第一篇:2-控制系统仿真与CAD课程报告选题说明-张晓华080305(定稿)
“控制系统数字仿真与CAD”课程结业考核
“课程报告”选题说明
一、关于本课程
“控制系统数字仿真与CAD”课程是电气工程系工业自动化专业方向的一门选修课,课程结业考核评定以撰写“课程报告”的形式进行;其重在培养学生自主学习能力与独立思考能力,检查学生综合运用所学知识与基本技能情况,锻炼学生的书面表达能力。
二、关于 “课程报告”的选题
“课程报告”包括如下两部分内容:
1、必做题:“双闭环直流调速系统的建模与仿真实验研究”(参见教材第六章第一节内容)。
2、选做题:在“课程报告”选题一览中任选一题(参见教材中的相关内容)。
“课程报告”撰写中有如下要求:
1、每个选题最多三人合作(如发现超过三人,将随机保留三人,其他人重新选题/再次撰写“课程报告”)。
2、“课程报告”要按规定的格式撰写(对于存在“逻辑混乱”“文字不清”、“作图潦草”等问题的报告,将予以退回重新撰写)。
3、无论计算机录入/打印还是手工书写,均要求用标准A4纸进行撰写,以便于报告最终的批阅与存档。
三、“课程报告”的格式要求
“课程报告”要求按科技论文的格式进行撰写,具体格式如下: 中文 “题目” “姓名/班级/电子信箱/联系电话” 中文“摘要” “关键词” 英文“题目” 英文“摘要” 正文:
1、引言
2、原理/建模
3、设计/分析/论述
4、仿真实验/结果分析
5、结论
建议:学生参阅“中国电机工程学报”、“控制与决策”、“自动化学报”、“控制理论与应用”杂志上的文章格式进行撰写。
“控制系统数字仿真与CAD”课程结业考核
“课程报告”选题一览
1、选题一:“一阶直线倒立摆系统建模与模型验证”
合作者:、、2、选题二:“一阶直线倒立摆系统模型的线性化与固有特性分析”
合作者:、、3、选题三:“一阶直线倒立摆系统的可控性分析”
合作者:、、4、选题四:“一阶直线倒立摆的双闭环PID控制系统设计”
合作者:、、5、选题五:“双闭环PID控制的一阶直线倒立摆系统抗扰性能分析”
(摆长/配重/直线导轨倾斜/外力冲击摆杆等扰动)
合作者:、、6、选题六:“一阶直线双倒立摆系统建模与模型验证”(参见教材之习题5-14)
合作者:、、7、选题七:“一阶直线双倒立摆系统模型的线性化与固有特性分析”
(参见教材之习题5-14)
合作者:、、8、选题八:“一阶直线双倒立摆系统的可控性分析”(参见教材之习题5-14)
合作者:、、9、选题九:“一阶旋转倒立摆系统建模与模型验证”
(参见教材之习题6-1)
合作者:、、10、选题十:“一阶旋转倒立摆系统模型的线性化与固有特性分析”
(参见教材之习题6-1)
合作者:、、11、选题十一:“一阶旋转倒立摆系统的可控性分析”
(参见教材之习题6-1)
合作者:、、12、选题十二:“斜梁-滚球系统建模与模型验证”
(参见教材之习题2-11)
合作者:、、13、选题十三:“斜梁-滚球系统模型的线性化与固有特性分析”
(参见教材之习题2-11)
合作者:、、14、选题十四:“斜梁-滚球系统的可控性分析”
(参见教材之习题2-11)
合作者:、、15、选题十五:“二维运动龙门起重机系统建模与模型验证”(参见教材第二章第二节/第五章第五节)合作者:、、16、选题十六:“二维运动龙门起重机系统模型的线性化与固有特性分析”
(参见教材第二章第二节/第五章第五节)合作者:、、17、选题十七:“二维运动龙门起重机系统的可控性分析”(参见教材第二章第二节)合作者:、、18、选题十八:“二维运动龙门起重机的双闭环PID控制系统设计”(参见教材第五章第三节)合作者:、、19、选题十九:“双闭环PID控制的二维运动龙门起重机系统抗扰性能分析”
(绳长/重物质量/外力冲击重物等扰动)
合作者:、、20、选题二十:“单水箱液位控制系统建模与模型验证”
(参见教材第二章第二节)
合作者:、、21、选题二十一:“单水箱液位控制系统模型的线性化与固有特性分析”
(参见教材第二章第二节)
合作者:、、22、选题二十二:“单水箱液位控制系统设计”
(参见教材第六章第三节)
合作者:、、23、选题二十三:教材之习题5-8。
合作者:、、24、选题二十四:教材之习题5-11。
合作者:、、25、选题二十五:教材之习题5-12。
合作者:、、26、选题二十六:教材之习题5-13。
合作者:、、27、选题二十七:教材之习题5-6。
合作者:、、28、选题二十八:教材之习题3-8。
合作者:、、29、选题二十九:教材之习题3-2。
合作者:、、30、选题三十:教材之习题2-7。
合作者:、、31、选题三十一:教材之习题2-12。
合作者:、、32、选题三十二:教材之习题3-3。
合作者:、、33、选题三十三:教材之习题3-6。
合作者:、、34、选题三十四:教材之习题4-8。
合作者:、、35、选题三十四:教材之习题5-3。
合作者:、、36、选题三十四:教材之习题5-4。
合作者:、、37、选题三十四:教材之习题5-1。
合作者:、、38、选题三十四:教材之习题5-9。
合作者:、、39、选题三十四:教材之习题5-2。
合作者:、、40、选题三十四:教材之习题5-10。
合作者:、、说明:
1、以上选题使用120人,如班级人数超过之,可以在每题中再加一名合作者。
2、学生也可自行确定其他的“选题”,但须与任课教师商定。
第二篇:控制系统仿真与CAD课程设计报告..
