第一篇:砂浆在线回收离心机工艺调整对碳化硅分离质量的影响
砂浆在线回收离心机工艺调整对碳化硅分
离质量的影响
摘要:本文通过对在线回收系统工艺的研究,确定使用不同回收工艺对碳化硅回收质量的影响。碳化硅为砂浆的配比成分,而其作为硅片多线切割的主要材料之一,碳化硅回收质量的好坏对硅片切割的质量有着直接影响。结合流动颗粒图像分析仪FPIA3000对碳化硅颗粒粒径、圆度、颗粒分布进行检测,对不同回收工艺下碳化硅的检测情况;同时配合激光测径仪、电子拉力试验机对切割钢线进行检测从侧面了解碳化硅切割情况;最终通过生产应用确定砂浆回收系统分离频率、砂浆分离温度、液层厚度、进料流量等对碳化硅分离质量的影响。关键词:砂浆、在线回收、离心机、微粉含量
前言
砂浆在线回收系统随着太阳能产业的发展而兴起,尤其是受到国际金融危机的影响,太阳能硅片价格低迷,使得国内许多的硅片切割企业开始把注意力转移到了砂浆在线回收系统上,以降低硅片的生产成本。在太阳能硅片切割过程中,切割下来的大量硅粉会混入切割砂浆中被系统带出。碳化硅微粉经磨削后部分破碎为颗粒度更小的微粉。硅粉和细颗粒度碳化硅含量达到一定程度时,砂浆不能满足切割工艺要求,只能从系统排出成为废砂浆。废砂浆的构成分为液体和固体两部分:其中的液体是大量的聚乙二醇和少量水,固体部分是粗颗粒碳化硅、细颗粒碳化硅、硅粉、少量金属屑。普通的离心分离是将液体和固体分离,而砂浆在线回收系统的目的是如何将可再利用的较大碳化硅颗粒分离出来进行回收,这也是我们主要研究的内容。本文着重对在线回收系统
图1 卧式离心机结构图 的工艺进行研究确定各项工艺变动对多晶硅片切割质量的影响并对实际生产提供有效指导。
在线回收系统
在线回收系统的核心部件为离心机。利用离心沉降原理,实现固相和液相组成的悬浮液或液-液-固组成的三相混合物的分离, 本文以LW350 × 1050N卧式螺旋沉降离心机为例研究在线回收系统工艺对切割质量的影响。
1、离心机工作原理
离心机由主电机、副电机、机罩、差速器、螺旋推料器、转鼓及一套电器控制柜
等组成,其中主副电机分别采用变频控制。其工作原理是: 砂浆经进料口进入转鼓,由于高速旋转产生的离心力作用,在转鼓内部被加速并形成一个圆柱液环层,密度较大的固态颗粒会沉积在转鼓内壁上,与转鼓作相对运动的螺旋叶片不断的将转鼓内壁上的固态颗粒刮下并推出排渣口。分离后的清液经液层调节板开口流出转鼓。
图
2影响离心机分离因素
2、影响离心机分离效果的因素 从影响离心机分离效果的因素着手对离心机的分离效果进行研究。其中离心机设计尺寸为离心机出厂既定参数,无法更改此文不于讨论。在既有离心机基础之上对离心机的分离效果进行实验验证。
2.1离心机频率
离心机的频率主要包括主频和副频,其中主频对应转鼓转速调整,副频对应差速调整。转鼓转速影响离心机的分离效果和单位时间内的处理量。转速越高 ,离心力越大 ,固体颗粒的沉降速度越快 ,离心机的分离因数越高,但砂浆中的微粉是无效切割粒子,离心力过大会将过多无效切割粒子分离出来对砂浆回收质量起负面因素。差速决定了螺旋推料器的排料速度,它的大小影响离心机的分离效果和处理能力。转速觉得固相沉降速度、差速觉得排料速度,因此要转速和
差速的合理配合,达到需求的固相达到转鼓壁时排料推进器将固相排出从而到达预期的分离效果。
2.2砂浆分离温度
温度是对砂浆粘度影响最大的一个因素,同时粘度也是影响分离效果的因素之一。液体的粘度越大对固体表面形成的张力束缚越大,在切割过程中这一特性能很好的将砂浆中的碳化硅悬浮并携带入切割缝隙参与切割。但是在离心分离过程中需要降低砂浆的粘度来降低液体对固体的束缚力从而利于固液的分离。
图
3砂浆粘度随温度变化曲线
温度对砂浆的粘度影响较大,随着温度的变化砂浆的粘度会发生明显变化。如图2所示,随着温度的升高砂浆的粘度不断降低,因此提升温度能提升砂浆的分离效果。
2.3液层厚度
液层厚度即砂浆在离心机中的液位高度,它直接影响分离效果和离心机的震动程度,同时也决定了清液在离心机内的停留时间。当进料量一定时,液层厚度越大,料液在离心机内的停留时间就越长,达到的分离效果就越好,但对于砂浆回收来说,液层过厚会导致大量的无用小颗粒被分离出来,降低可用砂所占的回收比例,降低回收效果。同时合理更换液层调节板可以改善离心机的
分离效果,但必须确保所有液层板都安装在相同的高度上,而且不同规格的液层板不能混用,否则将会导致离心机受力不均匀,产生剧烈震动。由此可见合理的液层厚度也是维持离心机最佳工作状态的重要因素。
2.4进料流量
进料流量的大小对离心机的回收率及分离效果影响较大。进料流量小,料液在转鼓内的轴向流速也小,物料在机器内停留时间则长,分离效果提高,同时回收率提高;进料流量增大,轴向流速也增大,物料在机器内停留时间减少,分离效果随之下降,回收率降低。进料流量越小分离效果越好,但是这是指固液的分离。砂浆回收的主要目的是要将其中不利于切割的小颗粒碳化硅分离出去,因此流量太小也会导致砂浆中的无用小颗粒被回收,同时对离心机的生产能力有明显影响。
离心机工艺调整对分离质量影响
硅片切割主要是钢线携带砂浆进行研磨的滚动式切割,而起主导作用的就是砂浆中的碳化硅。在碳化硅几个主要的参数当中,粒型、粒径、圆形度及微粉含量在切割中起到了至关重要的作用;本文主要对离心机可以影响的微粉含量进行讨论,从而确定在线回收系统工艺对切割质量的影响。微粉含量在回收碳化硅中体现尤为明显,碳化硅的制作过程中尤其是碳化硅从废砂浆回收过程中,微粉很难处理干净,一般指粒径小于2μm的颗粒(本文以小于3um为界限),微粉存在过多的话,切割过程中微粉会对碳化硅形成包裹,从而使碳化硅的切割能力下降,影响硅片质量。
1、离心机频率调整
对在线回收系统离心机参数进行单独调整,维持进料流量10L/min,进料温度34℃,液层厚度控制挡板中位档。同时对分离的一次重液即分离固体中碳化硅通过FPIA3000检测确定微粉含量。频率 差速 回收率 微粉<3um 21.6、17.2
80% 8.0% 21.6、18.3 6 69% 5.7% 20.5、17.2 6 62% 6.6% 19.9、14.3
68%
7.1%
表
1不同频率回收率及微粉变化
由表1可以看出在不同频率下砂浆的回收率和微粉含量不同,在差速相同的情况下主频越大回收率越高,主频相同的情况下差速小回收率越大,但此时要考虑流量和设备出料量的匹配,如果进料流量大于出料量那么多余的砂浆就会从排液孔排出造成回收率下降因此表1中出现在主频一定的情况下
差速小的回收率反而小,但这也会降低分离固体中的微粉含量,同样对砂浆的浪费也会增大。同时需要考虑高频率下对设备的损耗也会加大。
2、砂浆分离温度调整
维持进料流量10L/min,离心机频率19.9HZ、14.3HZ,液层厚度控制挡板中位档,对在线回收系统砂浆分离温度进行调整,并对分离的一次重液中碳化硅微粉含量进行检测。砂浆温度 砂浆粘度 回收率 微粉<3um 26.2
271.4 62% 12.1% 33.5
123.2
68%
6.7%
表
2不同分离温度对回收率及微粉影响
如表2所示,随着温度的升高砂浆的粘度会有明显的下降。砂浆粘度降低后有利于砂浆中的碳化硅分离,回收率会有所提升,同时分离效果也会越好。需要注意的是砂浆中的聚乙二醇在120℃是会发生分解,因此要考虑加热设备与砂浆接触面的温度不易过高以防聚乙二醇受热分解。
