开关电源设计思路及计算方法

时间:2019-05-14 04:33:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《开关电源设计思路及计算方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《开关电源设计思路及计算方法》。

第一篇:开关电源设计思路及计算方法

本文开关电源工作原理是电子发烧友网开关电源工程师全力整理的原理分析,以丰富的开关电源案例分析,介绍单端正激式开关电源,自激式开关电源,推挽式开关电源、降压式开关电源、升压式开关电源和反转式开关电源。

随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40% -50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。为了提高效率,人们研制出了开关式稳压电源,它的效率可达85% 以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。

一、开关式稳压电源的基本工作原理

开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算,即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路

1、基本电路

图二 开关电源基本电路框图

开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。

2.单端反激式开关电源

单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。

单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。

3.单端正激式开关电源

单端正激式开关电源的典型电路如图四所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管VT1导通时,VD2也

导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。

在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。为满足磁芯复位条件,即磁通建立和

复位时间应相等,所以电路中脉冲的占空比不能大于50%。由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。

4.自激式开关稳压电源

自激式开关稳压电源的典型电路如图五所示。这是一种利用间歇振荡电路组成的开关电源,也是目前广泛使用的基本电源之一。

当接入电源后在R1给开关管VT1提供启动电流,使VT1开始导通,其集电极电流Ic在L1中线性增长,在L2 中感应出使VT1 基极为正,发射极为负的正反馈电压,使VT1 很快饱和。与此同时,感应电压给C1充电,随着C1充电电压的增高,VT1基极电位逐渐变低,致使VT1退出饱和区,Ic 开始减小,在L2 中感应出使VT1 基极为负、发射极为正的电压,使VT1 迅速截止,这时二极管VD1导通,高频变压器T初级绕组中的储能释放给负载。在VT1截止时,L2中没有感应电压,直流供电输人电压又经R1给C1反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振荡下去。这里就像单端反激式开关电源那样,由变压器T的次级绕组向负载输出所需要的电压。自激式开关电源中的开关管起着开关及振荡的双重作从,也省去了控制电路。电路中由于负载位于变压器的次级且工作在反激状态,具有输人和输出相互隔离的优点。这种电路不仅适用于大功率电源,亦适用于小功率电源。

5.推挽式开关电源

推挽式开关电源的典型电路如图六所示。它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。

这种电路的优点是两个开关管容易驱动,主要缺点是开关管的耐压要达到两倍电路峰值电压。电路的输出功率较大,一般在100-500 W范围内。

6.降压式开关电源

降压式开关电源的典型电路如图七所示。当开关管VT1 导通时,二极管VD1 截止,输人的整流电压经VT1和L向C充电,这一电流使电感L中的储能增加。当开关管VT1截止时,电感L感应出左负右正的电压,经负载RL和续流二极管VD1释放电感L中存储的能量,维持输出直流电压不变。电路输出直流电压的高低由加在VT1基极上的脉冲宽度确定。

这种电路使用元件少,它同下面介绍的另外两种电路一样,只需要利用电感、电容和二极管即可实现。

7.升压式开关电源

升压式开关电源的稳压电路如图八所示。当开关管 VT1 导通时,电感L储存能量。当开关管VT1 截止时,电感L感应出左负右正的电压,该电压叠加在输人电压上,经二极管VD1向负载供电,使输出电压大于输人电压,形成升压式开关电源。

8.反转式开关电源

反转式开关电源的典型电路如图九所示。这种电路又称为升降压式开关电源。无论开关管VT1之前的脉动直流电压高于或低于输出端的稳定电压,电路均能正常工作。

当开关管 VT1 导通时,电感L 储存能量,二极管VD1 截止,负载RL靠电容C上次的充电电荷供电。当开关管VT1截止时,电感L中的电流继续流通,并感应出上负下正的电压,经二极管VD1向负载供电,同时给电容C充电。