控制系统仿真与课程设计
学
院:物流工程学院 专
业:测控技术与仪器 班
级:测控102 姓
名:杨红霞 学
号:201010233037 指导教师:兰莹
完成日期:2013年7月4日CAD
一、目的和任务
配合《控制系统仿真与CAD》课程的理论教学,通过课程设计教学环节,使学生掌握当前流行的演算式MATLAB语言的基本知识,学会运用MATLAB语言进行控制系统仿真和辅助设计的基本技能,有效地提高学生实验动手能力。
一、基本要求:
1、利用MATLAB提供的基本工具,灵活地编制和开发程序,开创新的应用;
2、熟练地掌握各种模型之间的转换,系统的时域、频域分析及根轨迹绘制;
3、熟练运用SIMULINK对系统进行仿真;
4、掌握PID控制器参数的设计。
二、设计要求
1、编制相应的程序,并绘制相应的曲线;
2、对设计结果进行分析;
3、撰写和打印设计报告(包括程序、结果分析、仿真结构框图、结果曲线)。
三、设计课题
设计一:二阶弹簧—阻尼系统的PID控制器设计及其参数整定
考虑弹簧-阻尼系统如图1所示,其被控对象为二阶环节,传递函数G(S)如下,参数为M=1kg,b=2N.s/m,k=25N/m,F(S)=1。设计要求:
(1)控制器为P控制器时,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。
(2)控制器为PI控制器时,改变积分时间常数大小,分析其对系统性能的影响并绘制相应曲线。(例如当kp=50时,改变积分时间常数)(3)设计PID控制器,选定合适的控制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s, 并绘制相应曲线。
图1 弹簧-阻尼系统示意图
弹簧-阻尼系统的微分方程和传递函数为:
bxkxF MxG(s)X(s)11 F(s)Ms2bsks22s25
图2 闭环控制系统结构图
附:P控制器的传递函数为:GP(s)KP
PI控制器的传递函数为:GPI(s)KP11 TIsPID控制器的传递函数为:GPID(s)KP11TDs TIs
(一)设计P控制器,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。以下为所做的设计以及运行结果,KP取了不同的值,通过运用sim函数进行仿真,并得出超调量MP,过渡过程时间Ts的大小,通过分析所得出的结果,多次改变KP的大小直到符合题目的要求,使稳态误差等都达到要求。
1、仿真运行程序
for Kp=[200,400,800] t=[0:0.01:6];
[t,x,y]=sim('yhx',6);hold on plot(t,y);N=length(t);
yss=y(N);%yss:稳态值 hold on
[ymax,i]=max(y);
mp=(ymax-yss)*100/yss, %计算超调量mp i=N;
while abs(y(i)-yss)/yss<=0.02 i=i-1;end
Ts=t(i), %计算过渡过程时间 gtext(num2str(Kp));end
2、仿真框图
KpStepGain12s +2s+25Transfer FcnScope1Out1
3、仿真运行结果
改变比例系数kp大小,得如下结果,通过以下数据以及得出的曲线可分析其对系统性能的影响 Kp=200
mp =
75.3359 Ts =
3.7962
Kp=400
mp =
84.7526 Ts =
3.8317 Kp=800
mp =
88.0528 Ts =
4.5685
4、仿真运行曲线
21.81.61.48001.214000.82000.60.40.200123456
5、运行结果分析
根据实验要求设计了一个P控制器,与Gs等构成闭环控制系统结构。由以上的运行结果以及曲线可以看出随Kp增大,超调量mp是逐渐变大的,Ti也是逐渐变大的,而且总是达不到稳态误差很小很小,因此得出以下结论:随着Kp值的增大,系统的超调量变大,调节时间变长,振荡次数也增多了。Kp值越大,系统的稳态误差就越小,调节应精度越高,但是系统的波动明显变多了,稳定性变差,但是系统响应变快了。随着比例系数女kp的增大并不能消除稳态误差,只能减小稳态误差。(二)设计PI控制器,改变积分时间常数大小,分析其对系统性能的影响并绘制相应曲线。以下为设计出的仿真程序等,运用sim函数进行仿真,编写程序使KP=50,改变KI的大小,来进行分析,直到符合题目的要求,使运行出的结果稳态误差基本很小即可,如果达不到,就要重新设定KI的大小,进行多次试验,选出如下符合要求的KI的值,程序中都有所体现。
1、仿真运行程序
for Ki=[30,50,80] t=[0:0.01:10];
[t,x,y]=sim('yhxx',10);hold on plot(t,y);
N=length(t);%yss:稳态值 yss=y(N);hold on [ymax,i]=max(y);
mp=(ymax-yss)*100/yss, %计算超调量mp i=N;
while abs(y(i)-yss)/yss<=0.02 i=i-1;end
Ts=t(i),%计算过渡过程时间 end
2、仿真框图
50Kp1KiStepKi1sIntegrator2s +2s+25AddTransfer FcnScope1Out1
3、仿真运行结果
当Kp=50时, 改变积分时间常数ki的大小,由以下的结果以及曲线可分析其对系统性能的影响 ki=30
mp =
21.4633 Ts =
6.5686 Ki=50
mp =
26.7424 Ts =
5.1127 Ki=80
mp =
31.0229 Ts =
7.3375
4、仿真运行曲线:
1.41.280501300.80.60.40.20012345678910
5、运行结果分析