3、液层厚度调整
离心机的分离液层厚度主要受排液位置影响,排液位置越接近转鼓中心轴液层厚度越大。维持进料流量10L/min,离心机频率19.9HZ、14.3HZ,砂浆分离温度34℃对比不同液层厚度下的分离效果。排液位置 回收率 微粉<3um 低液层厚度 58% 6.1% 中液层厚度 63% 6.9% 高液层厚度 67%
8.2% 表
3不同液层厚度对回收率及微粉变化
根据设备自带的调节液层厚度方式对液层厚度进行高、中、低三档对比液层厚度对微粉含量变化影响。液层厚度越高回收率越高,微粉含量也会随之增加。但不能完全依据此调整降低回收碳化硅中的微粉含量,因为随之液层厚度的降低回收率也会降低,也就意味着更多的可用碳化硅随液体排出离心机。
4、进料流量调整
设定离心机频率19.9HZ、14.3HZ,砂浆分离温度34℃,液层厚度中档,对比不同进料流量对分离效果的影响。流量 回收率 微粉<3um 9.5 72% 8.04% 10.0 67% 6.61% 10.5 62%
7.7% 表4
不同流量回收率及微粉变化
通过表1可以看出在维持其他参数不变的情况下,调整流量会对碳化硅的回收率有明显变化。其他参数不变,流量越大回收率越小,但是随着流量的增加微粉的含量也会随之增加,尤其在进料流量大于排料能力的时候这一情况会表现的尤为明显。
结论
砂浆在线回收系统的可调因素及对切割质量影响的4个主要方面:
① 离心机频率:主频越高回收率越高,回收效果越好,但要考虑微粉含量对切割的影响及设备损耗。离心机频率是在线回收系统的主要调整参数。
② 砂浆分离温度:砂浆分离温度越高,粘度越低分离效果越好,这里主要考虑加热方式及设备成本。其次加热温度不易过高,温度过高操作危险系数升高以及砂浆中的聚乙二醇有可能分解。
③ 液层厚度:液层厚度越小固体分离效果越好,但是液层厚度过小也会影响砂浆中碳化硅的回收利用率,同时液层厚度也会受设备本身设定的局限性。
④ 进料流量:砂浆的进料流量越大砂浆的回收率越小,分离效果越好,但当流量大的一定程度后微粉含量会增大,分离效果会直线下降。同时进料流量和设备设计有关,受排料量影响,当进料大于排料后分离效果会明显下滑。此外进料流量也直接影响设备的产能。进料流量是砂浆回收系统的主要调整参数。参考文献:
[1]王志文.离心机分离效果的影响因素.聚酯工业.2008.21(5);47-49.[2] 孙守振,王林勇,奚西峰.碳化硅粒径分布对单晶硅线切割的影响.中国粉体技术.2011.17(1);52-54.[3] 李保军,冯涛.硅单晶锭多线切割中砂浆作用的研究[J].工艺技术与材料,2007,32(6):512-515.[4] 邢鹏飞,赵培余,郭菁,等.太阳能级多晶硅切割废料浆的综合回收[J].材料导报 A:综述片.2011:1(25):75-79.[5]栾国旗.多线切割中温度对悬浮液的影响[J].电子工业专用设备,2012,15(205):15-16.
第二篇:判断在线回收砂浆质量方法的研究
判断在线回收砂浆质量方法的研究 引言
砂浆是由碳化硅和切割液按照适当的比例调配而成的,其配比决定了砂浆的密度。砂浆的配比,与硅片切割质量有直接关系。如果砂浆中碳化硅的量过多,容易在切割前期型槽碳化硅颗粒的堆积,硅片切割能力较强,因此入刀边缘硅片厚度较薄;随着切割的进行,堆积的碳化硅颗粒会难以进入锯缝,同时其阻力作用会导致线弓增大,而由于出入线口钢线会发生磨损,出线口钢线直径较小,因此切割后的硅片厚度值偏差较大。而如果砂浆中碳化硅的量过少,则会导致切割能力不足,出现切斜或锯痕片。因此,要根据实际情况调整切割液和碳化硅的比例。
砂浆也具有一定的粘度,粘度值主要由切割液的粘度决定。在硅片切割过程中,钢线在导轮槽内缠绕,通过导轮的转动形成互相平行的线网,砂浆通过浆料嘴流到线网上面,由于砂浆具有一定的粘度和悬浮性,砂浆中的碳化硅颗粒附着在钢线上,随着线网的转动不断对硅片进行磨削切割。因此,硅片加工过程中,实际起到切割作用的是碳化硅颗粒。碳化硅和悬浮液的相关参数
判断碳化硅质量的主要参数是:
(1)粒径。当前硅片厚度主流为180μm,硅片较薄,若粒径值过大,则会造成硅片表面划伤,影响硅片外观质量;同时,会加大硅片切割后的残余应力,易造成硅片崩边碎片。若粒径值小,则切割能力较弱。碳化硅的粒径分布越均匀,越集中,碳化硅的切割能力越强,切割质量越好。通常,我们用中粒径D50表征碳化硅粒径分布情况。
(2)圆度。碳化硅的圆度表示的是碳化硅棱角的锋利程度,即砂浆的切割能力。碳化硅棱角越尖锐,碳化硅的切割能力越强,但如果颗粒称长条状则在切割过程中易断裂,不利于切割。随着碳化硅对硅块的磨削碰撞,碳化硅的棱角会逐渐被磨圆,其切割能力也会随着下降。
(3)微粉含量。通常微粉是指粒径小于2μm的颗粒,由于微粉不具备切割能力,若砂浆中微粉含量过高,微粉颗粒会包裹在大的碳化硅颗粒表面,影响切割,因此砂浆中的微粉含量值越低砂浆质量越好。以1200#碳化硅为例,D50值范围为9.5±0.8μm,圆度系数值须小于0.905,微粉含量低于30%.切割液的主要成分是聚乙二醇,性能优良的切割液具有悬浮性、冷却性和易清洗性。由于砂浆中起切割作用的是碳化硅颗粒,为保证其能均匀悬浮在钢线上,必须保证切割液具有良好的悬浮性,使碳化硅较好地分散在钢线表面,同时保证碳化硅不会沉淀到底部。
由于切割过程中,碳化硅和硅块之间摩擦会产生大量热量,若这部分热量不能及时被带走,会造成硅片灼伤;同时温度会影响砂浆的粘度和密度,因此切割液须有良好的热传导性,保证砂浆良好的切割性能。切割完毕后,砂浆回附着在硅片表面,需要将硅片清洗干净,因此切割液须具有易清洗性能,保证硅片的外观质量。
判断切割液质量的主要参数是粘度、密度、水分含量和ph值。粘度是表征切割液性能的重要指标,它直接影响其悬浮性能及流动性,粘度值高,砂浆流动性差,无法将切割过程中产生的热量及时带走;粘度值低,则悬浮性差,碳化硅不能很好地悬浮分布在钢线上。切割液的密度决定了砂浆的切割能力,密度值低,则砂浆切割能力差;但密度值不能过高,否则会影响砂浆的粘度。
由于切割液能够百分之百溶于水,若切割液水含量高,会使得砂浆中的碳化硅颗粒连结在一起,分散性变差,影响切割能力。Ph值则表征了切割液的易清洗性能。对于新切割液,在25℃的温度条件下,粘度值范围为45-60mpas,密度范围为1.12-1.13 g/cm³,水含量为小于0.5%,ph值范围为5-7。需要注意的是,切割液具有很强的吸水性,要保证切割液的储存环境湿度范围低于60%.在线回收
砂浆是硅片切割的主要耗材,砂浆成本在硅片加工成本中占有较大比重。每次切割结束后,虽然碳化硅颗粒由于摩擦作用和破碎原因切割能力降低,且过程中产生较多微粉颗粒,但砂浆中仍然含有较多大颗粒碳化硅依然有较强的切割能力。
为能进一步降低硅片加工成本,对切割后的砂浆进行回收已成为行业的趋势。砂浆的回收方式有两种:在线回收和离线回收,其中,在线回收属于物理回收,离线回收属于化学回收。使用在线回收系统对砂浆进行在线回收的流程是:将切片后的旧砂浆收集到储存罐,经离心机实现固液分离,分离出可再利用的碳化硅,去除不具备切割能力的微粉颗粒和大部分切割液,碳化硅回收比例根据切割质量情况可以调整。分离出的碳化硅成胶块状,加入新的切割液调配至所需比重,即