以上介绍了脉冲宽度调制式开关稳压电源的基本工作原理和各种电路类型,在实际应用中,会有各种各样的实际控制电路,但无论怎样,也都是在这些基础上发展出来的。

第二篇:开关电源设计笔记

1.开关电源设计前各参数

以NXP的TEA1832图纸做说明。分析电路参数设计与优化并到认证至量产。所有元器件尽量选择公司现有的或者量大的元件,方便后续降成本。

1、输入端:FUSE选择需要考虑到I^2T参数。保险丝的分类,快断,慢断,电流,电压值,保险丝的认证是否齐全。保险丝前的安规距离2.5mm以上。设计时尽量放到3mm以上。需考虑打雷击时,保险丝I2T是否有余量,会不会打挂掉。

2、压敏电阻:图中可以增加一个压敏电阻,一般采用14D471,也可采用561,直径越大抗浪涌电流越大,也有增强版的10S471,14S471等,一般14D471打1KV,2KV雷击够用了,增加雷击电压就要换成MOV+GDT。有必要时,压敏电阻外包个热缩套管。

3、NTC:图中可以增加个NTC,有的客户有限制冷启动浪涌电流不超过60A,30A,NTC的另一个目的还可以在雷击时扛部分电压,减下MOSFET的压力。选型时注意NTC的电压,电流,温度等参数。

4、共模电感:传导与辐射很重要的一个滤波元件,共模电感有环形的高导材料5K,7K,0K,12K,15K,常用绕法有分槽绕,并绕,蝶形绕法等,还有UU型,分4个槽的ET型。这个如果能共用老机种的最好,成本考虑,传导辐射测试完成后才能定型。

5、X电容选择:需要与共模电感配合测试传导与辐射才能定容值,一般情况为功率越大X电容越大。

6、如果认证有输入L,N的放电时间要求,需要在X电容下放2并2串的电阻给电容放电。

7、桥堆的选择:一般需要考虑桥堆能过得浪涌电流,耐压和散热,防止雷击时坏掉。

8、VCC启动电阻:注意启动电阻的功耗,主要是耐压值,1206一般耐压200V,0805一般耐压150V,能多留余量比较好。

9、输入滤波电解电容:一般看成本的考虑,输出保持时间的10mS,按照电解电容容值的最小情况80%容值设计,不同厂家和不同的设计经验有点出入,有一点要注意普通的电解电容和扛雷击的电解电容,电解电容的纹波电流关系到电容寿命,这个看品牌和具体的系列。

10、输入电解电容上有并联一个小瓷片电容,这个平时体现不出来用处,在做传导抗扰度时有效果。

11、RCD吸收部分:R的取值对应MOSFET上的尖峰电压值,如果采用贴片电阻需注意电压降额与功耗。C一般取102/103 1KV的高压瓷片,整改辐射时也有可能会改为薄膜电容效果好。D一般用FR107,FR207,整改辐射时也有改为1N4007的情况或者其他的慢管,或者在D上套磁珠(K5A,K5C等材质)。小功率电源,RC可以采用TVS管替代,如P6KE160等。

12、MOSFET的选择,起机和短路情况需要注意SOA。高温时的电流降额,低温时的电压降额。一般600V 2-12A足够用与100W以内的反激,根据成本来权衡选型。整改辐射时很多方法没有效果的时候,换个MOSFET就过了的情况经常有。