Kp=50时,随着ki值的增大,系统的超调量变大,系统响应时间出现了波动。ki越大,积分速度越快,积分作用就越强,响应时间变快,但系统振荡次数就较多。PI控制可以消除系统的稳态误差,提高系统的误差度。在积分控制中,控制器的输出与输入误差信号的积分成正比关系。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后基本无稳态误差。这是比上一个只有比例控制器的一个进步的地方。
(三)设计一PID控制器,选定合适的控制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s, 并绘制相应曲线。以下为所设计的程序,仿真等,改变kp,ki,kd 的值得出闭环阶跃响应的超调量和过渡过程时间,通过多次试验,得到的kp取20,ki取65,kd取9时运行出的结果是满足题目要求的:
1、仿真运行程序
[t,x,y]=sim('yhxxx');plot(t,y);N=length(t);
yss=y(N);%yss:稳态值 [ymax,i]=max(y);
mp=(ymax-yss)*100/yss, %计算超调量mp i=N;
while abs(y(i)-yss)/yss<=0.02 i=i-1;end
Ts=t(i), %计算过渡过程时间
2、仿真框图
20Kp1y(s)65StepKi1sIntegratorAdd12s +2s+25Transfer FcnYTo Workspace9Kddu/dtDerivativeScope
3、仿真运行结果
经过多次试验,当Kp=20,ki=65,pd=9满足使闭环系统的阶跃响应曲线的超调量σ%<20%,过渡过程时间ts<2s,结果如下: mp =
1.1367
Ts =
0.8945 从结果可知超调量mp%<20%,过渡过程时间Ts<2s满足设计要求.4、仿真运行曲线:
1.41.210.80.60.40.20012345678910
5、运行结果分析及设计小结
把比例 微分 积分结合起来进行控制能够更好的达到我们想要的结果,PID参数的整定就是合理的选取PID三个参数。从系统的稳定性、响应速度、超调量和稳态误差等方面来考虑问题,每个参数都有自己的作用,比如比例调节的作用是能够成比例地反映系统的偏差信号,系统一旦出现了偏差,比例调节立即产生与其成比例的调节作用,以减小偏差。随着Kp增大,系统的稳态误差减小,但是系统容易产生超调,并且加大Kp只能减小稳态误差,却不能消除稳态误差,显著特点就是有差调节。然后就是微分调节的作用是消除系统的稳态误差,提高系统的误差度,它的特点就是误差调节。微分调节作用是改善系统的动态性能,可以减少超调,减少调节时间。总之比例积分微分控制作用是相互关联的,结合起来用效果会更好。设计二:二阶系统串联校正装置的设计与分析
设某被控系统的传递函数G(s)如下:
G(s)设计要求:
K
s(s2)选用合适的方法设计一个串联校正装置K(s),使闭环系统的阶跃响应曲线超调量%20%,过渡过程时间Ts1.5(s),开环比例系数Kv10(1/s),并分析串联校正装置中增益、极点和零点对系统性能的影响。
提示:可采用根轨迹校正工具进行串联校正
MATLAB 提供了一个辅助设计闭环系统根轨迹的仿真软件Rltool,可以用来进行根轨迹校正。在command window 下键入>> rltool,进入设计环境。
一、设计思路方法
根据题目要求采用matlab中提供的一个辅助设计闭环系统根轨迹的仿真软件Rltool,来进行根轨迹校正。打开matlab,在command window 下键入>> rltool,进入设计环境。
k根据设计要求:开环比例系数Kv10(1/s)即 kvlimsG(s)10得k20
s02取k=40, 传递函数G(s)40
s(s2)
二、设计步骤
1、打开matlab,在command window 下键入>> rltool,进入设计环境。启动SISO Design Tool 在matlab中键入num=40;den=conv([1,0],[1,2]);ex_1=tf(num,den),出现函数
40/(s^2 + 2 s)得到该系统的LTI对象模型ex_1。
2、启动SISO Design Tool 窗口后,利用该窗口中File菜单下的命令Import,打开系统模型输入对话框窗口。采用系统默认的结构,输入选中的对象ex_1,将控制对象G设置为ex_1,控制器C设为1,其他的环节H,F均使用默认的取值1.单击OK在SISO Design Tool中会自动绘制此负反馈线性系统的根轨迹图,以及系统波特图,如图
Root Locus Editor(C)850Open-Loop Bode Editor(C)64020G.M.: InfFreq: InfStable loop-50-90-2-4-135-6P.M.: 18 degFreq: 6.17 rad/sec-1-8-2-180-1.5-1Real Axis-0.5010
3、点击Analysis 中的other loop response 选择step得到闭环系统阶跃响应曲线如图可以看到校正前的超调量为60.4%,过渡过程时间为3.66s,明显不满足要求。
1010Frequency(rad/sec)01102Step Response1.81.6System: Closed Loop: r to yI/O: r to yPeak amplitude: 1.6Overshoot(%): 60.4At time(sec): 0.5081.41.2System: Closed Loop: r to yI/O: r to ySettling Time(sec): 3.66Amplitude10.80.60.40.200123Time(sec)456