为重液。调配后的重液加到新砂浆调配罐,按照比例添加一定量的新切割液和新碳化硅粉,经搅拌后达到新切割砂浆的比重要求,输送到砂浆供给罐内备用。
在线回收技术的优点是:使用在线回收设备可以在生产现场直接进行废砂浆回收处理,操作简便,在生产过程不需增加任何化学试剂,这样得到的砂浆能够保证原有的性质,保证砂浆质量,且可多次重复使用,同时免去了物流等中间环节。
由于在线回收过程是物理回收,该过程没有添加任何化学试剂,因此废砂浆中的碳化硅颗粒经过离心机离心后,不能有效将圆度值不同的碳化硅颗粒分离开,亦不能将微粉颗粒有效完全分离出来,且该部分微粉颗粒容易团聚在大颗粒碳化硅表面。砂浆的在线回收过程循环进行,部分碳化硅颗粒多次重复利用,因此做好在线回收砂浆的质量判断工作尤为重要。在线回收砂浆质量判断方法
判断在线回收砂浆的质量标准主要是通过检测砂浆的各项参数进行判断,其的参数主要包括:
(1)粘度。在线成品砂浆的粘度值范围通常为170-200pas(25℃),检测设备为欧美克粒度分析仪或其它有关设备。
(2)密度。在线回收砂浆的密度值为1.630-1.645 g/cm³.密度值高,砂浆的粘度也会相应升高,流动性变差,且不利于后期继续回收;密度值低则切割能力较差。
(3)微粉含量,砂浆的微粉含量值根据回收砂浆的比例不同而有所不同,通常小于6μm的微粉含量不要超过6%.(4)粒径。砂浆中碳化硅的D50值为9.5-10.3μm。
(5)圆度。砂浆中碳化硅的圆度系数范围为0.915-0.925。测量砂浆中碳化硅的微粉含量、圆度及粒径值使用马尔文粒度分析仪,传统的检测方法是将碳化硅溶于纯水中,但是由于切割液具有一定的粘度,检测时会有较多的微粉颗粒附着在大颗粒碳化硅表面,碳化硅颗粒会产生颗粒团聚的现象,粘连在一起,这样就会使得检测结果中粒径值偏大,微分含量比例偏小,而圆度值则没有了参考性,从而无法对砂浆质量作出判断依据。一种新的检测方法是:
(1)使用电子天平称取0.15±0.02g的砂浆放到10mL的量杯中(量杯不宜大);
(2)使用胶头滴管向量杯中添加4mL酒精,目的是使切割液的分子链断开,避免切割液的粘性作用使颗粒粘连;
(3)再使用胶头滴管向量杯中添加4mL纯水;
(4)然后使用胶头滴管向量杯中滴1mL浓度为0.1%的P40试剂,主要作用是减少碳化硅颗粒的团聚现象,之后将溶液充分搅拌均匀;
(5)将盛有溶液的量杯放入超声波清洗机(25kHZ)内超声30秒钟,然后再次将溶液搅拌均匀(在此过程中不断用胶头滴管吸取溶液防止碳化硅颗粒沉积杯底),即可开始测量。
(6)检测结果以体积计。小结
通过有效控制在线回收砂浆的质量,避免在硅片切割过程中由于砂浆原因导致出现质量异常,如产生切斜、锯痕不合格片及TTV超差片的情况,对于提高硅片合格率有重要意义,同时,可有效降低硅片加工过程中的砂浆成本。
第三篇:对《太阳能晶硅片切割废砂浆回收工艺研究》的评述
对《太阳能晶硅片切割废砂浆回收工艺研究》项目的
评审建议
一、有关背景
1、硅片切割废砂浆来源及成份
集成电路用基板、太阳能电池用基板的产品切割,一般用钢丝带动由碳化硅磨料构成砂浆对高纯度单晶或多晶硅棒进行切割。太阳能光伏电池行业的发展带动了整个晶硅生产、晶硅切片及晶硅切割废砂浆回收利用行业的发展。
太阳能硅片切割液废砂浆是硅片切割的必然产物,其组成为:聚乙二醇35%;碳化硅微粉33%;单晶硅微粉9%;水5%和组成切割液其它物质15%;有机胶粒;二氧化硅;金属及金属离子;破碎碳化硅微粉(色素和有机胶粒以及金属及金属离子和破碎碳化硅微粉3%)。
2、硅片切割废液回用价值
废砂浆中主要可回用的是聚乙二醇、碳化硅和单晶硅。每吨废砂浆中含有8%~9%(重量)高纯硅,也就是含有80kg~90kg单晶硅。(单晶硅主要用途是用作半导体材料和利用太阳能光伏发电、供热等。)
每吨废砂浆中含有35%聚乙二醇,也就含有350kg聚乙二醇。(聚乙二醇可用作环氧树脂和聚乙烯醇的增韧剂。)
每吨废砂浆中含有33%碳化硅微粉,即330kg碳化硅。(碳化硅主要用于制作砂轮、砂纸、砂带、油石、磨块、磨头、研磨膏及光伏产品中单晶硅、多晶硅和电子行业的压电晶体等方面的研磨、抛光等。也可用做炼钢的脱氧剂和铸铁组织的改良剂,或者可用做制造四氯化硅的原料,是硅树脂工业的主要原料。)
将切割砂浆中高纯硅粉、碳化硅和聚乙二醇提取出来,进一步用于制备单晶硅或多晶硅原料,还可以解决高纯度硅资源短缺问题,对于资源有效回收利用是一个重要贡献。
回收原料再利用的具体经济价值应以当前市场价格进行测算。
3、主要回收分离技术
当前一般采用物理方法进行分离,即依据各成份的性质先进行固体和液体分离,再进行液体提纯分离。
进行固体和液体分离的主要方法有:离心分离法、旋流分离、浮选法、虹吸法、过滤法、分级法、筛分法、电极法、超声法。
液体提纯分离的主要方法有:压滤、膜过滤和蒸馏。
3.1 用于碳化硅微粉分离的方法
1)离心分离法。离心分离借助于离心力,使比重不同的物质进行分离的方法。由于离心机等设备可产生相当高的角速度,使离心力远大于重力,于是溶液中的悬浮物便易于沉淀析出:又由于比重不同的物质所受到的离心力不同,从而沉降速度不同,能使比重不同的物质达到分离。目前生产厂家采用的设备有卧螺离心机,平板离心机,三足式离心机,主要用于聚乙二醇和碳化硅固液分离,以及碳化硅微粉中微小颗粒的分离,大约能将5μm以下的微粒分离。这3种分离设备有各自的特点,可互相配合使用。也可单一使用;
2)旋流分离法。浆液通过水压力从旋流器内壁外侧切向进入,在离心力的作用下,粗粒(重)度的固体颗粒旋转向下,定量或不定量地从下部排渣口流出,而细粒(轻)度的固体颗粒(或清液)从溢流管内向上流出。目前厂家采用的多为小直径旋流分离器;
3)浮选法。固体颗粒自身表面具有疏水性或经浮选药剂作用产生或增强疏水性。疏水就是亲油和亲气体,可在液,气或水—油的界面发生聚集。本方法仅适用于特殊情况,以及单晶硅微粉的提纯上,由于实际运用教少,加之浮选剂的难找,此处不加评述; 4)虹吸法。虹吸原理就是连通器的原理,加在密闭容器里液体上的压强,处处都相等。而虹吸管里灌满水,没有气,来水端水位高,出水口用手掌或其他物体封闭住。此时管内压强处处相等。一切安置好后,打开出水口,虽然两边的大气压相等,但是来水端的水位高,压强大,推动来水不断流出出水口。本方法主要在河南地区广泛使用,也称自然沉降法主要适用1200号碳化硅微粉。对于1500目以上的碳化硅微粉,出现沉降速度慢,生产周期长,硅料比较严重的问题;
5)过滤法。液体穿过滤纸上的小孔,而固态物质留在滤纸上,从而使固体和液体分离。主要设备为压滤机;
6)分级法。目前生产厂家使用的方法有水力分级和风力分级。水力分级为最原始可靠的方法,原理简单,便与控制与分级,但投资大,控制设备仪器尤其是分级锥斗角度,进液口速度精度要求高。水力分级为最原始可靠的方法,原理简单,便与控制与分级,但投资大,控制设备仪器精度要求高。虽然回用碳化硅微粉质量不如水力分级的好,但风力分级的碳化硅微粉也能满足回用要求,并且投资小,故目前风力分级为大多数厂商采用;