13、MOSFET的驱动电阻一般采用10R+20R,阻值大小对应开关速度,效率,温升。这个参数需要整改辐射时调整。

14、MOSFET的GATE到SOURCE端需要增加一个10K-100K的电阻放电。

15、MOSFET的SOURCE到GND之间有个Isense电阻,功率尽量选大,尽量采用绕线无感电阻。功率小,或者有感电阻短路时有遇到过炸机现象。

16、Isense电阻到IC的Isense增加1个RC,取值1K,331,调试时可能有作用,如果采用这个TEA1832电路为参考,增加一个C并联到GND。

17、不同的IC外围引脚参考设计手册即可,根据自己的经验在IC引脚处放滤波电容。

18、变压器的设计,反激变压器设计论坛里面讨论很多,不多说。还是考虑成本,尽量不在变压器里面加屏蔽层,顶多在变压器外面加个十字屏蔽。变压器一定要验算delta B值,防止高温时磁芯饱和。delta B=L*Ipk/(N*Ae),L(uH),Ipk(A),N为初级砸数(T),Ae(mm2)。(参考TDG公司的磁芯特性(100℃)饱和磁通密度390mT,剩磁55mT,所以ΔB值一般取330mT以内,出现异常情况不饱和,一般取值小于300mT以内。我之前做反激变压器取值都是小于0.3的)附,学习zhangyiping的经验(所以一般的磁通密度选择1500高斯,变压器小的可以选大一些,变压器大的要选小一些,频彔高的减小频彔低的可以大一些吧。)变压器的VCC辅助绕组尽量用2根以上的线并绕,之前很大批量时有碰到过有几个辅助绕组轻载电压不够或者重载时VCC过压的情况,2跟以上的VCC辅助绕线能尽量耦合更好解决电压差异大这个问题。

附注:有兴趣验证这个公式的话,可以在最低电压输入,输出负载不断增加,看到变压器饱和波形,饱和时计算结果应该是500mT左右(25℃时,饱和磁通密度510mT)。

借鉴TDG的磁芯基本特征图。

19、输出二极管效率要求高时,可以采用超低压降的肖特基二极管,成本要求高时可以用超快恢复二极管。

20、输出二极管并联的RC用于抑制电压尖峰,同时也对辐射有抑制。

21、光耦与431的配合,光耦的二极管两端可以增加一个1K-3K左右的电阻,Vout串联到光耦的电阻取值一般在100欧姆-1K之间。431上的C与RC用于调整环路稳定,动态响应等。

22、Vout的检测电阻需要有1mA左右的电流,电流太小输出误差大,电流太大,影响待机功耗。

23、输出电容选择,输出电容的纹波电流大约等于输出电流,在选择电容时纹波电流放大1.2倍以上考虑。24、2个输出电容之间可以增加一个小电感,有助于抑制辐射干扰,有了小电感后,第一个输出电容的纹波电流就会比第二个输出电容的纹波电流大很多,所以很多电路里面第一个电容容量大,第二个电容容量较小。

25、输出Vout端可以增加一个共模电感与104电容并联,有助于传导与辐射,还能降低纹波峰峰值。

26、需要做恒流的情况可以采用专业芯片,AP4310或者TSM103等类似芯片做,用431+358都行,注意VCC的电压范围,环路调节也差不多。

27、有多路输出负载情况的话,电源的主反馈电路一定要有固定输出,或者假负载,否则会因为耦合,burst模式等问题导致其他路输出电压不稳定。

28、初级次级的大地之间有接个Y电容,一般容量小于或等于222,则漏电流小于0.25mA,不同的产品认证对漏电流是有要求的,需注意。算下来这么多,电子元器件基本能定型了,整个初略的BOM可以评审并参考报价了。BOM中元器件可以多放几个品牌方便核成本。如客户有特殊要求,可以在电路里面增加功能电路实现。如不能实现,寻找新的IC来完成,相等功率和频率下,IC的更改对外围器件影响不大。如客户温度范围的要求比较高,对应元器件的选项需要参考元器件使用温度和降额使用。

2开关电源PCB设计

1、PCB对应的SCH网络要对应,方便后续更新,花不了多少时间的。

2、PCB的元器件封装,标准库里面的按实际情况需要更改,贴片元件焊盘加大;插件元件的孔径比元件管脚大0.3mm,焊盘直径大于孔0.8mm以上,焊盘大些方便焊接,元器件过波峰焊也容易上锡,PCB厂家做出来也不容易破孔。还有很多细节的东西多了解些对生产是很大的功劳啊。

3、安规的要求在PCB上的体现,保险丝的安规输入到输出距离3mm以上,保险丝带型号需要印在PCB上。PCB的板材也有不同的安规要求,对应需要做的认证与***商沟通能否满足要求。相应的认证编号需印到PCB上。初级到次级的距离8mm以上,Y电容注意选择Y1还是Y2的,跨距也要求8mm以上,变压器的初级与次级,用挡墙或者次级用三层绝缘线飞线等方法做爬电距离。

4、桥堆前L,N走线距离2.5mm以上,桥堆后高压+,-距离2.5mm以上。走线为大电流回路先走,面积越小越好。信号线远离大电流走线,避免干扰,IC信号检测部分的滤波电容靠近IC,信号地与功率地分开走,星形接地,或者单点接地,最后汇总到大电容的“-”引脚,避免调试时信号受干扰,或者抗扰度出状况。