4、经过反复试验,得出加入零点-5,加入极点-33,是满足要求的,可得到如下的根轨迹图以及伯德图
Root Locus Editor(C)50403020-50100-10-20-30-40-50-40-180-30-20Real Axis-100-135G.M.: InfFreq: InfStable loop-100-90050Open-Loop Bode Editor(C)P.M.: 58.3 degFreq: 8.7 rad/sec-1101001010Frequency(rad/sec)12103
5、得到的阶跃响应曲线如下超调量15.8%<20%,过渡过程时间0.715s<1.5s,满足要求说明加的零极点是正确的
Step Response1.41.21System: Closed Loop: r to yI/O: r to ySystem: Closed Loop: r to ySettling Time(sec): 0.715I/O: r to yPeak amplitude: 1.16Overshoot(%): 15.8At time(sec): 0.348Amplitude0.80.60.40.2000.10.20.30.40.5Time(sec)0.60.70.80.91
6、在使用SISO Design Tool 完成系统的设计之后,在系统实现之前必须对设计好的系统通过Simulink 进行仿真分析,进一步对控制器C进行验证,以确保系统设计的正确性。下图为系统相应的Simulink模型:
untitledFStepFeed ForwardSumuntitledCCompensatorex_1PlantOutput1untitledHSensor DynamicsOut1
7、编写M文件运行以得出超调量和过渡过程时间,以验证是否正确,程序如下: num0=40;den0=conv([1,0],[1,2]);num1=[0.2,1];den1=[0.03,1];
[num2,den2]=series(num0,den0,num1,den1);[num,den]=cloop(num2,den2);t=0:0.005:5;
y=step(num,den,t);plot(t,y);N=length(t);yss=y(N);hold on
[ymax,i]=max(y);mp=(ymax-yss)*100/yss, i=N;
while abs(y(i)-yss)/yss<=0.02 i=i-1;end Ts=t(i),运行结果: mp =
15.7500
Ts =
0.7150
运行所得的曲线如下: 1.41.210.80.60.40.2000.511.522.533.544.55
运行结果分析:所得出的结果,超调量15.7500%<20%,过渡过程时间0.7150s<1.5s,满足设计要求,证明设计的没有问题,符合设计要求。
三、串联校正装置中增益、极点和零点对系统性能的影响。(1)加入增益68,所得到的根轨迹及伯德图:
Root Locus Editor(C)150100Open-Loop Bode Editor(C)10050500G.M.: InfFreq: InfStable loop-50-900-50-135-100P.M.: 8.66 degFreq: 106 rad/sec-1-150-20-180-15-10Real Axis-5010100
编写M程序,得出图像及超调量,过渡过程时间等值,来判断加入增益对系统性能的影响,程序如下:
num0=40;den0=conv([1,0],[1,2]);num1=68*[0.2,1];den1=[0.03,1];[num2,den2]=series(num0,den0,num1,den1);[num,den]=cloop(num2,den2);t=0:0.005:1;y=step(num,den,t);plot(t,y);%计算超调量mp N=length(t);yss=y(N);
hold on %yss:稳态值 [ymax,i]=max(y);mp=(ymax-yss)*100/yss, i=N;while abs(y(i)-yss)/yss<=0.02
i=i-1;end Ts=t(i),运行结果为
1010Frequency(rad/sec)12103mp =
69.4107
Ts =
0.2600 运行曲线为:
1.81.61.41.210.80.60.40.2000.10.20.30.40.50.60.70.80.91
由以上结果及图像可以得出以下结论:加入增益之后超调量变大了,过渡过程时间变短了,波动的更加厉害,稳态误差变小了。说明可以改变开环增益的大小,从而改善稳态误差
(2)加入零点-10,所得到的根轨迹及伯德图: Root Locus Editor(C)360402200Open-Loop Bode Editor(C)10-20G.M.: InfFreq: NaNStable loop-40-45-1-90-2-135P.M.: 108 degFreq: 12.9 rad/sec-1-3-60-180-50-40-30-20Real Axis-100101001010Frequency(rad/sec)12103
阶跃响应曲线如下:
Step Response1.41.21Amplitude0.80.60.40.2000.5Time(sec)11.5
由图可以得出,加入零点后对系统的性能产生了很大的影响,过渡过程时间变长了,超调量变小了,波动次数少了,而且增加开环极点,使得原系统根轨迹的整体走向在S平面向右移,使系统稳定性变坏。
