 29 11.7 通气器…………………………………………………………………………………….30 11.8 起吊装置………………………………………………………………………………… 30 11.9 定位销…………………………………………………………………………………… 30 11.10 起盖螺钉……………………………………………………………………………….30 设计小结……………………………………………………………………………………...30 参考资料………………………………………………………………………………………… 32 致 谢…………………………………………………………………………………………….33
带式输送机(圆锥一圆柱齿轮减速器)设计
第一章 绪论
1.1 设计目的
毕业设计是培养学生综合运用所学的基础理论和专业理论知识,独立解决减速器设计问题的能力一个重要的实践性教学环节。因此,通过设计应达到下述目的。
1.1.1初步掌握正确的设计思想和设计的基本方法步骤,巩固深化和扩大所学的知识,培养理论联系实际的工作方法和独立工作能力。
1.1.2获得结构设计,零件计算,编写说明书。绘制部件总装图(展开图,装配图)和零件工作图等方面的基本训练及基本技能。1.1.3熟悉有关标准、规格、手册和资料的应用。1.1.4对现有机械结构初具分析能力和改进设计的能力。
1.2 设计任务和要求
设计基本内容及要求:
按照设计任务,根据调查研究所提供的权据和有关技术资料,进行以下工作:制定工艺方案,确定选择通用部件,设计专用部件,绘制有关图纸(零件、装配图等),编写技术文件等。其基本内容如下: 1.2.1选择电动机型号;
1.2.2定带传动的主要参数及尺寸; 1.2.3设计减速器; 1.2.4选择联轴器。1.2.5减速器装配图一张; 1.2.6零件工作图二张; 1.2.7设计说明书一份。
第二章 题目分析﹑传动方案的拟定
2.1 原始条件和数据
带式输送机(圆锥一圆柱齿轮减速器)设计
胶带输送机单班制连续单向运转,工作中有轻微振动;使用期限10年,检修期间隔为3年。该机动力来源为三相交流电,在中等规模机械厂小批生产。输送带速度允许误差为±5%。
2.2 输送带工作拉力
2300N,输送带速度:1.6m/s,卷筒直径:270mm.2.3 结构简图如下:
2.4 传动方案的拟定和说明
由题目所知传动机构类型为:圆锥—圆柱两级齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:共三根轴,每根轴直径依次增大,利用圆锥圆柱齿轮进行传动,宽度尺寸较小,但锥齿轮加工比圆柱齿轮困难,一般置于高速级,以减小其直径和模数。
第三章 电动机选择,传动系统运动学和动力学计算
3.1 电动机的选择:
选用Y系列一般用途的三相异步电动机
3.2 确定电动机功率:
带式输送机(圆锥一圆柱齿轮减速器)设计
PwFwvw1000wKw22000.910000.942.106kw
w0.943.3 电动机输出功率
P0Pw
因载荷平稳,电动机额定功率3.4
确定电动机转速
按表2-1各传动机构传动比范围,圆锥齿轮转动比所以总传动比范围是
一般传动比为总体传动比的
可见电动机可选范围
3.5 总转动比
圆柱齿轮传动比
,带式输送机(圆锥一圆柱齿轮减速器)设计
3.6 分配传动比
令
3.7 计算传动装置的运动和动力参数
轴:
II轴:
III轴:
工作轴
3.8 各轴输入功率
I轴:
II轴:III轴: 7
带式输送机(圆锥一圆柱齿轮减速器)设计
工作轴 :
3.9 各轴输入转矩
I轴:
II轴:
III轴:
工作轴:
3.10 电动机输出转矩:
第四章 传动零件的设计计算
4.1 直齿圆柱齿轮的设计
4.1.1选定直齿圆柱齿轮,8级精度,小齿轮材料为40Gr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度相差40HBS。
4.1.2选小齿轮齿数,大齿轮齿数
4.2 齿面接触强度设计
带式输送机(圆锥一圆柱齿轮减速器)设计
4.3 确定公式内各计算数值
4.3.1选载荷系数
4.3.2计算小齿轮传递的转矩
4.3.3由表10-7取得齿宽系数
4.3.4有表10-6查得材料的弹性影响系数
4.3.5有图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限
;大齿轮的接触疲劳强度极限
4.3.6由式10-13计算应力循环次数,4.3.7试算小齿轮分度圆直径,代入中较小的值
4.3.8由图10-19取接触疲劳寿命系数
带式输送机(圆锥一圆柱齿轮减速器)设计
4.3.9计算接触疲劳许用应力
取失效概率为1% 安全系数S=1.由式10-12得
4.4 计算
4.4.1试算小齿轮分度圆直径4.4.2计算圆周速度
4.4.3计算齿宽b
4.4.4计算齿宽与齿高之比,代入中较小的值
带式输送机(圆锥一圆柱齿轮减速器)设计
模数
齿高
4.4.5b计算载荷系数
根据直齿轮h,8级精度,由图10-8查得动载系数
由表10-2查得使用系数
;
由表10-4用插值法查得8级精度,小齿轮相对支承非对称布置时,由,故载荷系数4.4.6按实际的载荷系数校所算得的分度圆直径,由式k査图10-13k得
kv
b10-10a得
k
4.4.7计算模数m 4.5 按齿根弯曲强度计算的设计公式为
4.6 确定公式内的各计算数值KH
H4.6.1由图10-20c查得小齿轮的弯曲疲劳极限
K
AH11
vF带式输送机(圆锥一圆柱齿轮减速器)设计
大齿轮的弯曲疲劳强度极限 4.6.2由图10-18取弯曲疲劳寿命系数
4.7 计算弯曲疲劳许用应力
取弯曲疲劳安全系数
,由式10-12得;
计算载荷系数
查取齿形系数
由表10-5查得 查取应力校正系数
由表10-5查得
计算大小齿轮的
大齿轮的数值大
4.8 设计计算
对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的模数,由于齿轮模数主要取决于弯曲疲劳所决定的承载能力,而齿面接触强度所决定的承载能力,仅与齿轮直径有关,即模数和齿数的乘积,可由弯曲强度算得的模数2.09并就近元稹为标准值m=2.5mm,按接触强度计算的分度圆直径
KKFEFkkYYYYYFaFaYFaFSaSaYF1
并加以比较
带式输送机(圆锥一圆柱齿轮减速器)设计。
算出小齿轮齿数
大齿轮齿数
取