7)筛分法。主要使用超声波微粉震动筛,可将500目以上的大颗粒杂质及碳化硅微粉团聚物筛除。
3.2 用于聚乙二醇分离的方法
1)电极法。通常所谓离子选择电极,是指带有敏感膜的、能对离子或分子态物质有选择性响应的电极,使用此类电极的分析法属于电化学分析中的电位分析法;
2)吸附法。目前回收厂家采用方法为活性碳或硅藻土吸附。以及离子交换吸附; 3)膜过滤法。膜过滤是一种与膜孔径大小相关的筛分过程,以膜两侧的压力差为驱动力,以膜为过滤介质,在一定的压力下,当原液流过膜表面时,膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的分离和浓缩的目的。在废砂浆回收利用中,主要用于去除聚乙二醇中的微量杂质及悬浮物;
4)蒸馏法。利用液体混合物中各组分挥发度的差别,使液体混合物部分汽化并随之使蒸汽部分冷凝,从而实现其所含组分的分离。是一种属于传质分离的单元操作。目前在废砂浆回收中主要采用了单效及多效薄膜蒸发。
二、行业发展状况及趋势 2007年以来,全国先后出现了许多废砂浆回收企业,使得废砂浆回收技术不断改进和完善。几年来在硅片切割废砂浆的回收利用方面物理分离提纯方法得到了长足的进步,但全国回收企业技术参差不齐,仍存在许多问题,尤其是其中硅微粉的提纯仍处于研发阶段;污水处理回收企业仍等待着更加完善和好的物理分离提纯方法出现等。
前文主要介绍了废砂浆回收利用方面当前比较广泛应用的物理方法,其他的还有化学处理法、电选处理法、电泳(电位)分离法等。
截至2012年底,国内晶硅切割废砂浆回收利用的相关专利申请92项,申请量居于前三的是江苏佳宇资源利用股份有限公司、连云港佳宇电子材料科技有限公司、江西赛维LDK太阳能高科技有限公司。
行业发展上,由于金刚线切割技术的发展,对传统的砂浆切割工艺的应用产生替代,但一定时期内砂浆切割技术仍会继续广泛使用。
三、对申报项目的意见和建议
1、申报材料的完整性及合理性
(1)申报书在第一部分的《项目基本情况》授权专利栏注明了:发明专利0件;实用新型专利7件;在第四部分《第三方评价》之6“取得知识产权”项下注明是:发明专利二项,实用新型九项。以上两处存在不一致问题。
(2)在申报书第五部分《经济效益情况表》中的2011年9月-2014年9月的项目起止期内,项目累计新增利润3833.62万元,其中2013与2012、2014年1-10月两个时间段相比,在销售收入基本相当的情况下新增利润相差较多,下附的计算依据中未见有合理说明。
(3)在《工业性试验报告》的“结论”部分提到回收率80%以上;在《效益分析报告》的“社会效益分析”中提到回收率在85%,二者存在不一致问题,这将直接影响到经济效益指标和项目评价。
2、申报项目的先进性、可行性和效益性
新大新材会同开封万盛新材进行的《太阳能晶硅片切割废砂浆回收工艺研究》项目,在技术研究和工艺路线的确定方面,与国内同行业其他企业和研究机构相比具有一定的先进性,实验监测数据和知识产权、专利申请查新和批复情况也予以了佐证。
从项目工艺技术、产品市场价格、行业技术经济发展等方面来看,其可行性较强,经济效益相对明显。
同时也应看到,该项目主要采取的技术工艺偏向物理方法,在综合利用当代工业先进技术上还有改进余地,如可以进一步综合利用化学方法和电学方法等,在控制上可以考虑开发以更加先进和通用的DCS控制技术替代PLC控制技术,以进一步提高有关参数的精确性。
3、建议:
从项目所处行业发展来看,该项目在技术上主要侧重进行了物理方法的研究和试验,取得了较好成果。建议继续跟踪行业发展方向和其他技术工艺路线的比较,进一步深入了解或探索化学方法、电泳(电位)方法等技术的发展进程和经济可行性,以保持在该领域及行业的技术前瞻性和地位先进性。
第四篇:浅析焊接工艺参数对焊接质量的影响
浅析焊接工艺参数对焊接质量的影响
一、焊接工艺在机械制造中的应用:
焊接由于节省大量的材料,生产效率高,是制造业中主要的加工工艺之一,几乎涉及到所有的产品。刚结构的焊接制作,工业产品及厂房的制作安装,民用产品的制造等等。利用现有设备及焊接材料和操作人员的技能情况,制定适合的焊接工艺规程,保证焊接质量,是产品的生产过程中,最为重要的环节。
焊接质量的保证,是在试验的基础上,根据不同材料的物理性能和化学成分,以及所采用的焊接设备、焊接方法和结构特性,制定能保证其加工质量的焊接工艺技术文件。在生产实践过程中,如何确保焊接工艺规程的实施,是钢结构生产及维修部门的重要工作。
由于各企业所加工构件的材料和结构不同,使用的焊接方法不同,在焊接试验和工艺评定方面,所做的内容也不尽相同,制定的焊接规程也有一定的差别。焊接规程做为焊接过程的技术性文件,不论生产何种产品,保证其质量的前提,就是焊接生产全过程完整的执行焊接工艺规程。
焊接工艺规程是在满足产品设计规程要求的前提下,经过焊接工艺评定制定的,是生产过程重要的技术文件之一。焊接工艺规程的完全执行,是控制焊接产品质量行之有效的程序和方法。
二、焊接参数对焊接的影响与控制
在结构材料已知的情况下,焊接工艺规程中,主要的几个参数如焊接材料、接头形式、焊接电流、焊接电压、保护气体流量、气体纯度、焊接层数,而合金钢及有色金属焊接过程,还要考虑层间温度、预热及后热温度。如任一参数的大幅度变动,都可能产生焊缝尺寸超差、成形不好、裂纹、夹渣、未焊透、咬边、焊瘤、烧穿、焊接变形等缺陷,甚至产品报废
焊接过程是一个不均匀加热和冷却过程。焊缝区及热影响区温度会随着焊条(焊丝)的移动而发生变化。是一个不均匀加热和冷却过程,熔池的冶金反应也是不充分的。焊接电流作为焊接过程重要的工艺参数之一,是决定焊接热输入量的重要参数,即线能量的的大小。当焊接电流增大时,焊接速度也应加快。才能保证线能量基本不变。日常操作中,基本是以提高生产效率为前提,尽可能的采用大的电流参数。大的电流参数,固然提高了生产效率,但对焊接质量和焊缝成形产生了一定的影响。会烧损一部分合金元素,随着合金元素含量的减少,焊缝冷却后的的组织结构发生变化,而且熔滴过渡形式也发生改变。短路过渡变为射流过度,熔滴尺寸变小,体表面积增大,气体带入熔池更多,产生气孔的几率增加。大的焊接电流作业时,熔合区和过热区的的晶粒粗大,冷却速度加快,极易出现脆化相,使焊缝的疲劳强度和冲击韧性降低。特别是淬火倾向大且有低温冲击韧性要求的材质,对其焊接接头的影响最为明显。同时,焊接电流过大,产生的咬边、焊穿、焊瘤、严重焊接变形致使焊接接头应力集中,疲劳强度和承载能力下降,严重时导致焊缝开裂。焊接电流过小易产生气孔、未焊透、夹渣等缺陷,降低接头的致密性,减少承载面积,致使接头强度和冲击强度降低。
焊接电流增加时,电弧的热量增加,因此熔池体积和弧坑深度都随电流而增加,所以冷却下来后,焊缝厚度就增加;焊接电流增加时,焊丝的熔化量也增加,因此焊缝的余高也随之增加。如果采用不填丝的钨极氩弧焊,则余高就不会增加;焊接电流增加时,一方面是电弧截面略有增加,导致熔宽增加;另一方面是电流增加促使弧坑深度增加。由于电压没有改变,所以弧长也不变,导致电弧潜入熔池,使电弧摆动范围缩小,则就促使熔宽减少。由于两者共同的作用,所以实际上熔宽几乎保持不变。