(3)加入极点-10后所得到的根轨迹以及伯德图: Root Locus Editor(C)8050Open-Loop Bode Editor(C)60040-50200-100G.M.: 10.3 dBFreq: 14.4 rad/secStable loop-150-90-20-40-180-60P.M.: 22.1 degFreq: 7.34 rad/sec100-80-100-50Real Axis0-270-150101010Frequency(rad/sec)12103
阶跃响应曲线如下:
Step Response1.61.41.21Amplitude0.80.60.40.2000.511.5Time(sec)22.533.5 由图可以看出加入零点之后系统的性能发生的变化,过渡过程时间变得更长了,超调量变大了,波动次数变多了,增加开环零点,使得原系统根轨迹的整体走向在S平面向右移,使系统稳定性得到改善。
四、设计小结
这个设计是应用了matlab中新的功能,是辅助设计闭环系统根轨迹的仿真软件Rltool,可以用来进行根轨迹校正的一个软件,在使用的过程中遇到了很多问题,参照着课本,一步一步的进行探索,遇到课本上解决不了的,就向同学和老师询问,或者在网上搜些资料以帮助自己理解一些概念,从而更快的理解课程设计需要做的东西,该如何按照老师的要求做出来,其中需要试一些符合要求的零极点,试了很多次。还要到最后进行simulink的仿真,并且编写了程序,以验证所设计的是不是符合要求。
通过这次课程设计,我学到了很多东西,通过编写程序,用到了以前学过的知识,对以前所学知识进行了巩固,觉得非常好,把以前学过的东西又重新捡起来,继续用,也为自己的后续的学习之路铺下基础,比如说后面的毕业设计可能就会用到matlab。我也感受到了matlab强大的功能,对这个软件产生了极大的兴趣,非常实用和好玩。这次课程设计真的学到了很多很多,深受启发,让我对以后的学习充满了信心,老师也很敬业,对我们学生很负责任,耐心教导。
第三篇:《控制系统仿真与CAD》学习的感想
《控制系统仿真与CAD》学习的感想
学习了《控制系统仿真与CAD》这门课程。在这一过程中我学了很多东西,最直接的就是将控制理论和MATLAB软件联系起来,用计算机来仿真在《自动控制原理》中所学的内容,即利用MATLAB软件来对自动控制系统进行仿真,以验证所学的知识并且得到比较直观的结论。
控制系统是指由控制主体、控制客体和控制媒体组成的具有自身目标和功能的管理系统。控制系统意味着通过它可以按照所希望的方式保持和改变机器、机构或其他设备内任何感兴趣或可变化的量。控制系统同时是为了使被控制对象达到预定的理想状态而实施的。控制系统仿真是建立在控制系统模型基础之上的控制系统动态过程试验,目的是通过试验进行系统方案论证,选择系统结构和参数,验证系统的性能指标等。
MATLAB不仅仅是一门编程语言,还是一个集成的软件平台,它包含以下几个主要部分:MATLAB语言、集成工作环境、MATLAB图形系统、数学函数库、交互式仿真环境Simulink、编译器、应用程序接口API、工具箱、Notebook工具。而在控制系统CAD中我们较多的是使用MATLAB数学函数库中的函数来对控制系统进行仿真与处理。另外,也利用MATLAB交互式仿真环境Simulink来构建系统的结构框图,这样更直接的应用于不知道系统传递函数的情况下来得到系统的仿真结果,从而省去了计算传递函数的复杂计算。
MATLAB它具有丰富的可用于控制系统分析和设计的函数,MATLAB的控制系统工具箱提供对线性系统分析、设计和建模的各种算法;MATLAB的仿真工具箱(Simulink)提供了交互式操作的动态系统建模、仿真、分析集成环境。通过在传递函数的建立、绘制响应的曲线等方面谈了我学习的经历,以及整个对控制系统仿真的整体过程。
在学习过程中还有利用Simulink工具箱绘出系统的结构框图,再调用这个框图来产生出传递函数再进行仿真计算。这样的话可以更方便的对控制系统进行仿真与设计,而不用去通过复杂的方式去求去传递函数,然后再去计算响应,绘制响应曲线。MATLAB软件的强大的功能和优点以及MATLAB语言的特点,在控制系统仿真中带来了很大帮助,在实际中经常将控制系统的数学模型用零点、极点和增益来描述,在对于单神经元自适应PID控制,通过仿真定性的分析了单神经元PID控制中比例学习率、积分学习率、微分学习率和增益K等参数在控制中所起到的作用得出:
(1)在积分学习率、微分学习率不变的情况下,比例系数学习率越大则超调量越小,但是响应速度也会越慢;
(2)在比例学习率、微分学习率不变的情况下,积分系数学习率越大则响应会越快,但是超调量也会越大;
(3)在比例学习率、积分学习率不变的情况下,微分学习率对单神经元PID控制器的控制效果影响不大;
(4)K是系统最敏感的参数,K值增大、减小相当于P、I、D三项同时增加、减小,同时K 值过大会使系统发生振荡,导致系统发散,所以对于K值应合理选择。
通过本次学习,学习了薛教授的控制系统仿真课程,结合自己在教学工作中总结的经验教训,使我更进一步加深了怎样分析问题和解决问题,加强了对已学过知识的理解,增强了实际应用能力,同时也开阔了视野,使我对《控制系统仿真与CAD》有了新的理解。
首先,基于MATLAB仿真环境平台,尽量将控制系统理论的学习与实际应用结合在一起,用控制系统设计和试验结果为依据,加深学生对理论知识的形象理解,为学生提供了一种重要的数学建模的辅助工具。本课程具有很强的实践性,实践是一个必要的环节,学习该课程主要是为了将其应用于控制系统的分析与设计,因此培养学生的实践能力极为重要。
其次,要给学生具体的任务,同时注意知识点与实际模型的结合,让学生在完成任务和解决实际问题的过程中学习,增加学生的学习兴趣,提高学习效果。首先,教师讲课的水平必须提高,讲课方式必须有激情,才能保证学生得以继续学习提供最基本的学习兴趣;其次,在任何一门课开始之前,必须跟学生阐述此门课程与实际生活的相关性,并列举一二三实例最好加以演示,这样可大大提高学生学习此门课程的兴趣;然后,充分利用课程内实验环节,多设计几个与实际例子息息相关的课题,让学生独立或者分组去完成;最后,实时鼓励学生,给学生信心。