5、IC方向,贴片元器件的方向,尽量放到整排整列,方便过波峰焊上锡,提高产线效率,避免阴影效应,连锡,虚焊等问题出现。

6、打AI的元器件需要根据相应的规则放置元器件,之前看过一个日本的PCB,焊盘做成水滴状,AI元件的引脚刚好在水滴状的焊盘上,漂亮。

7、PCB上的走线对辐射影响比较大,可以参考相关书籍。还有1种情况,PCB当单面板布线,弄完后,在顶层敷整块铜皮接大电容地,抑制传导和辐射很有效果。

8、布线时,还需要考虑雷击,ESD时或其他干扰的电流路径,会不会影响IC。

3开关电源调试

1、万用表先测试主电流回路上的二极管,MOSFET,有没有短路,有没有装反,变压器的感量与漏感是否都有测试,变压器同名端有没有绕错。

2、开始上电,我的习惯是先上100V的低压,PWM没有输出。用示波器看VCC,PWM脚,VCC上升到启动电压,PWM没有输出。检查各引脚的保护功能是否被触发,或者参数不对。找不到问题,查看IC的上电时序图,或者IC的datasheet里面IC启动的条件。示波器使用时需注意,3芯插头的地线要拔掉,不拔掉的话最好采用隔离探头挂波形,要不怎么炸机的都不知道。用2个以上的探头时,2根探头的COM端接同1个点,避免影响电路,或者夹错位置烧东西。

3、IC启动问题解决了,PWM有输出,发现启动时变压器啸叫。挂MOSFET的电流波形,或者看Isense脚底波形是否是三角波,有可能是饱和波形,有可能是方波。需重新核算ΔB,还有种情况,VCC绕组与主绕组绕错位置。也有输出短路的情况,还有RCD吸收部分的问题,甚至还碰到过TVS坏了短路的情况。

4、输出有了,但是输出电压不对,或者高了,或者低了。这个需要判断是初级到问题,还是次级的问题。挂输出二极管电压电流波形,是否是正常的反激波形,波形不对,估计就是同名端反了。检查光耦是否损坏,光耦正常,采用稳压管+1K电阻替换431的位置,即可判断输出反馈431部分,或者恒流,或者过载保护等保护的动作。常见问题,光耦脚位画错,导致反馈到不了前级。431封装弄错,一般431的封装有2种,脚位有镜像了的。同名端的问题会导致输出电压不对。

5、输出电压正常了,但是不是精确的12V或者24V,这个时候一般采用2个电阻并联的方式来调节到精确电压。采样电阻必须是1%或者0.5%。

6、输出能带载了,带满载变压器有响声,输出电压纹波大。挂PWM波形,是否有大小波或者开几十个周期,停几十个周期,这样的情况调节环路。431上的C与RC,现在的很多IC内部都已经集成了补偿,环路都比较好调整。环路调节没有效果,可以计算下电感感量太大或者太小,也可以重新核算Isense电阻,是否IC已经认为Isense电阻电压较小,IC工作在brust mode。可以更改Isense电阻阻值测试。

7、高低压都能带满载了,波形也正常了。测试电源效率,输入90V与264V时效率尽量做到一致(改占空比,匝比),方便后续安规测试温升。电源效率一般参考老机种效率,或者查能效等级里面的标准参考。

8、输出纹波测试,一般都有要求用47uF+104,或者10uF+104电容测试。这个电解电容的容值影响纹波电压,电容的高频低阻特性(不同品牌和系列)也会影响纹波电压。示波器测试纹波时探头上用弹簧测试探头测试可以避免干扰尖峰。输出纹波搞不定的情况下,可以改容量,改电容的系列,甚至考虑采用固态电容。

9、输出过流保护,客户要求精度高的,要在次级放电流保护电路,要求精度不高的,一般初级做过流保护,大部分IC都有集成过流或者过功率保护。过流保护一般放大1.1-1.5倍输出电流。最大输出电流时,元器件的应力都需要测试,并留有余量。电流保护如增加反馈环路可以做成恒流模式,无反馈环路一般为打嗝保护模式。做好过流保护还需要测试满载+电解电容的测试,客户端有时提出的要求并未给出是否是容性负载,能带多大的电容起机测试了后心里比较有底。