这样设计出的齿轮传动,既满足了齿面接触强度,又满足了齿根弯曲强度,并做到结构紧凑,避免浪费。
4.9 几何尺寸计算
4.9.1计算分度圆直径
4.9.2计算中心距 4.9.3计算齿轮宽度
取
5.1 按齿面接触强度设计
5.1.1选轴夹角为90度的直齿圆锥齿轮,为8级精度,由表10-1选择小齿轮材料为40二者材料硬度差40HBS。5.1.2选小齿轮的齿数
由设计计算公式
5.2 确定公式内各计算数值
5.2.1试选载荷系数
dZZdZBb1Ba
第五章 传动的直齿,锥齿轮的设计
(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,大齿轮齿数
带式输送机(圆锥一圆柱齿轮减速器)设计
5.2.2计算小齿轮传递的转矩
5.2.3最常用的值,齿宽系数
5.2.4由表10-6查得材料的弹性影响系数
5.2.5由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限
;大齿轮的齿面的接触疲劳强度极限为
5.2.6由式10-13计算应力循环次数
5.2.7由图10-19取接触疲劳寿命系数
5.2.8计算接触疲劳许用应力TN
取失效概率为,安全系数,由式(10-12)得
5.3 1
计算
5.3.1试验算小齿轮分度圆直径5.3.2计算齿宽
1HLim,代入
HLimS中较小的值。
1KZ
K
RE0H
带式输送机(圆锥一圆柱齿轮减速器)设计
5.3.3计算齿宽与齿高之比
模数
齿高
5.3.4计算载荷系数
根据,8级精度,由图10-8查得动载荷系数,直齿锥齿轮使用系数由表10-2查得
5.3.5齿间载荷分配系数可按下试计算
5.3.6由表k10-9中查得取轴承系数
故载荷系数
5.3.7按实际的载荷系数校正所算得的分度圆直径,由式(10-10a)得
5.3.8计算模数
5.4 按齿根弯曲强度设计
曲强度的设计公式为5.4.1确定公式内的各计算数值
由图10-20c查得小齿轮的弯曲疲劳强度极限vhmkb
vHktk
大齿轮的弯曲强度极限
5.4.2由图10-18取弯曲疲劳寿命系数
5.4.3计算弯曲疲劳许用应力。
H15
A带式输送机(圆锥一圆柱齿轮减速器)设计
取弯曲疲劳安全系数
由式(10-12)得
5.4.4计算载荷系数k
5.4.5查取齿形系数
由表10-5查得:5.4.6查取应力校正系数
由表10-5查取
5.4.7计算大,小齿轮的大齿轮的数值大 5.4.8设计计算
对比计算结果,由齿面接触疲劳计算的模数m大于由齿根弯曲疲劳强大计算的模数,由于齿轮模数m大小主要取决于弯曲疲劳强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,反于齿轮直径(即模数与齿数的乘积)有关,可取由弯曲强度算得的模数1.26并就圆整为标准值按接触强度算得的分度圆直径
算出小齿轮齿数
SKYYYYYFaFaYFaYSaSaFaFF ,并加以比较
带式输送机(圆锥一圆柱齿轮减速器)设计
大齿轮齿数
这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到结构紧凑,避免浪费。
5.5 几何计算
5.5.1计算分度圆直径
5.5.2计算中心距
5.5.3计算齿轮齿宽d
取 Z
第六章 轴的设计计算及校核
6.1 初步确定轴的最小直径
选取轴的材料为40,取
6.2 轴的结构设计a
拟定轴上零件的装配方案
BB
d带式输送机(圆锥一圆柱齿轮减速器)设计
6.2.1为了满足半联轴器的轴向定位要求,Ⅰ-Ⅱ轴段右端需制出一轴肩,故取Ⅱ-Ⅲ段的直径=24mm;半联轴器与轴配合的孔长度,为了保证轴端挡
略短一些,圈只压在半联轴器上而不压在轴的端面上,故Ⅰ-Ⅱ段的长度应比现取。
6.2.2初步选择滚动轴承。因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承。参照工作要求并根据
=24mm, 由轴承产品目录中初步选取0基本游隙组,标准精度级的单列圆锥 滚子轴承30208,其尺寸为
;而 右端轴径仅是为了装配方便,并不承受轴向力亦不对轴上零件起定位和固定作用时,则相邻直径的变化差可以较小,一般可取直径差1~3mm,因此取。
6.2.3取安装齿轮处的轴段位。已知齿轮轮縠的宽度为略短与轮縠宽度,故取6.3 Ⅰ轴的校核
dLLlIdII,故。
;齿轮的左端与左轴承之间采用套筒定,为了是套筒端面可靠地压紧齿轮,此轴段应。
带式输送机(圆锥一圆柱齿轮减速器)设计
6.3.1已知轴的弯矩和扭矩,可针对某些危险截面(即弯矩和扭矩)而轴径可能不足的截面,做弯矩合成强度校核计算,按第三强度理论,计算应力。
6.3.2通常由弯矩所产生的弯曲应力是对称循环环变应力而由扭矩所产生的,扭转切应力,则常常不是对称循环应力,为了考虑两者循环应力特性不同的影响,引入折合系数,则计算应力为时,取;若扭转切应力亦为对称循环变应力时,取对于直径为d的圆轴,弯曲应力为入式,则轴的弯扭合成强度条件为 MHYM。当扭转切应力为静应力;若扭转切应力亦为对称循环变应力为脉动循环变应力时,取
。,扭转切应力,J将和代
带式输送机(圆锥一圆柱齿轮减速器)设计
选用安全。
6.4 轴承Ⅰ的校核
如图附页C所示:
Fr1Ftancos1439.838N Fa1Fttansin1121.14N
Fre165FdaeF2r1v110632.23N
Fr2vFreFr1v192N
Fr1H165FT110te1929N
Fr2HFteFr1H654N
Fr1F22r1vFr1H2030N Fr2F2求两轴的计算轴向力 对于30205Fr2vF2r2H682N
和
型轴承,由表8-145,轴承派生轴向力
假设
FFr1d12Y634.37N FFr2d22Y213.125N
因为FaeFd2Fd1 所以轴承1被放松,轴承2被压紧 所以Fa1Fd1637.37N
Fa2Fd1Fae513N 求轴承当量载荷P1和P2
FteFFF20
CM带式输送机(圆锥一圆柱齿轮减速器)设计
Fa12F0.31e Far1F0.75e
a2对轴承1,X11 Y10 对轴承2,X20.4 Y21.6
因轴承运转中有中等冲击载荷,按表13-6,取
P1fpx1Fr1Y1Fa13045N
P2fpx2Fr2Y2Fa21230N
6.5 验算轴承寿命
因P1P2,所以按轴承1的受力大小来验算
106 L60ncP570729L'hh