三、焊条电弧焊的电弧电压的决定因素
电弧长度越大,电弧电压越高,电弧长度越短,电弧电压越低。在焊接过程中,应尽量使用短弧焊接。立焊、仰焊时弧长应比平焊更短些,以利于熔滴过渡,防止熔化金属下滴。碱性焊条焊接时应比酸性焊条弧长短些,以利于电弧的稳定和防止气孔。弧长增加,金属飞溅越多,对母材金属的表面损伤严重。特别是对有防腐要求的不锈钢类和钛金属构件焊接过程中,应尽量减少飞溅物。
同时,焊接过程中,焊接速度应该均匀适当,既要保证焊透又要保证不焊穿,同时还要使焊缝宽度和余高符合设计要求。如果焊速过快,熔化温度不够,易造成未熔合、焊缝成形不良等缺陷;如果焊速过慢,使高温停留时间增长,热影响区宽度增加,焊接接头的晶粒变粗,力学性降低,同时使工件变形量增大。当焊接较薄工件时,易形成烧穿。
当其它条件不变时,电弧电压增长,焊缝宽度显著增加而焊缝厚度和余高将略有减少,电弧电压增大,严重时引起磁偏吹。这也是使焊缝成型不好,形成气孔、夹渣、未焊透的一个因素。在焊接电源为直流反接时,表现得尤为突出。
由此可见,电流是决定焊缝厚度的主要因素,而电压则是影响焊缝宽度的主要因素。因此,为得到良好的焊缝形状,即得到符合要求的焊缝成形系数,这两个因素是互相制约的,即一定的电流要配合一定的电压,不应该将一个参数在大范围内任意变动。
焊速对熔深和熔宽均有明显影响,焊速较小时(例如单丝埋弧焊焊速小于)熔深随焊速增加略有增加,熔宽减小。但焊速达到一定数值以后,熔深和熔宽都随焊速增大而明显减小。这是因为焊接速度增加时,焊缝中单位时间内输入的热量减少了。从焊接生产率考虑,焊接速度愈快愈好。但当焊缝厚度要求一定时,为提高焊接速度,就得进一步提高焊接电流和电弧电压,所以,这三个工艺参数应该综合在一起进行选用。四、焊速对焊接的影响
焊速较小时,电弧力的作用方向几乎是垂直向下的,随着焊速增大,弧柱后倾有利熔池液体金属在电弧力作用下向尾部流动,使熔池底部暴露,因而有利于熔深的增加。
焊速增加时,从焊缝的热输入和热传导角度来看,焊缝的熔深和熔宽都要减小。
以上两方面因素综合的结果,低焊速时前者起主导作用,熔深随焊速增加而略有增加。当焊速超过一定值时,后者起主导作用,熔深就随焊速增加而减小。熔宽及增高则总是随焊速增加而减小的。
从焊接生产率角度来考虑,焊速是愈快愈好,因此焊速减慢熔深降低的这一段区间是没有实际意义的。当焊件熔深要求确定时,为提高焊速,就得进一步提高焊接电流和电弧电压,即意味着电弧功率提高,因此,焊接电流和焊速的选取就要考虑综合经济效果。简单的提高功率来提高焊速是有限制的。焊速对熔深和熔宽均有明显影响,焊速较小时(例如单丝埋弧焊焊速小于)熔深随焊速增加略有增加,熔宽减小。但焊速达到一定数值以后,熔深和熔宽都随焊速增大而明显减小。
实践证明,提高电弧电压会使熔池保护性能变差,氮气孔倾向增加。提高焊接速度,会使结晶速度增加,气孔倾向也增加。
五、常用焊接材料包括焊条、焊丝、保护气体、焊剂。焊芯(焊丝)其作用主要是填充金属和传导电流。
焊条按用途可分为10大类;按熔渣酸碱度分为酸性和碱性两大类;焊剂有酸性、中性、碱性三大类。焊丝按结构有实芯和药芯两类,按用途有8大类。手弧焊和埋弧焊作业中,焊缝区是通过气渣联合保护的。气保焊和气焊是以气保护为主。碱性焊条由于加入CaF2,影响气体电离,电弧的稳定性变差,一般要求采用直流反接。焊条工艺性能是通过药皮配方来实现的。以电弧稳定性、焊缝脱渣性、再引弧性、飞溅率、熔敷系数、熔敷率、掺合金作用强弱等性能体现的。焊条(焊丝)质量检验有相关的国家标准作为依据。在实际使用中,一般都是定型生产的产品,可根据结构和焊缝金属强度要求,做相应的检验。焊条(焊丝)的选用的基本原则是,确保焊接结构安全使用的前提下,尽量选用工艺性能好和生产率高的焊条(焊丝)和焊剂。根据被焊构件的结构特点、母材性质和工作条件,对焊缝金属提出安全使用的各项要求,所选焊条(焊丝)、焊剂都应使之满足。必要时通过焊接性试验来确定。在生产中主要有同种金属材料焊接和异种金属焊接两种情况,选用焊条(焊丝)焊剂时考虑的因素应有所区别。焊条(焊丝)、焊剂的保管也是焊接质量保证的重要环节之一,是不容忽视的。出现的药皮脱落、焊丝表面锈蚀、药皮(焊剂)含水量增加,均会导致焊缝含氢量过高,气孔增加几率升高,焊缝抗裂性能、韧性下降。有色金属和不锈钢构件防腐性能下降等工艺质量问题。特别是压力容器及特殊钢结构制造中尤为重要。为了保证焊接质量,原材料的质量检验很重要。在生产的起始阶段,就要把好材料关,才能稳定生产,稳定焊接产品的质量。
六、加强焊接原材料的进厂验收和检验,必要时要对其理化指标和机 械性能进行复验。
建立严格的焊接原材料管理制度,防止储备时焊接原材料的污损。实行在生产中焊接原材料标记运行制度,以实现对焊接原材料质量的追踪控制。选择信誉比较高、产品质量比较好的焊接原材料供应厂和协作厂进行订货和加工,从根本上防止焊接质量事故的发生。
总之,焊接原材料的把关应当以焊接规范和国家标准为依据,及时追踪控制其质量,而不能只管进厂验收,忽视生产过程中的标记和检验。
七、焊接接头在焊接时的方法
焊接接头是组成焊接结构的最基本要素。也是焊接结构的薄弱环节。主要有对接、角接、搭接、T形、卷边五种形式。为使焊缝的厚度达到规定的尺寸不出现焊接缺陷和获得全焊透的焊接接头,焊缝的边缘应按板厚和焊接工艺要求加工成各种形式的坡口。
常用焊接接头坡口形式有V形、X形、U形及双U形。设计和选择坡口焊缝时,应考虑坡口角度、根部间隙、钝边和根部半径。
焊条电弧焊时,为保证焊条能够接近焊接接头根部以及多层焊时侧边熔合良好,坡口角度与根部间隙之间应保持一定的比例关系。当坡口角度减小时,根部间隙必须适当增大。因为根部间隙过小,根部难以熔透,必须采用较小规格的焊条,降低焊接速度;反之如果根部间隙过大,则需要较多的填充金属,提高了焊接成本和增大了焊接变形。
熔化极气体保护焊由于采用的焊丝较细,且使用特殊导电嘴,可以实现厚板(大于200mm)I形坡口的窄间隙对接焊。
开有坡口的焊接接头,一般需要留有钝边来确保焊缝质量。钝边高度以既保证熔透又不致烧穿为佳。焊条电弧焊V形或双面U形坡口取0~3mm,双面V形或双面U形坡口取0~2mm。埋弧焊的熔深比焊条电弧焊大,因此钝边可适当增加,以减少填充金属。带有钝边的接头,根部间隙主要取决于焊接位置和焊接工艺参数,在保证焊透的前提下,间隙尽可能减小。
坡口加工可以采用机械加工或热切割法。V形坡口和X形坡口可以在机械气割下料时,采用双割据或三割据同时完成坡口的加工。坡口加工的尺寸公差对于焊件的组装和焊接质量有很大的影响,应严格检查和控制。坡口的尺寸公差一般不超过±0.5mm。
八、焊接方法的重要性
焊接质量对工艺方法的依赖性很强,焊接方法在影响焊接工序质量的诸因素中占有非常突出的地位。工艺方法对焊接质量的影响主要来自两个方面,一方面是工艺制订的合理性;另一方面是执行工艺的严格性。工艺方法是根据模拟相似的生产条件所作的试验和长期积累的经验以及产品的具体技术要求而编制出来的,是保证焊接质量的重要基础,它有规定性、严肃性、慎重性和连续性的特点。通常由经验比较丰富的焊接技术人员编制,以保证它的正确性与合理性。在此基础上确保贯彻执行工艺方法的严格性,在没有充足根据的情况下不得随意变更工艺参数,即使确需改变,也得履行一定的程序和手续。