10、输出过压保护,稳定性要求高的客户会要求放2个光耦,1个正常工作的,一个是做过压保护的。无要求的,在VCC的辅助绕组处增加过压保护电路,或者IC里面已经有集成的过压保护,外围器件很少。

11、过温保护一般要看具体情况添加的,安规做高温测试时对温度都有要求,能满足安规要求温度都还可以,除非环境复杂或者异常情况,需要增加过温保护电路。

12、启动时间,一般要求为2S,或者3S内起机,都比较好做,待机功耗做到很低功率的方案,一般IC都考虑好了。没有什么问题。

13、上升时间和过冲,这个通过调节软启动和环路响应实现。

14、负载调整率和线性调整率都是通过调节环路响应来实现。

15、保持时间,更改输入大电容容量即可。

16、输出短路保护,现在IC的短路保护越做越好,一般短路时,IC的VCC辅助绕组电压低,IC靠启动电阻供电,IC启动后,Isense脚检测过流会做短路保护,停止PWM输出。一般在264V输入时短路功率最大,短路功率控制住2W以内比较安全。短路时需要测试MOSFET的电流与电压,并通过查看MOSFET的SOA图(安全工作区)对应短路是否超出设计范围。

17、空载起机后,输出电压跳。有可能是轻载时VCC的辅助绕组感应电压低导致,增加VCC绕组匝数,还有可能是输出反馈环路不稳定,需要更新环路参数。

18、带载起机或者空载切重载时电压起不来。重载时,VCC辅助绕组电压高,需查看是否过压,或者是过流保护动作。

还有变压器设计时按照正常输出带载设计,导致重载或者过流保护前变压器饱和。

19、元器件的应力都应测试,满载、过载、异常测试时元器件应力都应有余量,余量大小看公司规定和成本考虑。性能测试与调试基本完成。调试时把自己想成是设计这颗IC的人,就能好好理解IC的工作情况并快速解决问题。这些全都按记忆写的,有点乱,有些没有记录到,后续想到了再补上。

4EMC等测试之前

1、温升测试,45℃烤箱环境,输入90,264时变压器磁芯,线包不超过110℃,PCB在130℃以内。其他的元器件具体值参考下安规要求,温度最难整的一般都是变压器。

2、绝缘耐压测试DC500V,阻值大于100MΩ,初次级打AC3000V时间60S,小于10mA,产线量产可以打AC3600V,6S。建议采用直流电压DC4242打耐压。耐压电流设置10mA,测试过程中测试仪器报警,要检查初次级距离,初级到外壳,次级到外壳距离,能把测试室拉上窗帘更好,能快速找到放电的位置的电火花。

3、对地阻抗,一般要小于0.1Ω,测试条件电流40A。

4、ESD一般要求接触4K,空气8K,有个电阻电容模型问题。一般会把等级提高了打,打到最高的接触8K,空气15K。打ESD时,共模电感底下有放电针的话,放电针会放电。电源的ESD还会在散热器与不同元器件之间打火,一般是距离问题和PCB的layout问题。打ESD打到15K把电源打坏就知道自己做的电源能抗多大的电压,做安规认证时,心里有底。如果客户有要求更高的电压也知道怎么处理。参考EN61000-4-2。

5、EFT这个没有出现过问题2KV。参考EN61000-4-4。

6、雷击,差模1K,共模2K,采用压敏14D471,有输入大电解,走线没有大问题基本PASS。碰到过雷击不过的情况,小功率5W,10W的打挂了,采用能抗雷击的电解电容。单极PFC做反激打挂了MOSFET,在输入桥堆后加入二极管与电解电容串联,电容吸收能量。LED电源打2K与4K的情况,4KV就要采用压敏电阻+GDT的形式。参考EN61000-4-5。