1Ⅱ轴的校核。
弯矩,扭矩图如图附页A所示:
选用45 6.6 Ⅲ轴的校核
MHFNH1L1253NmMVFNVM
如图附页B所示: 1L192Nm
MM2VM2H269Nm
FFD2360Nm
ca36.6061合格
HfP带式输送机(圆锥一圆柱齿轮减速器)设计
6.7 轴承Ⅱ的校核
如图附页D所示:
6.8 求两轴的计算轴向力
对于30205型轴承,由表8-145,轴承派生轴向力
FFaF
2685N 2153N
和
C=32200N 假设
轴承1被压紧,eFF2Y
被放松F
r
6.9 求轴承当量动载荷P1F和P2
trr
FF2
22
vvHaa带式输送机(圆锥一圆柱齿轮减速器)设计
所以对轴承1,2
因轴承运转中有中等冲击载荷 取
因为 所以按轴承1的受力大小验算
6.10 第Ⅲ轴承的校核P
X
Y
如图附页E所示:
求两轴承的计算轴向力
和
对6208型轴承
6.11 求轴承当量动载荷P1和P2
因为轴承运转中有中等冲击载荷 F1取2
因为 所以按轴承2的受力大小验算FfF
F23
P带式输送机(圆锥一圆柱齿轮减速器)设计
故所选轴承满足寿命要求。
第七章 键连接的选择和校核
7.1 选择键连接的类型和尺寸
一般8级以上精度的齿轮有定心精度的要求,应选用平键按第Ⅰ根轴上键的选择: 从表8-61中查得键的截面尺寸为:宽度,由轮縠宽度并参考的长度系列取键长
高度7.2 校核键连接的强度
键,轴和轮縠的材料都是钢,由表6-2P108机械设计查得许用挤压应力键与轮縠键槽的接触高度适。
7.3 第Ⅱ轴中的小圆柱齿轮上键的选择
校核与上面相同,合适。
7.4 第Ⅱ轴中的大圆锥齿轮上键的选择
7.5 第Ⅲ轴中的大圆柱齿轮上键的选择
取 dbLhLlk'dbh,取其平均值
',键的工作长度,所以 合合适。
带式输送机(圆锥一圆柱齿轮减速器)设计
7.6 校核第Ⅲ轴中的大圆柱齿轮上键的强度
合适。
7.7 校核第Ⅲ轴中的最小段上键的强度
8.1 类型选择,载荷计算,公称转矩
为了隔离震动与冲击
8.2 由表14-1,p352,查得转矩
8.3 类型选择
从大转速为
9.1 箱体的主要结构
9.1.1箱体材料为HT150,采用剖分式箱体,箱体结构最原始的构思:上下箱作成具有一定壁厚
'lkLdbhLLpppKTGBTL
合适。
第八章 联轴器的选择和校核
中查得型弹性套柱销联轴器的许用转矩为
之间合用。,许用最,轴径为
第九章 箱体的设计,箱体内侧壁与小圆柱齿轮两端面有间距,与
带式输送机(圆锥一圆柱齿轮减速器)设计
大圆柱齿顶圆有间距。
;下箱体内低壁与大齿轮顶圆的间距应不小于9.1.2为适应轴承宽度和安放轴承盖,不是加大箱体两侧壁厚而是采取在座孔周围箱壁外扩成具有一定宽度的轴承座,并在轴承座两旁设置凸台结构,是联接螺栓能紧靠座孔以提高联接刚性。
9.1.3为使下箱座与其他座驾联接,下箱座亦需做出凸缘底座。
9.1.4为增加轴承座的刚性,轴承座处可设肋板,肋板的厚度通常取壁厚的0.85倍。
9.1.5铸造箱体应力力求形状简单,为便于造型时取模,铸件表面沿拔模方向应有斜度,对长度为 的铸件,拔模斜度为。
名称 符号 尺寸关系 箱体壁厚 δ 0.025a+箱盖壁厚
箱座,箱盖,箱底凸缘厚度 地脚螺栓直径和数目 轴承旁联接螺栓直径 箱盖,箱座联接螺栓直径
轴承端盖螺钉直径
检查孔盖螺钉直径
bbbad
螺栓间
距
轴承座孔(外圈)直径D
螺钉
数目6
双级减速器:
带式输送机(圆锥一圆柱齿轮减速器)设计
距离至箱外壁 至凸缘
;
-轴承外圈直径
边缘距离
轴承旁联接螺栓具体 S 一般取轴承旁凸台半径
轴承旁凸台高度 根据低速轴轴承座外径
扳手空间箱外壁至轴承座端面距离
箱盖,箱座肋厚
大齿轮顶圆与箱内壁间距离 齿轮端面与箱内壁距离
第十章 滑和密封的选择,润滑剂的牌号及装油量计算
10.1 减速器的润滑
10.1.1该减速器采用油润滑,对于浸入油中。当齿轮回转时粘在其上的油液被带到啮合区进行润滑,同时油池的油被甩上箱壁,有助散热。10.1.2为避免浸油润滑的搅油功耗太大和保证齿轮啮合区的充分润滑,传动件浸入油中的深度不宜太深或太浅,一般浸油深度以浸油齿轮的一个齿高为适度,但不少于10mm.10.1.2一般齿顶圆至油池底面的距离不应小于30~50mm,为了有利于散热,每传递功率的需油量约为,所以此减速器的需油量为10.1.3高速圆周速 dD,dDffRcDmMcLcmmm
和的要求
由结构确定
,的齿轮传动可采用油润滑,将齿轮
。,可选用320工业闭式齿轮油。
带式输送机(圆锥一圆柱齿轮减速器)设计
10.2 减速器的密封
10.2.1轴伸出处的密封为占圈式密封,轴承室内侧的密封为封油环密封,检查孔盖板,排油螺塞,油标与箱体的接合面均需加纸封油垫或皮封油圈。10.2.2减速器采用钙钠基润滑脂()。
11.1 轴承盖 第十一章 传动装置的附件及说明
轴承盖结构采用螺钉式可分为螺钉联接式,材料为铸铁(HT150),当轴承采用输油沟飞溅润滑时为使油沟中的油能顺利进入轴承室,需在轴承盖端部车出一段小直径和铣出径向对称缺口。
11.2 轴承套杯
套杯可用作固定轴承的轴向位置,同一轴线上两端轴承外径不相等时使座孔可一次镗出,调整支承的轴向位置。
11.3 调整垫片组
调整垫片组的作用是调整轴承游隙及支承的轴向位置。垫片组材料为冲压铜片或08F钢抛光。
SH28 11.4 油标
采用杆式油标,对于多级传动则需安置在低速级传动件附近。长期连续工作的减速器,在杆式油标的外面常装有油标尺套,可以减轻油的搅动干扰,以便在不停车的情况下随时检测油面。
11.5 排油孔螺塞
为了换油及清洗箱体时排出油污,排油孔螺塞材料一般采用Q235,排油孔螺塞的直径可按箱座壁厚的倍选取。排油孔应设在便于排油的一侧,必要时可在不同位置两个排油孔以适应总体布局之需。
11.6 检查孔盖板
带式输送机(圆锥一圆柱齿轮减速器)设计
为了检查传动件啮合情况,润滑状态以及向箱内注油,在箱盖上部便于观察传动件啮合区的位置开足够大的检查孔,平时则将检查孔盖板盖上并用螺钉予以固定,盖板与箱盖凸台接合面间加装防渗漏的纸质封油垫片。
11.7 通气器
为沟通箱体内外的气流使箱体内的气压不会因减速器运转时的温升而增大,从而造成减速器密封处渗漏,在箱盖顶部或检查孔盖板上安装通气器。
11.8 起吊装置
吊环螺钉装在箱盖上,用来拆卸和吊运箱盖,也可用来吊运轻型减速器。
11.9 定位销