不合理的焊接工艺不能保证焊出合格的焊缝,但有了经评定验证的正确合理的工艺规程,若不严格贯彻执行,同样也不能焊出合格的焊缝。两者相辅相成,相互依赖,不能忽视或偏废任何一个方面。在焊接质量管理体系中,对影响焊接工艺方法的因素进行有效控制的做法是:必须按照有关规定或国家标准对焊接工艺进行评定。
选择有经验的焊接技术人员编制所需的工艺文件,工艺文件要完整和连续。按照焊接工艺规程的规定,加强施焊过程中的现场管理与监督。
在生产前,要按照焊接工艺规程制作焊接产品试板与焊接工艺检验试板,以验证工艺方法的正确性与合理性。还有,就是焊接工艺规程的制定无巨细,对重要的焊接结构要有质量事故的补救预案,把损失降到最低。可根据在特定环境下,焊接质量对环境的依赖性也是较大的。焊接操作常常在室外露天进行,必然受到外界自然条件(如温度,湿度、风力及雨雪天气)的影响,在其它因素一定的情况下,也有可能单纯因环境因素造成焊接质量问题。所以,也应引起一定的注意。在焊接质量管理体系中,环境因素的控制措施比较简单,当环境条件不符合规定要求时,如风力较大,风速大于四级,或雨雪天气,相对湿度大于90%,可暂时停止焊接工作,或采取防风、防雨雪措施后再进行焊接,在低气温下焊接时,低碳钢不得低于-20℃,普通合金钢不得低于-10℃,如超过这个温度界限,可对工件进行适当的预热。
第五篇:铸造工艺参数对铸锭质量的影响
铸造工艺参数对铸锭质量的影响
1、冷却速度对铸锭质量的影响
冷却速度指铸锭的降温速度,又称冷却强度,用单位时间内下降的温度来表示,常用单位是℃/s。但在实际生产中,这个单位不便于控制,由于在既定条件下,各种工具和工艺条件都是预先确定的,因此生产现场多采用冷却水压或冷却水流量作为冷却速度的度量。在连续铸造过程中,铸锭内各点在同一时刻的冷却速度以及同一点在不同时刻的冷却速度都是变化的。
(1)冷却速度对铸锭组织的影响
在直接水冷半连续铸造时,随着冷却强度的增加,铸锭结晶速度提高,熔体中溶质元素来不及扩散,过冷度增加,晶核增多,因而所得晶粒细小;同时,过渡带尺寸缩小,铸锭致密度提高,减小了疏松倾向。此外提高冷却速度,还可细化一次晶化合物尺寸,减小区域偏析的程度。
铸模的导热条件是显著影响铸锭组织的重要因素,尤其是边缘部位的组织。图1示出了扁铸锭中枝晶网尺寸分布情况:A是铸模中金属水平高的情况;B是铸模中金属水平低的情况;C是电磁铸造的,金属不和铸模接触,完全依靠喷射到铸锭上的水流把热量带走。
图1
在不同水平铸造或电磁铸造的扁锭中的IPP分布情况
(2)冷却速度对铸锭力学性能的影响。冷却速度是决定铸锭力学性能的基本因素。通常,随冷却速度增大,铸锭的平均力学性能得到提高。冷却速度的这种作用主要是由下面两个原因引起的:一是随冷却速度增大,铸锭结晶速度提高,晶内结构细化;二是随冷却速度增大,铸锭过渡带尺寸缩小,铸锭致密度提高。此外,提高冷却速度,还可细化一次晶化合物的尺寸,减小区域偏析的程度。
但是,合金成分不同,冷却速度对铸锭力学性能影响的程度是不一样的,对变形铝合金而言,大致可分为四个基本的类型:第一类是在所有温度下(从室温到熔点)均呈单相的合金,如各种牌号的高纯铝、工业纯铝、5A66、7A01等。这些合金的铸态力学性能同冷却速度的关系不太强烈,冷却速度仅在能消除破坏金属连续性的缺陷(疏松、气孔)的极限速度之前有影响(见图2a)。第二类是铸态呈多相,但在固溶热处理后变成固溶体的合金,如5A12、5A13等。这种合金的铸态性能同冷却速度的关系十分明显,但在固溶热处理后这种关系变得不明显。这种合金即使在很低的冷却速度下铸造,经热处理后,亦可达到很高的力学性能(见图2b)。然而当合金中存在较多的铁、硅杂质时,由于它们能生成不溶解的化合物,又使合金对冷却速度的关系变得很敏感。第三类是铸态呈多相,但任何热处理都不能使它们变成单相的合金,这种合金中,含有的第二相是可溶的,但第二相的数量超过其溶解度极限或是同时含有可溶和不可溶的第二相的合金,绝大多数工业变形铝合金都属于这一类。这些合金的铸态力学性能同冷却速度的关系很明显,随冷却速度增大,铸锭致密度提高,在晶粒内部和晶粒边界上分布的脆性化合物相愈细小,因而性能急剧提高(见图2c)。第四类是铸态呈多相,但其中基本上只有不可溶的第二相化合物存在,如4004、4A17、4047等。这些合金铸态力学性能与冷却速度也有明显的关系,但热处理后性能基本不变(见图2d)。
a
b
c
d
铸造后热处理状态;-----------
铸造状态
图2
合金机械性能与冷却速度的关系
a-第一类合金;b-第二类合金;c-第三类合金;d-第四类合金
(3)冷却速度对铸锭裂纹倾向性的影响。随冷却速度提高,铸锭中的温度梯度增大,如铸锭内部各处不能同步收缩,则热应力值也相应提高,因此,铸锭裂纹倾向性增大。连续铸造时,沿铸锭周边冷却的不均匀程度是产生裂纹的重要因素之一。局部供水不足将导致冷却速度的差别和凝壳厚度的变化,使铸锭裂纹倾向性急剧提高。这种情况对于大小面冷却速度本来就不一致的扁铸锭表现尤为明显。
(4)冷却速度对铸锭表面质量的影响。在通常采用普通结晶器和铸造速度较慢的情况下,提高冷却速度会使铸锭表面产生冷隔的倾向性增大,而使铸锭表面产生偏析浮出物和拉裂的倾向性降低。
2、铸造速度对铸锭质量的影响
铸造速度是指铸锭相对结晶器的运动速度,常用mm/min或m/h表示。在连续铸造过程中,铸锭从结晶器中拉出的速度在正常铸造阶段是不变的,但在开头、结尾时以及在铸造过程中由于液面波动的影响,其实际铸造速度不尽一致。
(1)铸造速度对铸造组织的影响
在一定范围内,随着铸造速度的提高,铸锭晶内结构细小。但过高的铸造速度会使液穴变深(h液穴=kV铸),过渡带尺寸变宽,结晶组织粗化,结晶时的补缩条件恶化,增大了中心疏松倾向,同时铸锭的区域偏析加剧,使合金的组织和成分不均匀性增加。
(2)铸造速度对铸锭力学性能的影响。铸造速度对铸锭力学性能的影响取决于它对铸锭结晶速度和过渡带尺寸影响的综合结果。一般的规律是:随铸造速度的提高,铸锭的平均力学性能按具有极大值的曲线变化(见图3),但性能沿铸锭截面分布的不均匀程度增大。
结晶速度和过渡带尺寸是决定多相合金及按固溶体类型结晶的合金的力学性能的主要因素。随铸造速度提高,铸锭的平均结晶速度增大,晶内结构细化,因而铸锭的平均力学性能得到提高。在更高的铸造速度下,由于液穴变深,过渡带尺寸增加,铸锭致密度降低,因而铸锭的平均力学性能又开始下降。在提高铸造速度的同时,由于铸锭中心疏松程度增大以及化学成分区域偏析增大的结果,使性能沿铸锭截面的分布变得更不均匀。
a)直径280mm铸锭
b)5A06合金ф405铸锭
图3
铸锭的平均力学性能与铸造速度的关系
(3)铸造速度对铸锭裂纹倾向性的影响。在一般情况下,提高铸造速度时使铸锭形成冷裂纹的倾向性降低,而使形成热裂纹的倾向增加。这是因为提高铸造速度使铸锭中已凝固部分的温度提高,而合金在温度提高时塑性显著增加。如果把铸造速度提高到使铸锭凝固层的拉伸变形发生在具有足够塑性的温度区间(高于200~300℃),则铸锭就不会发生冷裂纹。但是,随着铸造速度的提高,铸锭中过渡带尺寸增加,形成热裂纹的脆性区的几何尺寸增大,熔体焊合裂纹的能力降低,由于区域偏析而引起的铸锭化学成分的不均匀性增加。同时,随铸造速度提高,铸锭各层冷却速度差别更大,导致拉伸变形量增大,因而使铸锭形成热裂纹的倾向增大。