EFT,ESD,SURGE有A,B,C等级。一般要A等级:干扰对电源无影响。

7、低温起机。一般便宜的电源,温度范围是0-45℃,贵的,工业类,或者LED什么的有要求-40℃-60℃,甚至到85℃。-40℃的时候输入NTC增大了N倍,输入电解电容明显不够用了,ESR很大,还有PFC如果用500V的MOSFET也是有点危险的(低温时MOSFET的耐压值变低)。之前碰到过90V输入的时候输出电压跳,或者是LED闪几次才正常起来。增加输入电容容量,改小NTC,增加VCC电容,软启动时间加长,初级限流(输入容量不够,导致电压很低,电流很大,触发保护)从1.2倍放大到1.5倍,IC的VCC绕组增加2T辅助电压抬高;查找保护线路是否太极限,低温被触发(如PFC过压易被触发)。

5传导整改

基本性能和安规基本问题解决掉,剩下个传导和辐射问题。这个时候可以跟客户谈后续价格,自己优化下线路。跟安规工程师确认安规问题,跟产线的工程师确认后续PCB上元器件是否需要做位置的更改,产线是否方便操作等问题。或者有打AI,过回流焊波峰焊的问题,及时对元器件调整。

1、传导和辐射测试大家看得比较多,论坛里面也讲的多,实际上这个是个砸钱的事情。砸钱砸多了,自然就会了,整改也就快了。能改的地方就那么几个。

1、这个里面看不见的,特别重要的就算是PCB了,有厉害的可以找到PCB上的线,割断,换个走线方式就可以搞掉3个dB,余量就有了。

2、一般看到笔记本电源适配器,接电脑的部分就有个很丑的砣,这个就是个EMI滤波器,从适配器出线的部分到笔记本电脑这么长的距离,可以看成是1条天线,增加一个滤波器,就可以滤除损耗。所以一般开关电源的输出端有一个滤波电感,效果也是一样的。

3、输入滤波电感,功率小的,UU型很好用,功率大的基本用环型和ET型。公司有传导实验室或者传导仪器的倒是可以有想法了就去折腾下。要是要去第三方实验室的就比较痛苦了,光整改材料都要带一堆。滤波电感用高导的10K材料比较好,对传导辐射抑制效果都不错,如果传导差的话,可以改12K,15K的,辐射差的话可以改5K,7K的材质。

4、输入X电容,能用小就用小,主要是占地方。这个要配合滤波电感调整的。

5、Y电容,初次级没有装Y电容,或者Y电容很小的话一般从150K-30M都是飘的,或者飞出限值了的,装个471-222就差不多了。Y电容的接法直接影响传导与辐射的测试数据,一般为初级地接次级的地,也有初级高压,接次级地,或者放2个Y电容初级高压和初级地都接次级的地,没有调好之前谁也说不准的。Y电容上串磁珠,对10MHz以上有效果,但也不全是。每个人调试传导辐射的方法和方式都有差异机种也不同,问题也不同,所以也许我的方法只适合我自己用。无Y方案大部分是靠改变变压器来做的,而且功率不好做大。

6、MOSFET吸收,DS直接顶多能接个221,要不温度就太高了,一般47pF,100pF。RCD吸收,可以在C上串个10-47Ω电阻吸收尖峰。还可以在D上串10-100Ω的电阻,MOSFET的驱动电阻也可以改为100Ω以内。

7、输出二极管的吸收,一般采用RC吸收足够了。

8、变压器,变压器有铜箔屏蔽和线屏蔽,铜箔屏蔽对传导效果好,线屏蔽对辐射效果好。至于初包次,次包初,还有些其他的绕法都是为了好过传导辐射。

9、对于PFC做反激电源的,输入部分还需要增加差模电感。一般用棒形电感,或者铁粉芯的黄白环做。

10、整改传导的时候在10-30MHz部分尽量压低到有15-20dB余量,那样辐射比较好整改。

开关频率一般在65KHz,看传导的时候可以看到65K的倍频位置,一般都有很高的值。总之:传导的现象可以看成是功率器件的开关引起的振荡在输入线上被放大了显示出来,避免振荡信号出去就要避免高频振荡,或者把高频振荡吸收掉,损耗掉,以至于显示出来的时候不超标。