为确定箱座与箱盖的相互位置,保证轴承座孔的镗孔精度与装配精度,应在箱体的联接凸缘上距离尽量远处安置两个定位销,并尽量设置在不对称位置。常用定位销为圆锥销,其公称直径(小端直径)可取,为箱座,箱盖凸缘联接螺栓的直径;取长度应稍大于箱体联接凸缘的总厚度,以利装拆。
11.10 起盖螺钉
箱盖,箱座装配时在剖分面上涂密封胶给拆卸箱盖带来不便,为此常在箱盖的联接凸缘上加工出螺孔,拆卸时,拧动装与其中的起盖螺钉便可方便地顶起箱盖。起盖螺钉材料为35号钢并通过热处理使硬度达HRC28~38。
设计小结
1.通过这次课程设计,我学到了很多,更好地将以前学过的知识和实际应用结合起来,比如《机械原理》,《机械设计》,《材料力学》,《互换性与技术测量》,《图学》等专业知识。
2.同时我也了解到一个零件的设计要考虑很多东西,最基本的是它能实现你想要的功能,还有它的经济性也很重要,同时要考虑具体加工一个零件时的加工方法的不同,材料的选择等因素。
dd29
带式输送机(圆锥一圆柱齿轮减速器)设计
3.通过这次课程设计也让我深刻意识到了设计的需要严谨的精神和精确的计算。同时也知道了设计一个零件需要做些什么,需要准备哪些方面的东西。
4.由于第一次设计减速器,在设计中也存在一些不足之处,比如刚开始设计时未考虑到很多因素,导致在设计过程出现很多错误,针对这些错误,在分院老师的指导下,很多错误都已经纠正了。
带式输送机(圆锥一圆柱齿轮减速器)设计
参考资料
[1]《机械设计》,高等教育出版社,濮良贵,纪名刚主编,2006年5月第8版;
[2]《机械设计课程设计》,浙江大学出版社,陈秀宁,施高义主编,2004年12月第2版; [3]《材料力学》,高等教育出版社,刘鸿文主编,2004年1月第4版;
[4]《互换性与技术测量》,中国计量出版社,廖念钊,古莹菴,莫雨松,李硕根,杨兴骏主编;2007年6月第5版;
[5]《机械设计手册第3卷》,机械工业出版社,机械设计手册编委会编著,2004年8月第3版;
带式输送机(圆锥一圆柱齿轮减速器)设计
致 谢
在此次毕业设计中,通过减速器的分析,对其进行了许多改进,解决了一些关键技术难点:1.完成了零件设计的全过程;2.熟悉装配工艺过程;3.怎样选择材料。在设计过程中我遇到了很多的难题,在指导廖老师老师不遗余力的帮助指导下我顺利完成了零件图、装配图等的设计。使我把所学知识进行了一次系统性的使用,通过这一课题的实施可以使我们把所学知识学以至用。
老廖师以他严谨的治学态度和丰富的理论知识为我纠正了设计中的错误,为我解答了设计中的疑问,为我设计论文的编写提出了许多宝贵性的意见,付出了很多心血。而我始终感觉到老廖师那种诲人不倦的高风亮节,这将在我遇到困难的时候永远激励着我。另外,廖老师定期检查设计完成情况,确保了质量和进度。在此,我感谢廖老师在这次毕业设计中予以我的极大帮助。
最后,对老师审阅我的论文深表感谢,并对我的设计提出不足之处。
带式输送机(圆锥一圆柱齿轮减速器)设计
第四篇:带式运输机上的单级圆柱齿轮减速器设计说明书
带式运输机上的单级圆柱齿轮减速器设计说明书 2008年12月23日 星期二 01:26 P.M.一种单级圆柱齿轮减速器,主要由主、从动变位齿轮、轴承、挡圈、端盖、主、副壳体、花键轴、内花键套法兰、压盖、轴承座组成。
其特点是主动变位齿轮是台阶式的,一端部齿轮与从动变位齿轮联接,另一端部与轴承、挡圈固定联接,轴承的外套与轴承座联接,轴承座与副壳体表面联接固定。
此减速器由于主、从齿轮采用变位齿轮,主动变位齿轮的另一端部增加轴承、轴承座,改变过去的悬臂状态,加强齿轮的工作强度,提高了减速器的寿命。
下面是设计说明书:
修改参数:输送带工作拉力:2300N 输送带工作速度:1.5m/s 滚筒直径:400mm 每日工作时数:24h 传动工作年限:3年
机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器 目 录 设计任务书……………………………………………………1 传动方案的拟定及说明………………………………………4 电动机的选择…………………………………………………4 计算传动装置的运动和动力参数……………………………5 传动件的设计计算……………………………………………5 轴的设计计算…………………………………………………8 滚动轴承的选择及计算………………………………………14 键联接的选择及校核计算……………………………………16 连轴器的选择…………………………………………………16 减速器附件的选择……………………………………………17 润滑与密封……………………………………………………18 设计小结………………………………………………………18 参考资料目录…………………………………………………18 机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器 一. 总体布置简图
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器 二. 工作情况: 载荷平稳、单向旋转 三. 原始数据
鼓轮的扭矩T(N•m):850 鼓轮的直径D(mm):350 运输带速度V(m/s):0.7 带速允许偏差(%):5 使用年限(年):5 工作制度(班/日):2 四. 设计内容
1.电动机的选择与运动参数计算; 2.斜齿轮传动设计计算 3.轴的设计
4.滚动轴承的选择
5.键和连轴器的选择与校核; 6.装配图、零件图的绘制 7.设计计算说明书的编写 五. 设计任务
1. 减速器总装配图一张 2. 齿轮、轴零件图各一张 3. 设计说明书一份 六. 设计进度
1、第一阶段:总体计算和传动件参数计算
2、第二阶段:轴与轴系零件的设计
3、第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、第四阶段:装配图、零件图的绘制及计算说明书的编写 传动方案的拟定及说明 由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。电动机的选择
1.电动机类型和结构的选择 因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择 1)工作机所需功率Pw Pw=3.4kW 2)电动机的输出功率 Pd=Pw/η η= =0.904 Pd=3.76kW 3.电动机转速的选择