由于对热裂纹和冷裂纹的区分往往是不严格的,加之热裂纹对冷裂纹的形成有促进作用,因此,在分析铸造速度对铸锭裂纹倾向性的影响时,还应该特别注意各种形状铸锭中不同类型裂纹产生的机理和具体原因,其关系往往比上述规律性要复杂。
对于扁铸锭,提高铸造速度,使形成侧面裂纹的倾向性降低,而使形成表面裂纹的倾向性增加。对于圆铸锭,提高铸造速度,使形成表面裂纹的倾向性降低,而使形成中心裂纹的倾向性增加。
(4)铸造速度对铸锭表面质量的影响。随铸造速度的提高,液穴加深,凝壳变薄,铸锭表面形成偏析浮出物的倾向增大。此时,带有偏析浮出物的较薄的凝壳在熔体静压力作用下发生变形,且在运动中与结晶器壁产生摩擦的趋势增大,因而铸锭表面产生拉痕和拉裂的倾向也增大。然而,在提高铸造速度时,铸锭表面温度升高,因而,形成冷隔的倾向性降低。
铸锭的铸造速度一般应按下述原则进行调控:
在保证铸锭质量符合技术条件(包括成品率)的前提下,采用尽可能高的铸造速度以发挥铸造机的最大生产能力。
(1)对于扁铸锭,铸造速度的选择首先应当保证铸锭没有裂纹。一般的原则是:
1)对于没有冷裂纹倾向的软合金,随铸锭宽厚比增大,应降低铸造速度。
2)对于冷裂纹倾向较大的硬合金,随铸锭宽厚比增大,应提高铸造速度。
3)在铸锭厚度和宽厚比一定的条件下,热裂纹倾向性较大的合金,应降低铸造速度。
(2)对于小直径圆铸锭,由于裂纹倾向性和过渡带绝对尺寸都不大,在保证铸锭具有良好表面质量的条件下,可以选择较高的铸造速度。反之,对于大截面圆铸锭应该采用较低的铸造速度。一般的原则是:
1)对同一种合金,铸锭直径愈大,铸造速度愈低。
2)铸锭直径相同时,铸造速度按软合金(工业纯铝、3A21、5A02等)→6000系合金(6063、6061、6A02等)→高镁合金(5A05、5A06、5056等)→高成分2000系合金(2A11、2A12、2B11等)→高成分7000系合金(7075、7A04、7A09等)的次序递减。
3)对于2A11合金圆铸锭,可以按下列规律调控铸造速度:
①在对平均力学性能的关系上,当使用普通结晶器时,最适宜的铸造速度可按关系式
U铸·D=2m2/h来近似确定,式中,U铸为铸造速度,m/h;D为铸锭直径,m。下同。
②保证性能沿铸锭截面具有较均匀分布的铸造速度可按U铸·D=1.6~1.7m2/h来确定。
③不论铸锭直径大小如何,在结晶器高度为180mm时,不调整合金的化学成分,只要铸造速度比关系式U铸·D=1m2/h所确定的铸造速度稍低—点,即能避免铸锭中心层在结晶区间里出现拉应力,从而避免热裂纹的出现。
(3)对于空心圆铸锭,在合金和外径相同的条件下,铸造速度随壁厚增加而提高;在合金和内径相同的条件下,铸造速度随壁厚增加而降低。在其他条件相同时,软合金空心圆铸锭的铸造速度约比具有相同外径的实心圆铸锭的高30%,硬合金空心圆铸锭的铸造速度约比相同外径实心圆铸锭的高50%~100%。
(4)热顶铸造、气幕铸造和电磁铸造时,在其他条件相同时,分别比普通铸造的铸造速度约高10%~20%、15%~25%和20%~30%。
最后应指出:铸造速度的调控与合金化学成分关系极大。对于同一种合金,在其他工艺参数不变的条件下,调整合金化学成分,可以提高保证铸锭不产生裂纹的允许铸造速度(见表1和表2)。在生产条件下,各种合金铸锭的比较适宜的铸造速度参见本章第五节连续铸锭工艺。
表1
2A12合金圆铸锭铸造速度与合金中硅和锌含量的关系
元素含量/%
不同铸锭直径(mm)的铸造速度/m·h-1
硅
锌
160
190
280
310
360
430
540
675
720
0.10
0.06
6.8
4.7
3.3
1.8
1.3
1.1
0.20
0.12
11.8
5.3
4.3
2.8
1.9
1.1
0.30
0.20
11.8
8.2
4.0
2.8
1.9
1.3
0.35
0.20
6.8
3.0
2.4
1.6
1.1
0.50
0.30
8.6
6.0
2.6
2.0
1.4
表2
7A04合金圆铸锭铸造速度与合金中硅含量的关系
硅含量/%
不同铸锭直径(mm)的铸造速度/m·h-1
160
190
280
310
360
430
540
675
720
0.06
10.0
7.1
4.0
3.0
2.4
1.7
1.3
0.9
0.8
0.12
8.6
6.0
3.4
2.8
2.0
1.5
1.2
0.25
6.8
5.3
2.8
2.3
1.7
1.2
0.9
0.45
6.0
4.6
2.2
1.8
1.3
3、铸造温度对铸锭质量的影响?
铸造温度通常指铸造过程中静置炉内熔体的温度,由于液流转注过程中热量的散失,进入结晶器的熔体实际温度因转注路程的长短、保温或加热措施的好坏及气温的高低而不同,通常约比铸造温度低5~10℃。现在看来,铸造温度的确切含义应是进入结晶器时的熔体温度。
(1)铸造温度对铸锭组织的影响
提高铸造温度,使铸锭晶粒粗化的趋势增加;在一定范围内提高铸造温度,铸锭液穴变深,结晶前沿温度梯度变陡,结晶时冷却速度大,晶内结构细化,但同时形成柱状晶、羽毛晶的倾向增大。提高铸造温度还会使液穴中悬浮晶尺寸缩小,形成一次晶化合物的倾向变低,排气补缩条件得到改善,致密度得到提高。降低铸造温度,熔体黏度增加,补缩条件变坏,疏松、氧化膜缺陷增多。
(2)铸造温度对铸锭力学性能的影响。铸造温度是影响铸锭性能的一个很活跃的因素,它对铸锭力学性能的影响取决于下列因素的综合结果:
1)提高铸造温度,使铸锭晶粒度有粗化趋势,从而引起铸态力学性能降低;
2)提高铸造温度,使结晶前沿温度梯度变陡,结晶时的冷却速度增大,因而细化了晶内结构,引起铸态力学性能提高。但同时,铸锭形成柱状晶和羽毛晶的趋势增大,在提高铸态力学性能总水平的前提下,铸锭纵向和横向性能的差别增大;
3)提高铸造温度,使铸锭液穴中悬浮晶区的尺寸缩小,形成一次晶化合物的倾向性降低,排气补缩条件得到改善,铸锭致密度提高,从而,使铸态力学性能提高。
综上所述,可以认为:在一定范围内提高铸造温度,硬合金铸锭的铸态力学性能可相应提高(见图4);而软合金铸锭的铸态力学性能由于对晶粒度的关系很敏感,故有下降的趋势。
图4
直径280mm2A12合金铸锭的力学性能
铸造温度:1-800℃;2-700℃;3-700℃并搅拌液穴熔体
(3)铸造温度对铸锭裂纹倾向性的影响。在其他条件不变时,提高铸造温度通常使铸锭裂纹倾向性增大。这是因为提高铸造温度,使铸锭晶粒变得粗大,使合金热脆性提高;同时,使液穴加深,并提高了结晶器出口处铸锭的表面温度,减小了凝壳厚度。
(4)铸造温度对铸锭表面质量的影响。提高铸造温度,使铸锭液穴变深,凝壳变薄,在熔体静压力作用下,凝壳与结晶器壁的摩擦面积增大;同时,熔体对结晶器壁的烧附性增强,铸锭拉锭阻力增大,因而铸锭表面形成拉痕和拉裂的倾向提高。提高铸造温度时,由于凝壳变薄和表面氧化物破裂的结果,使铸锭表面形成偏析瘤的倾向也增加。如果此时结晶器较高或者二次水冷较弱,则可能形成凸起程度较大的偏析浮出物。但提高铸造温度使铸锭表面形成冷隔的倾向性降低。