第三,重视发展学生的智力,主要包括观察能力,实验操作能力、思维能力、想象能力和记忆能力等.教学的根本任务是教会学生如何学习.只会传播真理的还不能算好教师,只有在传播真理的同时,又能传播发现真理方法的才是好教师。学习过程中,不仅要看到前人的科学结论,对于后人创造发展所起的巨大作用,而且还要看到前人在成功和失败中,曾经使用过的一些科学方法,他们对科学真理的执着追求的信念和百折不挠的坚强意志,对人类社会的发展所起的巨大影响。
最后,MALAB是一个作为仿真实验所用的强大软件,只有通过实验或仿真,才证明理论或方法的正确性和有效性。通过实验、仿真,提高学生对研究的兴趣,从而反过来激发学生对理论研究的热情,让学生通过MATLAB仿真彻底理解和掌握这些结论。
虽然学习结束了,但对控制系统的仿真仍要伴随在我以后的学习和工作中。今后,对控制系统的仿真与设计也将有更加实际的内容,继续学习,不断深入,努力将MATLA这个软件更好的应用于对控制系统的仿真和设计上。
第四篇:关于张晓华同志的工作鉴定报告
关于张晓华同志的工作鉴定报告
张晓华同志在我校工作以来,积极参加各种学习培训,认真参加政治学习,提高思想觉悟,树立全新的教育理念。认真学习贯彻党的教育方针政策,严格遵守《中小学教师职业道德规范》,坚持每周的政治学习和业务学习,紧紧围绕学习新课程标准,构建新课程理论,不断更新教育观念。
该同志严谨治学,扎实工作。在坚持抓好教研教改及新课程理念学习和应用的同时,还积极探索教育教学模式,充分运用学校现有的教育教学资源,大胆改革课堂教学,教案编写认真,深入细致。平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握重难点,注重课堂教学效果。针对中高年级学生特点,以“快乐教学“为主,不搞满堂灌,坚持以学生为主体,教师为主导、教学为主线,注重讲练结合。在课余和同事们探讨在课堂教学中遇到的问题,积极认真的记录教学叙事和教学反思,让自己的课堂教学在学习和探究中越来越好,越来越得到同事和学生的认可,使得教学成绩也就名列前茅,并且指导的学生在2011年和2012年的全国数学“希望杯“竞赛中也荣获得一等奖和二等奖。
该同志勤奋好学、遵守校规,认真上好每一节课,其工作能力在教学实践中得到历练,得到了工作单位的认可和好评。
天义镇总校 2012、8、15
第五篇:建筑工程制图与CAD课程实践报告
建筑工程制图与CAD
实践报告
姓名:郝原山 日期:2017.2.28
课程
目录
一. AutoCAD图形系统 二. 天正建筑软件TArch 三. 探索者TSSD 四. PKPM设计软件 五. 道路路线设计软件 六. 桥梁工程设计软件 七. 工程量清单计价软件
一、AutoCAD图形系统
使用CAD绘制二维平面图形并进行标注和修改。CAD具有操作简单,功能强大等特点,使用软件工具栏各种工具进行作图可以快捷完成。工具栏每个工具都有相应的快捷操作方式,掌握相应的快捷方式可以大大提高绘图速度。根据实践课要求,我进行了CAD的实践操作,具体操作内容如下: 1.打开AutoCAD图形系统,建立作图环境。
2.对新做CAD图形进行重命名。具体操作为:打开”文件”选项卡,选择”另存为”出现如下图界面,将图纸新命名然后点保存。
3.下面进行图形绘制。选择“直线”命令,在“模型”视口内选择点(如下图)
输入直线的长度,按回车键确定。图示输入直线长度为1000,注意:CAD中所有直线的长度的计量单位为毫米。
4.打开“标注”选项卡,选择线性标注,对新画直线进行标注。
5.下面对该直线进行修改操作。左键选定该直线,点选“复制”命令或输入“co”快捷命令,回车确定。在操作窗口内选择一个方向进行复制操作。复制方向及距离可任意设定。
CAD的基本操作命令还有很多,具体操作如下: 绘制多边形。
绘制矩形。
绘制圆形。
绘制椭圆形。
绘制圆弧。绘制云线。
对绘制的图形进行“移动”。
布局视口。
对绘制的图形进行“镜像”操作。
对绘制的图形进行“矩形阵列”操作。
下面是我用CAD绘制的一栋2层建筑物的平面图,使用的CAD基本的操作命令。
二、天正系列软件
天正建筑系列软件是在CAD基础上二次开发的一款绘图辅助软件。天正软件根据不同专业分为天正建筑、天正电气、天正暖通、天正给排水等。根据专业的不同,天正软件进行深化,对专业常用内容集成制作成相应的快捷命令,大大提高相关专业的绘图速度。
天正建筑软件和CAD相比,在窗口的左侧及下侧增加了2栏快捷操作命令。天正建筑绘制平面图的步骤为: 1.绘制轴网,两点轴标
2.修剪轴网,单线变墙
3.插入门窗,门窗标注
4.插入楼梯、坡道
5.绘制阳台、台阶、散水,标注细部尺寸和标高.
6.插入剖切符号、索引符号,附上文字
7.插入图框,指北针,在标题栏中写入文字
8.检查后保存,打印成电子稿。天正系列软件可根据不同专业绘制相应的设计施工图纸。上面所示为天正建筑绘制施工图的具体操作,常用还有天正电气、天正给排水等。
天正电气设计图纸
天正给排水设计图纸
天正暖通设计图纸
三、TSSD软件
TSSD软件以国家设计规范为依据,为了与建设部2003年颁布实施的法制图规则《混凝土结构施工图平面整体表示方和构造详图》-03G101-1一致,本软件采用了新标准规定的绘图方法绘制施工图,同时考虑广大设计人员长期的习惯,保留了按照传统的绘图习惯绘制施工图。因此,使用本软件绘制结构施工图具有广泛的通用性。
TSSD具有很多功能特点,主要分为四个方面:
1、TS平面