nd=(i1’•i2’…in’)nw 初选为同步转速为1000r/min的电动机 4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求
计算传动装置的运动和动力参数 传动装置的总传动比及其分配 1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw nw=38.4 i=25.14 2.合理分配各级传动比
由于减速箱是同轴式布置,所以i1=i2。因为i=25.14,取i=25,i1=i2=5 速度偏差为0.5%<5%,所以可行。各轴转速、输入功率、输入转矩
项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮 转速(r/min)960 960 192 38.4 38.4 功率(kW)4 3.96 3.84 3.72 3.57 转矩(N•m)39.8 39.4 191 925.2 888.4 传动比 1 1 5 5 1 效率 1 0.99 0.97 0.97 0.97
传动件设计计算
1. 选精度等级、材料及齿数 1)材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。2)精度等级选用7级精度;
3)试选小齿轮齿数z1=20,大齿轮齿数z2=100的; 4)选取螺旋角。初选螺旋角β=14° 2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算 按式(10—21)试算,即 dt≥
1)确定公式内的各计算数值(1)试选Kt=1.6(2)由图10-30选取区域系数ZH=2.433(3)由表10-7选取尺宽系数φd=1(4)由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62(5)由表10-6查得材料的弹性影响系数ZE=189.8Mpa(6)由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;(7)由式10-13计算应力循环次数
N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8 N2=N1/5=6.64×107
(8)由图10-19查得接触疲劳寿命系数KHN1=0.95;KHN2=0.98(9)计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1==0.95×600MPa=570MPa [σH]2==0.98×550MPa=539MPa [σH]=[σH]1+[σH]2/2=554.5MPa 2)计算
(1)试算小齿轮分度圆直径d1t d1t≥ = =67.85(2)计算圆周速度 v= = =0.68m/s(3)计算齿宽b及模数mnt b=φdd1t=1×67.85mm=67.85mm mnt= = =3.39 h=2.25mnt=2.25×3.39mm=7.63mm b/h=67.85/7.63=8.89(4)计算纵向重合度εβ εβ= =0.318×1×tan14 =1.59(5)计算载荷系数K 已知载荷平稳,所以取KA=1 根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同,故 KHβ=1.12+0.18(1+0.6×1)1×1 +0.23×10 67.85=1.42 由表10—13查得KFβ=1.36 由表10—3查得KHα=KHα=1.4。故载荷系数 K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05
(6)按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 d1= = mm=73.6mm(7)计算模数mn mn = mm=3.74 3.按齿根弯曲强度设计 由式(10—17 mn≥ 1)确定计算参数(1)计算载荷系数
K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96(2)根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88
(3)计算当量齿数
z1=z1/cos β=20/cos 14 =21.89 z2=z2/cos β=100/cos 14 =109.47(4)查取齿型系数
由表10-5查得YFa1=2.724;Yfa2=2.172(5)查取应力校正系数
由表10-5查得Ysa1=1.569;Ysa2=1.798(6)计算[σF] σF1=500Mpa σF2=380MPa KFN1=0.95 KFN2=0.98 [σF1]=339.29Mpa [σF2]=266MPa(7)计算大、小齿轮的 并加以比较 = =0.0126 = =0.01468 大齿轮的数值大。2)设计计算 mn≥ =2.4 mn=2.5 4.几何尺寸计算 1)计算中心距 z1 =32.9,取z1=33 z2=165 a =255.07mm a圆整后取255mm 2)按圆整后的中心距修正螺旋角 β=arcos =13 55’50”
3)计算大、小齿轮的分度圆直径 d1 =85.00mm d2 =425mm 4)计算齿轮宽度 b=φdd1 b=85mm B1=90mm,B2=85mm 5)结构设计
以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。其他有关尺寸参看大齿轮零件图。轴的设计计算
拟定输入轴齿轮为右旋 II轴:
1.初步确定轴的最小直径 d≥ = =34.2mm 2.求作用在齿轮上的受力 Ft1= =899N Fr1=Ft =337N Fa1=Fttanβ=223N; Ft2=4494N Fr2=1685N Fa2=1115N 3.轴的结构设计
1)拟定轴上零件的装配方案
i.I-II段轴用于安装轴承30307,故取直径为35mm。ii.II-III段轴肩用于固定轴承,查手册得到直径为44mm。iii.III-IV段为小齿轮,外径90mm。iv.IV-V段分隔两齿轮,直径为55mm。v.V-VI段安装大齿轮,直径为40mm。
vi.VI-VIII段安装套筒和轴承,直径为35mm。2)根据轴向定位的要求确定轴的各段直径和长度