调控铸造温度的基本原则是:
(1)为保证熔体在转注过程中具有充分的流动性,应视转注距离长短和气温情况,将铸造温度控制在比合金液相线温度高50~110℃的范围内。
(2)、对于扁铸锭,从防止裂纹这个主要问题出发,应选择较低的铸造温度。通常,扁铸锭铸造速度快,熔体流量大,转注过程中降温少,一般控制在690~710℃之间即可。对于7A04型合金,则可更低一些。
(3)对于圆铸锭,铸锭裂纹倾向性和铸造温度的关系不太敏感,而转注过程中,熔体流量一般较小,热量散失大,同时,为了加强铸锭结晶时析气补缩的能力,创造顺序结晶的条件,以提高铸锭致密度,故铸造温度多偏高选取。对于直径350mm及以上的铸锭一般控制在730~740℃之间;对于形成金属间化合物一次晶倾向比较大的合金,则控制在740~755℃之间,甚至更高;对于直径较小的圆铸锭,由于结晶速度较快,过渡带尺寸较小,铸锭性能通常较高,故铸造温度仅以满足流动性和不形成光晶为依据,一般控制在715~730℃
(4)空心圆铸锭的铸造温度可参照同合金相同外径的实心圆铸锭,按下限选取。
4、结晶器有效高度对铸锭质量的影响
结晶器有效高度指铸锭从液态冷凝成型过程中与结晶器工作面开始接触点到结晶器底缘的距离。可以说,几十年来连续铸造的发展史,在某种程度上,也就是不断降低结晶器有效高度的历史。从普通结晶器到矮结晶器,再到热顶、气幕结晶器,直到电磁结晶器,结晶器有效高度一路下降,直至为零。结晶器有效高度对铸锭质量的重要性可见一斑。
(1)结晶器有效高度对铸锭组织的影响。
随着结晶器有效高度的降低,一次冷却强度下降,二次直接冷却速度加快,溶质元素来不及扩散,活性质点多,晶内结构细(见图1)。由于液穴变浅,过渡带变窄,有利于气体和非金属夹杂物的上浮,疏松倾向小,铸锭致密度提高。
(2)结晶器有效高度对铸锭力学性能的影响。
降低结晶器有效高度等于提早铸锭接受二次直接水冷的时间,使铸锭冷却强度增大,导致两个结果:一是晶内结构更细小,二是液穴更平坦,组织致密性提高,从而使铸锭平均力学性能(强度和塑性)提高(见表3)。提高结晶器有效高度,在铸锭边缘层首先发生性能降低,这显然与结晶面形状和过渡带尺寸改变有关。
表3
结晶器高度对2A50合金铸锭力学性能的影响①
铸锭直径/mm
结晶器高度/mm
铸态性能
均匀化后性能
σb
/MPa
δ/%
σb
/MPa
δ/%
横向
纵向
横向
纵向
横向
纵向
横向
纵向
192
249.0
243.0
8.80
9.66
218.1
211.0
11.21
11.10
158
224.7
214.0
7.94
7.15
204.5
208.5
10.49
8.14
290
223.9
217.5
6.33
6.80
201.4
215.3
8.18
9.18
150
204.3
209.5
5.34
5.73
198.0
202.0
8.08
7.61
350
120
212.8
217.7
5.38
5.89
200.8
199.1
7.66
7.63
180
203.5
210.3
4.98
4.75
196.5
195.1
7.87
6.97
①规格相同的铸锭,矮结晶器采用的铸造速度比高结晶器的低5~10mm/min。
(3)结晶器有效高度对铸锭裂纹倾向性的影响。
这是个很复杂的问题。降低结晶器有效高度使铸锭见水时间普遍提前,在其他条件不变的情况下,对于圆铸锭而言,从增大了冷却强度的角度看,液穴底部有向结晶器内收缩的趋势;但结晶器的有效高度绝对值减小,液穴底部又有向结晶器外伸展的趋势。如果两个趋势的综合结果是前者,则使铸造开始时,铸锭表面形成拉应力的倾向性增大,因而产生表面裂纹的倾向性增大;如果是后者,则有利于消除圆铸锭的表面裂纹,但同时却增大了圆铸锭产生中心裂纹和其他类型裂纹的倾向性。经验表明,降低结晶器有效高度,使扁铸锭产生热裂纹的倾向性增加。
(4)结晶器有效高度对铸锭表面质量的影响。
降低结晶器有效高度等于降低铸锭一次冷却强度,使由结晶器壁单独冷却形成的凝壳缩短,从而使铸锭形成拉痕和拉裂的倾向性降低;又由于液穴变得更为平坦,铸锭表面形成偏析浮出物的倾向性也降低。但是,结晶器有效高度的降低使铸锭冷却强度增加,这样在其他条件相同时,铸锭形成冷隔(成层)的倾向性增大。热顶铸造和气幕铸造时通过在结晶器上加热帽解决这个问题,普通铸造时,可通过提高铸造速度或铸造温度来解决,还可通过精确控制液面来解决。
在实际生产条件下,铸造工具基本上都是确定的,在现场除采用普通结晶器进行立式铸造时可通过液面控制器对结晶器有效高度做有限的调节外,在其他情况下,比如卧式铸造、热顶铸造等都是不可调的(除非更换结晶器)。可以认为,结晶器高度是与铸造方法同时确定的。当然,通过调整铸锭见水线位置也可调整水冷高度,但与结晶器有效高度的定义不符。
5、显著影响铸锭铸锭质量的另一因素是结晶过程中结晶前沿熔体的运动。
图5给出了园铸锭的枝晶网格尺寸的分布情况,比较了垂直液流、水平液流、倾斜液流(通过流口下面不同宽度的浮子使液流倾斜某一角度)三种分布情况。液流流射的区域对应于网格尺寸的最小值,液流流射不到的“死区”显示最大的网格尺寸。正确使用液流倾斜度,可得到比较均匀的显微组织,作为优质的挤压毛料。
图5
在以垂直喷咀、倾斜液流和水平液流铸造的园铸锭中的枝晶网格尺寸的分布情况
上述现象可以用图6来解释,液流出口处降低了熔体的过热(应为冷)?,使固相线的温度梯度变徒,因而使过渡区变薄。这里不容忽视的是晶核(悬浮晶体)向“死区”的迁移。在计算热平衡时,必须考虑这种作为潜热转移的晶核迁移。其结果是被液流冲刷区的固相表面失去了热量,既包括金属的凝固热,也包括晶核迁移的潜热。在“死区”,迁入的悬浮晶体作为晶核进入结晶前沿,把少量的结晶热释放出来。
根据观察结果,DAS和IPP的极小值可归因于晶核群的迁移,此时进入结晶前沿的熔体没有过热。
图6
液流流入结晶前沿对结晶顺序和导热条件的影响
6、铸锭规格对铸锭质量的影响(铸锭规格是指铸锭横断面的几何尺寸和铸锭长度)
铸锭规格是根据加工车间的要求,并考虑到合金本身的铸造性能、熔铸设备的能力,以及为了便于管理和提高铸造生产效率,对铸锭规格标准化提出的要求,由加工车间和铸造车间具体磋商而确定的。
在—般条件下,铸锭愈厚或直径愈大,铸锭中心愈易产生疏松,铸态性能愈差,产生裂纹的倾向性愈大。对于扁铸锭,裂纹倾向性还随宽厚比增大而提高。因此,在确定铸锭横断面尺寸时,除了考虑铸造机的性能外,还必须考虑能否铸成,铸出的铸锭性能(包括化学成分的反偏析程度)能否满足技术要求以及铸造成品率的高低和对全厂成品率的影响等因素。
铸锭规格对枝晶网格大小的分布情况影响很大(见图7),它关系到热量从铸锭中心向表面传导所经过的距离。另一方面,所选定的铸造速度(或牵拉速度)一定要和铸锭规格相适应。
图7
不同厚度连续铸造铸锭的(IPP)分置情况(沿过中点垂直于铸锭表面的直线测量)
通常,铸锭长度的确定要考虑静置炉的容量、铸造机的负荷和有效行程,天车轨道标高及下一步工序加工设备的特点(包括均热炉的尺寸、能否实现锯切等),以尽可能提高铸锭长度,提高成品率为原则。目前,国内大多数工厂在半连续铸造时采用的铸锭长度为6-7m。