主要功能是画结构平面布置图,其中有梁、柱、墙、基础的平面布置,大型集成类工具板设计,与其它结构类软件图形的接口。平面布置图不但可以绘制,更可以方便的编辑修改。每种构件均配有复制、移动、修改、删除的功能。这些功能不是简单的CAD功能,而是再深入开发的专项功能,例如,删除柱线,在删除柱线之后,程序自动将与该柱线相交的梁线或墙线修补齐全,不需要用户再手工修改了。板设计是集成型大工具的典范,可在图中自动搜索板边,即时计算板,再画出板配筋。整个操作过程一气呵成,成图速度又快又安全。图面效果美观整洁,无需二次修改。与其它结构类软件图形的接口主要有天正建筑(天正7以下的所有版本)、PKPM系列施工图、广厦CAD,转化完成的图形可以使用TSSD的所有工具再编辑。
3、TS构件
主要功能是结构中常用构件的详图绘制,有梁、柱、墙、楼梯、雨蓬阳台、承台、基础。只要输入几个参数,就可以轻松的完成各详图节点的绘制。
3、TS计算
主要功能是结构中常用构件的边算边画,既可以整个工程系统进行计算,也可以分别计算。可以计算的构件主要有板、梁、柱、基础、承台、楼梯等等,这些计算均可以实现透明计算过程,生成WORD计算书.。TS工具
主要是结构绘图中常用的图面标注编辑工具,包括:尺寸、文字、钢筋、表格、符号、比例变换、参照助手、图形比对等等共有200多个工具,襄括了所有在图中可能遇到的问题解决方案,可以大幅度提高工程师的绘图速度。(包括各种使用标注修改工具)。
四、PKPM软件
PKPM是一个系列,除了建筑、结构、设备(给排水、采暖、通风空调、电气)设计于一体的集成化CAD系统以外,目前PKPM还有建筑概预算系列(钢筋计算、工程量计算、工程计价)、施工系列软件(投标系列、安全计算系列、施工技术系列)、施工企业信息化(目前全国很多特级资质的企业都在用PKPM的信息化系统)
1.PK模块具有二维结构计算和钢筋混凝土梁柱施工图绘制两大功能: 模块本身提供一个平面杆系的结构计算软件,适用于工业与民用建筑中各种规则和复杂类型的框架结构、框排架结构、排架结构,剪力墙简化成的壁式框架结构及连续梁,拱形结构,桁架等。规模在30层,20跨以内。
在整个PKPM系统中,PK承担了钢筋混凝土梁、柱施工图辅助设计的工作。除接力PK二维计算结果,可完成钢筋混凝土框架、排架、连续梁的施工图辅助设计外,还可接力多高层三维分析软件TAT、SATWE、PMSAP计算结果及砖混底框、框支梁计算结果,可为用户提供四种方式绘制梁、柱施工图,包括梁柱整体画、梁柱分开画、梁柱钢筋平面图表示法和广东地区梁表柱表施工图,绘制100层以下高层建筑的梁柱施工图。
2.PK软件可处理梁柱正交或斜交、梁错层,抽梁抽柱,底层柱不等高,铰接屋面梁等各种情况,可在任意位置设置挑梁、牛腿和次梁,可绘制十几种截面形式的梁,可绘制折梁、加腋梁、变截面梁,矩型、工字梁、园型柱或排架柱,柱箍筋形式多样。
3.按新规范要求作强柱弱梁、强剪弱弯、节点核心、柱轴压比,柱体积配箍率的计算与验算,还进行罕遇地震下薄弱层的弹塑性位移计算、竖向地震力计算、框架梁裂缝宽度计算、梁挠度计算。
4.按新规范和构造手册自动完成构造钢筋的配置。5.具有很强的自动选筋、层跨剖面归并、自动布图等功能,同时又给设计人员提供多种方式干预选钢筋、布图、构造筋等施工图绘制结果。
6.在中文菜单提示下,提供丰富的计算模型简图及结果图形,提供模板图及钢筋材料表。
7.可与“PMCAD”软件联接,自动导荷并生成结构计算所需的平面杆系数据文件。
8.程序最终可生成梁柱实配钢筋数据库,为后续的时程分析、概预算软件等提供数据。
五.道路路线设计软件
HintCAD一套路、桥、隧、涵、墙、土方、仿真、交通、地质多专业集成的三维CAD解决方案。纬地软件适用于不同等级、标准的高速公路设计项目,作为国内高速公路项目设计的主流软件,从西部地区地形复杂、桥隧相连的山区高速公路到东部地区跨海跨江的国家主干线高速公路,从以方案选择优化为核心的新建的高速公路项目到以路线拟合、互通改造、桥梁拼接和交通组织等为关键的改扩建高速公路项目,国内用户每年应用纬地软件完成的高速公路设计里程超过5000公里。
纬地软件可以接收、转换和利用来自数字地面模型和外业采集等多种途径来源的纵横断面基础数据资料,进行高速公路平面定线设计、纵断面设计、路基设计、横断面设计、路基排水设计等,同时集成化高效完成土石方综合调配、涵洞设计、挡土墙设计、隧道设计、设计测量与施工放样等工作,输出所有平、纵、横相关设计成果(图纸表格),能够针对性实现分离式路基(含高低路堤、上下行线、分隔带变宽等)和排水沟(边沟)沟底纵坡设计等特殊设计要求。“主线平面设计”和“智能布线”功能是为众多用户喜爱的、进行公路路线平面定线和优化设计的利器,也是许多用户认可的采用传统的交点法(导线法)以及曲线法进行路线定线的方法与思路的代表。尤其是“智能布线方法和技术”让路线定线设计的过程更具创意性,该方法适用于进行山区公路和互通立交的复杂线形的灵活布设。纬地软件能够很好的解决越来越多的山区高速公路项目中出现的上下行线位分离(或纵面分离)设计的情况,即分离式路基设计,包括细节的路基分离处横断面的详细设计和土石方的准确划分等。“平面拟合”功能是基于“智能布线”技术而开发的一个全线自动拟合工具。可根据旧路全路段的控制点位测量数据(平面点位),自动拟合获得项目全线的平面线形数据,并输出平面拟合报告,以及拟合出来的平面线形的技术指标统计。该功能可以极大地提高设计者在旧路线位恢复、曲线拟合等方面的工作效率和精度,解决人工手工拟合的反复性大、准确率低等问题
“纵断面优化拟合设计”功能采用最小二乘法原理,实现了各等级公路各阶段的纵断面自动优化设计、以及旧路改建工程的纵断面自动拟合设计。在平面线形既定的情况下,根据道路等级、沿线自然条件和构造物控制标高等控制参数,快速确定各坡段的坡长和纵坡度,并自动配置竖曲线,使得纵断面土石方等相关工程量最小。同时,纵断面设计线满足国家规范技术指标、标高控制点限制以及平纵组合等要求。全新的横断面详细设计理念——“智能模板设计技术”。为了彻底解决工程师对公路