1.I-II段轴承宽度为22.75mm,所以长度为22.75mm。
2.II-III段轴肩考虑到齿轮和箱体的间隙12mm,轴承和箱体的间隙4mm,所以长度为16mm。
3.III-IV段为小齿轮,长度就等于小齿轮宽度90mm。4.IV-V段用于隔开两个齿轮,长度为120mm。
5.V-VI段用于安装大齿轮,长度略小于齿轮的宽度,为83mm。6.VI-VIII长度为44mm。4. 求轴上的载荷 66 207.5 63.5 Fr1=1418.5N Fr2=603.5N 查得轴承30307的Y值为1.6 Fd1=443N Fd2=189N 因为两个齿轮旋向都是左旋。故:Fa1=638N Fa2=189N 5.精确校核轴的疲劳强度 1)判断危险截面
由于截面IV处受的载荷较大,直径较小,所以判断为危险截面 2)截面IV右侧的
截面上的转切应力为
由于轴选用40cr,调质处理,所以([2]P355表15-1)a)综合系数的计算
由,经直线插入,知道因轴肩而形成的理论应力集中为,([2]P38附表3-2经直线插入)轴的材料敏感系数为,([2]P37附图3-1)故有效应力集中系数为
查得尺寸系数为,扭转尺寸系数为,([2]P37附图3-2)([2]P39附图3-3)轴采用磨削加工,表面质量系数为,([2]P40附图3-4)
轴表面未经强化处理,即,则综合系数值为 b)碳钢系数的确定 碳钢的特性系数取为,c)安全系数的计算 轴的疲劳安全系数为 故轴的选用安全。I轴:
1.作用在齿轮上的力 FH1=FH2=337/2=168.5 Fv1=Fv2=889/2=444.5 2.初步确定轴的最小直径
3.轴的结构设计
1)确定轴上零件的装配方案
2)根据轴向定位的要求确定轴的各段直径和长度
d)由于联轴器一端连接电动机,另一端连接输入轴,所以该段直径尺寸受到电动机外伸轴直径尺寸的限制,选为25mm。
e)考虑到联轴器的轴向定位可靠,定位轴肩高度应达2.5mm,所以该段直径选为30。
f)该段轴要安装轴承,考虑到轴肩要有2mm的圆角,则轴承选用30207型,即该段直径定为35mm。
g)该段轴要安装齿轮,考虑到轴肩要有2mm的圆角,经标准化,定为40mm。h)为了齿轮轴向定位可靠,定位轴肩高度应达5mm,所以该段直径选为46mm。i)轴肩固定轴承,直径为42mm。
j)该段轴要安装轴承,直径定为35mm。2)各段长度的确定
各段长度的确定从左到右分述如下:
a)该段轴安装轴承和挡油盘,轴承宽18.25mm,该段长度定为18.25mm。b)该段为轴环,宽度不小于7mm,定为11mm。
c)该段安装齿轮,要求长度要比轮毂短2mm,齿轮宽为90mm,定为88mm。d)该段综合考虑齿轮与箱体内壁的距离取13.5mm、轴承与箱体内壁距离取4mm(采用油润滑),轴承宽18.25mm,定为41.25mm。
e)该段综合考虑箱体突缘厚度、调整垫片厚度、端盖厚度及联轴器安装尺寸,定为57mm。
f)该段由联轴器孔长决定为42mm 4.按弯扭合成应力校核轴的强度 W=62748N.mm T=39400N.mm 45钢的强度极限为,又由于轴受的载荷为脉动的,所以。
III轴
1.作用在齿轮上的力 FH1=FH2=4494/2=2247N Fv1=Fv2=1685/2=842.5N 2.初步确定轴的最小直径 3.轴的结构设计
1)轴上零件的装配方案 2)据轴向定位的要求确定轴的各段直径和长度 I-II II-IV IV-V V-VI VI-VII VII-VIII 直径 60 70 75 87 79 70 长度 105 113.75 83 9 9.5 33.25
5.求轴上的载荷 Mm=316767N.mm T=925200N.mm 6.弯扭校合
滚动轴承的选择及计算 I轴:
1.求两轴承受到的径向载荷
5、轴承30206的校核 1)径向力 2)派生力 3)轴向力 由于,所以轴向力为,4)当量载荷 由于,所以,。
由于为一般载荷,所以载荷系数为,故当量载荷为 5)轴承寿命的校核 II轴:
6、轴承30307的校核 1)径向力 2)派生力,3)轴向力 由于,所以轴向力为,4)当量载荷 由于,所以,。
由于为一般载荷,所以载荷系数为,故当量载荷为 5)轴承寿命的校核 III轴:
7、轴承32214的校核 1)径向力 2)派生力 3)轴向力 由于,所以轴向力为,4)当量载荷 由于,所以,。
由于为一般载荷,所以载荷系数为,故当量载荷为 5)轴承寿命的校核 键连接的选择及校核计算
代号 直径
(mm)工作长度(mm)工作高度(mm)转矩
(N•m)极限应力(MPa)
高速轴 8×7×60(单头)25 35 3.5 39.8 26.0 12×8×80(单头)40 68 4 39.8 7.32 中间轴 12×8×70(单头)40 58 4 191 41.2 低速轴 20×12×80(单头)75 60 6 925.2 68.5 18×11×110(单头)60 107 5.5 925.2 52.4 由于键采用静联接,冲击轻微,所以许用挤压应力为,所以上述键皆安全。连轴器的选择
由于弹性联轴器的诸多优点,所以考虑选用它。
二、高速轴用联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为,计算转矩为
所以考虑选用弹性柱销联轴器TL4(GB4323-84),但由于联轴器一端与电动机相连,其孔径受电动机外伸轴径限制,所以选用TL5(GB4323-84)其主要参数如下: 材料HT200 公称转矩 轴孔直径,轴孔长,装配尺寸 半联轴器厚
([1]P163表17-3)(GB4323-84
三、第二个联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为,计算转矩为
所以选用弹性柱销联轴器TL10(GB4323-84)其主要参数如下: 材料HT200 公称转矩 轴孔直径 轴孔长,装配尺寸 半联轴器厚([1]P163表17-3)(GB4323-84 减速器附件的选择 通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5 油面指示器 选用游标尺M16 起吊装置
采用箱盖吊耳、箱座吊耳 放油螺塞
选用外六角油塞及垫片M16×1.5 润滑与密封
一、齿轮的润滑 采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。
二、滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
三、润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用L-AN15润滑油。
四、密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为(F)B25-42-7-ACM,(F)B70-90-10-ACM。轴承盖结构尺寸按用其定位的轴承的外径决定。设计小结
由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的。
第五篇:圆柱齿轮减速器设计开题报告
一、选题的依据及意义:
齿轮减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要,在某些场合也用来增速,称为增速器。其特点是减速电机和大型减速机的结合。无须联轴器和适配器,结构紧凑。负载分布在行星齿轮上,因而承载能力比一般斜齿轮减速机高。满足小空间高扭矩输出的需要。广泛应用于大型矿山,钢铁,化工,港口,环保等领域。与K、R系列组合能得到更大速比。按照齿形分为圆柱齿轮减速器、圆锥齿轮减速器和圆柱—圆锥齿轮减速器;二级圆柱齿轮减速器就是按其分类来命名的。圆柱齿轮减速器的设计是按传统方法进行的。设计人员按照各种资料、文献提供的数据,结合自己的设计实验,并对已有减速器做一番对比,初步定出一个设计方案,然后对这个方案进行一些验算,如果验算通过了,方案便被肯定了。显然,这个方案是可采用的。但这往往使设计的减速器有很大的尺寸富余量,造成财力、物力和人力的极大浪费。因此,优化圆柱齿轮减速器势在必行。
圆柱齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点,这些已被我国越来越多的机械工程技术人员所了解和重视。由于在各种类型的圆柱齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特的优点。圆柱齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。因此,圆柱齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器、和航空航天等工业部门均获得了广泛的应用。对这种减速器进行优化设计,必将获得可观的经济效益。
选做这个毕业设计,一方面对于减速器的内部结构和工作原理也有一定的了解和基础,其次通过对圆柱齿轮减速器这一毕业课题设计可以巩固我大学4年来所学的专业知识,对于我也是一种检验。可以全面检验我大学所学的知识是否全面,是否能灵活运用到实际生活工作中。在做的过程中我还可以不断学习和拓宽视野和思路,做到理论与实际相结合的运用。最重要的是对于即将离校走向社会的我是一种挑战,培养我独立思考,树立全局观念,为以后的我奠定坚实的基础。
二、国内外研究概况及发展趋势(含文献综述):
随着时代进步,科技与时俱进,对于齿轮的传动越来越多的科技因素在起 着主导地位。世界上一些工业发达国家,如日本、德国、英国、美国和俄罗斯等,对齿轮传动的应用,生产和研究都十分重视,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的圆柱传动技术,如封闭圆柱齿轮传动、圆柱齿轮变速传动和微型圆柱齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。圆柱齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对圆柱齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。
近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的齿轮传动技术有了迅速的发展。国内减速器行业重点骨干企业的产品品种、规格及参数覆盖范围近几年都在不断扩展,产品质量已达到国外先进工业国家同类产品水平。纵观国内减速器行业的现状,为保持行业的健康可持续发展在充分肯定行业不断发展、进步的同时,更应看到存在的问题,并积极研究对策,采取措施,力争在较短时间内能有所进展。目前,同外减速器行业存在的比较突出的问题是,行业整体新产品开发能力弱、工艺创新及管理水平低,企业管理方式较为粗放,相当比例的产品仍为中低档次、缺乏有国际影响力的产品品牌、行业整体散、乱情况依然较为严重。基于此,推进行业优势企业间的购并、整合,尽快形成有着一定的市场影响力的品牌、有较大规模的和实力、有较强产品研发和技术支持能力的这样若干个集团型企业,如此放能在与国外同行的竞争中保持一定的优势并不断得以发展。
国内减速器行业重点骨干企业的产品品种、规格及参数覆盖范围近几年都在不断扩展,产品质量已达到国外先进工业国家同类产品水平,完全可承担起为国民经济各行业提供传动装置配套的重任,部分产品还出口至欧美及东南亚地区。
目前,国内各类通用减速器的标准系列已达数百个,基本可满足各行业对通用减速器的需求。在第一代通用硬齿面齿轮减速器及圆弧圆柱蜗杆减速器系列产 2 品的基础上,由西安重型机械研究落开发并完成标准化的新一代圆柱及圆锥——圆柱齿轮减速器及圆弧圆柱蜗杆减速器业已投方市场。新一代减速器的突出特点为不仅在产品性能参数上进一步进行于优化,而且在系列设计上完全遵从模块化的设计原则,产品造型更加美观,更宜于组织批量生产,更适应现代工业不断发展而对基础件产品提出的愈来愈高的配套要求。此外,南京高精齿轮股份有限公司也推动了PR系列的模块式齿轮减速器系列产品。但总体而言,国内同外减速器系列产品的开发及更新工作近几年进展缓慢,与国外同行在此方面的差距有拉大的趋势。而且与市场的需求也很不适应,西安重型机械研究所及国内其他单位今年已着手开始这方面的开发级标准化工作。