CAD 技术在易用性、自动化和开放性、适用性方面的需求与矛盾,同时可以满足国外工程项目勘测设计任务的迫切需要,纬地软件首次提出了“智能模板设计技术”的构想和思路。此功能主要包括两部分:即“模板设计技术”和“模板绘图技术”。“模板设计技术”是通过在公路
CAD 中开发和定义各类横断面组件,工程师根据系统定义的各种横断面组件,以图形化自定义的方式拼装组成标准横断面设计模板(类似于我们通常设计中的标准横断面或者典型横断面),并指定每一种标准横断面模板的适用范围(桩号区间),系统根据设计模板自动进行横断面戴帽子设计,包括路基设计(含超高加宽设计)、填挖方边坡设计、清表设置计算、挖台阶设计、边沟排水沟设计、土石方工程量计算等等。
“模板绘图技术”由工程师直接以
CAD 图形的方式先绘制横断面图纸的成果样图,然后使用系统提供的定义功能为每一个图形元素指定其对应的关键字,这样便定义完成了横断面绘图模板。系统根据该样式图(模板)自动绘制输出横断面设计图纸。
在国际同类软件中处于领先水平的“路线三维互动优化技术”。以高速三维数字地面模型(DTM)引擎为核心,利用计算软件和网络技术实现了平、纵、横及三维模型之间的实时关联互动化设计。当工程师在拖动平面路线位置时,该技术将自动实现纵断面、横断面和三维模型的实时刷新,使得工程师马上可以直观的观察到横断面和三维模型的变化情况,从而判断路线修改的合理性。对于复杂地形条件下的路线修改优化工作可以起到事半功倍的效果。
六、桥梁工程设计软件 桥梁博士(Dr.Bridge)是由上海同豪土木工程咨询有限公司开发的一款桥梁计算软件系统,该系统是一个集可视化数据处理、数据库管理、结构分析、打印与帮助为一体的综合性桥梁结构设计与施工计算系统。系统的编制完全按照桥梁设计与施工过程进行,密切结合桥梁设计规范,充分利用现代计算机技术,完全符合设计人员的习惯。对结构的计算是宁繁勿简,充分考虑了各种结构的复杂组成与施工情况,使用更方便,计算更精确;同时在数据输入的容错性方面作了大量的工作,使用户不会因一时的失误而造成不必要的工作损失。系统编辑
本系统寄托在Windows平台上,充分利用Windows平台的特点:标准一致的用户界面、多任务系统、鼠标的点取和强大的设备支持特性。另外,Dr.Bridge系统抛弃了以往陈旧的编程思想,改用面向对象程序编制方法,使得用户对系统的干预大大加强,便于处理各种复杂情况,也使得计算机的呆板性得到了解决。同时,系统以MFC基本类库为基础,大大降低了系统对硬件的依赖性,便于未来64位操作系统的移植和升级。作用编辑
自1995年投向市场以来设计计算了钢筋混凝土及预应力混凝土连续梁、刚构、连续拱、桁架梁、斜拉桥等多种桥梁。在设计过程中充分发挥了程序实用性强、可操作性好、自动化程度较高等特点,对于提高桥梁设计能力起到了很好的作用。在设计应用过程中,通过实践校核及与其它软件的比较,桥梁博士进行了完善和扩充,进一步得到了稳定。改进编辑
目前3.0版主要按照《公路桥涵设计通用规范》 JTG D60-2004和《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTG D62-2004进行补充修改。并对程序的前处理和后处理部分在原有的基础上做了大的改进,扩充的每个功能块都凝聚着开发组多年来的心血,都是经过认真的总结、研究和精心设计而最终完成的;同时密切与桥梁工程设计实践相结合,借助力学技术和计算机技术全力解决用户在桥梁工程设计过程中碰到的棘手的数据处理问题,使用户能够集中精力解决桥梁结构的合理性问题。
七、广联达计价软件
广联达计价软件是进行工程预决算报价的辅助软件,它已国家制定的工程预算定额为依据,根据工程的具体情况进行项目前期施工预算、中期成本核算、后期项目决算。广联达计价的具体操作步骤为: 1.打开广联达计价软件
2.新建项目工程。
3.根据项目特点,分专业设置单位工程。
4.编制各专业工程量清单5.编制清单报价文件
6.措施费的计取
7.规费、税金的计取
8.人材机单价修改
9.报表导出
本次实践让我学到很多知识。实训的第一天指导老师给我们布置好实习任务,实习目的以及意义所在,然后交代了一些细节方面的问题,强调应当注意的一些地方,便要求开始绘图。刚开始看见任务时我们都很有压力,看起来是那么的难,但经过仔细的看了作图要求,以及提示的作图步骤,我们也有了信心。在这期间也复习了以前的知识。遇到新问题就找老师或同学请教时又学到尚未学到的知识。虽然在知识的掌握和绘图技术方面有所欠缺,但是我怀着积极的心态去面对这次难得的实训机会。这次实训的目的就是让我们可以熟练的使用AutoCAD的常用绘图命令和编辑命令,培养学生运用AutoCAD软件绘制平面图形的技能和技巧。巩固所学的绘制专业图的基本知识和方法,以及有关的国家标准,培养学生运用AutoCAD软件绘制专业图的方法和技能。培养学生耐心细致的工作作风和严肃认真的工作态度。通过这次的实训,不敢说我对于AutoCAD的常用绘图命令和编辑命令的运用很娴熟,但相对实训前有了很大的提高。比较明显的就是速度快了,同一类型的图可以用更少的时间去完成,而质量也只高不低。不过最娴熟的还是基本设置,图层、线型、线宽、比例、颜色、文字样式、尺寸标注等。为了加强这方面的练习,我每幅图都画一遍图幅,设置一次图层、线型、线宽、颜色、文字样式和标注样式。建筑图形和几何图形的比例是不同的,画一个标准的A3图幅后要扩大100倍。几何图形的标注样式也各有各样,特别是一些直径和半径的标注,和常规的有差别,以前没接触过的在实训中接触了,学会了如何设置。
感谢老师的辛苦指导,经过此次实践我熟练掌握了相关软件的使用技巧,并可以进行相应的绘图及计算。为了今后学习和工作,我一定会继续努力学习这些软件使用,争取达到更熟练的水平,为今后工作学习打下基础。