在通用减速器的制造方面,国内目前生产厂家数目众多,如对各种类型的圆柱齿轮机圆锥——圆柱齿轮或者齿轮——蜗杆减速器系列产品,国内主要厂家有南京高精齿轮股份有限公司、宁波东力传动设备有限公司、江阴齿轮箱制造有限公司、江苏泰星减速器有限公司、江苏金象减速机有限公司、山西平遥减速机厂等。对象蜗杆减速器,目前国内主要生产圆弧圆柱蜗杆减速器、锥面包络圆柱蜗杆减速器、平面二次包络环面蜗杆减速器等多种类型,主要生产厂家有江苏金象减速机有限公司、首钢机械制造公司、杭州减机厂、杭州万杰减速剂有限公司、天津万新减速机厂、上海浦江减速机有限公司等,对各种通用圆柱齿轮减速器、包括标准的NGW系列圆柱齿轮减速器,也包括各类回转圆柱减速器及封闭式圆柱齿轮检录其等,主要生产厂家有荆州巨鲸动机械有限公司、洛阳中重齿轮箱有限公司、西安重型机械研究所、石家庄科一重工有限公司、内蒙兴华机械厂等。
在各类专用传动装置的开发机制造方面,国内近几年取得的明显的进展,如重庆齿轮箱有限责任公司生产的MDH28型磨机边缘驱动传动装置,其最大功率已达7000KW,传动转矩达5000KN.m,总重46吨,生产的1700热连轧主传动齿轮箱子的最大模数为30,重量达180吨。由杭州前进齿轮箱有限公司生产的gwc70/76型1.2万吨及装箱船用齿轮箱,传动功率已达6250KW。(转载中国锻压网)由南京高精齿轮股份有限公司及重庆齿轮箱有限公司生产的里磨系列齿轮箱最大功率已达3800KW,由西安重型机械研究所、洛阳重重齿轮箱有限公司、荆州巨鲸传动机械有限公司等开发制造的重载圆柱齿轮箱系列产品在矿山、冶金、建材、煤炭及水电等行业也都得到了广泛应用,其中西安重型机械研究所开发的水泥行业辊压机悬挂系列圆柱齿轮箱的输入功率已达1250KW,用于铝造轧 机的圆柱齿轮箱有司责任公司、杭州前进出论箱有限公司、西安重型机械研究所开发的风力发电增速箱系列产品也逐步取代进口产品,广泛应用于国内风电行业。在大型齿圈的制造方面,国内目前最大直径为9.936米,净重达80吨的齿圈已由中信重机制造完成,并用于武钢集团年产500万吨氧化球生产线,至此用于大型烧结机、磨机、回转窑的大型驱动装置以及用于转炉及烧结设备的大型柔性传动装置国内均可圈套供货,而无需再行进口。
在其他类型新产品的开发方面,行业企业也取得了不少成果,如西安重型机械研究所开发的工程车辆变速箱和风机及泵用差动节能调速装置、洛阳中重齿轮箱有限公司的大型矿井提升机圆柱齿轮箱、江苏金象减速机公司的磨机驱动齿轮箱、北京太富力传动有限公司的大型三环传动齿轮箱及传动装置等,也都受到了市场的欢迎并得以广泛应用。
在行业企业的产能扩展及技术改造方面,近几年呈现出跨越式的发展,这一方面得益于近几年市场强劲需求的拉动,另一方面也是受企业扩大生产规模、提升加工制造水平、进而提升企业竞争力的主观愿望的驱动,国内主要产品厂家近二年购进的关键加工设备,如大型磨齿机、镗铣床、技工中心及热处理设备等,累计超过200余台(套),预计行业产能扩大一倍以上,技改工作的开展固然有提审行业企业规模和生产集中度及竞争力的客观效果,但由于仍存在行业企业数量多、规格小及水平参差不齐等实际问题,因之随着市场需求的回落和国外同行厂商大规模进入国内市场,行业竞争必将进一步加剧,这也必将促进行业企业间的购并、整合甚至转型。
据有关资料介绍,人们认为目前齿轮传动技术的发展方向如下:
(1)标准化、多品种 目前世界上已经有50多个渐开线圆柱齿轮传动系列设计;而且还演化出多种形式的圆柱减速器、差速器和圆柱变速器等多种产品。
(2)硬齿面、高精度 圆柱传动机构中的齿轮广泛采用渗碳和氮化等化学热处理。齿轮制造精度一般均在6级以上。显然,采用硬齿面、高精度有利于进一步提高承载能力,使齿轮尺寸变得更小。
(3)高转速、大功率 圆柱齿轮传动机构在高速传动中,如在高速汽轮中已获得日益广泛的应用,其传动功率也越来越大。
大规格、大转矩 在中低速、重载传动中,传递大转矩的大规格的圆柱齿轮传 动已有了较大的发展。
三、研究内容及实验方案:
在圆柱齿轮传动的设计时,应该根据设计任务书所要求该圆柱传动的要求(原始数据及设计技术要求),进一步分析该传动所需的使用要求、工作状况和所需齿轮的机械特性,首先应了解和掌握该圆柱齿轮传动的已知条件;通常,已知的其原始数据为输入功率、输入转速、传动比、工作特性和载荷工况等。
建立优化设计模型,优化问题的数学是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以转化成一般数学问题。采用惩罚函数法对设计参数进行约束优化,以中心距最小为目标进行优化设计,并与常规设计进行比较。进而绘制出减速器装配图及主要零件图。
二级圆柱齿轮减速器的优化设计的一般原则是:
(1)各级传动的承载能力大致相等(可以最大性能的发挥减速器的承载能力);
(2)在一定承载能力下,减速器具有最小的外形尺寸和重量;(3)各级传动中大齿轮的浸油深度大致相等。
四、目标、主要特色及工作进度
1、设计目标:
设计出的圆柱齿轮减速器:其输入功率P=6.2kW,输入转速n1=1450r/min,总传动比i=16.5,齿轮的宽度系数φa=0.4,工作寿命10年,每年工作300天。结构紧凑、传动功率较高,采用惩罚函数法,以中心距最小为目标进行减速器优化设计
2、圆柱齿轮减速器主要特色:
1、重量轻、体积小,结构紧凑、承载能力大
2、传动效率高
3、传动功率范围大,可以实现运动的合成与分解
4、运动平稳、抗冲击和振动的能力较强
5、采用硬齿面技术,使用寿命长,使用性广。
3、工作进度:
1.收集资料、开题报告、外文翻译
3.05-3.25
第1周—第3周 2.建立优化设计的数学模型
3.26-4.8
第4周—第6周 3.编写优化设计程序、计算
4.11-4.24
第 7周—第9周 4.减速器常规设计计算、结果分析
4.25-5.6
第10周—第12周 5.绘制减速器装配图及主要零件图
5.9-5.20
第13周—第14周 6.撰写毕业设计论文
5.21-5.31
第15周—第16周 7.答辩准备及论文答辩
6.1-6.2
第17周
五、参考文献
[1]、璞良贵,纪名刚主编.机械设计.第八版.北京:高等教育出版社,2007 [2]、孙靖民主编.机械优化设计.第三版.北京:机械工业出版社,2005 [3]、方世杰,綦耀光主编.机械优化设计.北京:机械工业出版社,1997.2 [4]、王昆等主编.机械设计课程设计手册.北京:机械工业出版社,2004 [5]、Carrol, R., and Johnson, G.,“Optimal design of compact spur gear sets”, ASME Journal of mechanisms, transmissions and automation in design.Vol.106, No.1, March 1984, pp.95-101