6辐射整改

1、PCB的走线按照布线规则来做即可。当PCB有空间的时候可以放2个Y电容的位置:初级大电容的+到次级地;初级大电容-到次级地,整改辐射的时候可以调整。

2、对于2芯输入的,Y电容除了上述接法还可以在L,N输入端,保险丝之后接成Y型,再接次级的地,3芯输入时,Y电容可以从输入输出地接到输入大地来测试。

3、磁珠在辐射中间很重要,以前用过的材料是K5A,K5C,磁珠的阻抗曲线与磁芯大小和尺寸有关。如图所示,不同的磁珠对不同的频率阻抗曲线不同。但是都是把高频杂波损耗掉,成了热量(30MHz-500MHz)。一般MOSFET,输出二极管,RCD吸收的D,桥堆,Y电容都可以套磁珠来做测试。

4、输入共模电感:如果是2级滤波,第一级的滤波电感可以考虑用0.5-5mH左右的感量,蝶形绕法,5K-10K材质绕制,第一级对辐射压制效果好。如果是3芯输入,可以在输入端进线处用三层绝缘线在K5A等同材质绕3-10圈,效果巨好。

5、输出共模电感,一般采用高导磁芯5K-10K的材料,特殊情况辐射搞不定也可以改为K5A等同材质。

6、MOSFET,漏极上串入磁珠,输入电阻加大,DS直接并联22-220pF高压瓷片电容可以改善辐射能量,也可以换不同电流值的MOS,或者不同品牌的MOSFET测试。

7、输出二极管,二极管上套磁珠可以改善辐射能量。二极管上的RC吸收也对辐射有影响。也可以换不同电流值来测试,或者更换品牌

8、RCD吸收,C更改容量,R改阻值,D可以用FR107,FR207改为慢管,但是需要注意慢管的温度。RCD里面的C可以串小阻值电阻。

9、VCC的绕组上也有二极管,这个二极管也对辐射影响大,一般采取套磁珠,或者将二极管改为1N4007或者其他的慢管。

10、最关键的变压器。能少加屏蔽就少加屏蔽,没办法的情况也只能改变压器了。变压器里面的铜箔屏蔽对辐射影响大,线屏蔽是最有效果的。一般改不动的时候才去改变压器。

11、辐射整改时的效率。套满磁珠的电源先做测试,PASS的情况,再逐个剪掉磁珠。fail的情况,在输入输出端来套磁环,判断辐射信号是从输入还是输出发射出来的。套了磁环还是fail的话,证明辐射能量是从板子上出来的。这个时候要找实验室的兄弟搞个探头来测试,看看是哪个元器件辐射的能量最大,哪个原件在超出限值的频率点能量最高,再对对应的元件整改。辐射的现象可以看成是功率器件在高速开关情况下,寄生参数引起的振荡在不同的天线上发射出去,被天线接收放大了显示出来,避免振荡信号出去就要避免高频振荡,改变振荡频率或者把高频振荡吸收掉,损耗掉,以至于显示出来值的时候不超标。磁珠的运用有个需要注意的地方,套住MOSFET的时候,MOSFET最好是要打K脚,套入磁珠后点胶固定,如果磁珠松动,可能导电引起MOSFET短路。有空间的情况下尽量采用带线磁珠。

7PCB改版定型与试产

传导辐射整改完成后,PCB可以定型了,最好按照生产的工艺要求来做改善,更新一版PCB,避免生产时碰到问题。

1、验证电源的时刻到了,客户要求,规格书。电源样品拿给测试验证组做测试验证了。之前问题都解决了的话,验证组是没问题的,到时间拿报告就可以了。

2、准备小批量试产,走流程,准备物料,整理BOM与提供样机给生产部同事。

3、准备做认证的材料(保险丝,MOSFET等元器件)与样机以及做认证的关键元器件清单等文档性材料。关键元器件清单里面的元件一般写3个以上的***商。认证号一定要对准,错了的话,后续审厂会有不必要的麻烦。剩下的都是一些基本的沟通问题了。

做认证时碰到过做认证的时候温升超标了的,只能加导热胶导出去。或者提高效率,把传导与辐射的余量放小。这种问题一般是自己做测试时余量留得太少,很难碰到的。

4、一般认证2个月左右能拿到的。2个月的时间足够把试产做好了。

5、试产问题:基本上都是要改大焊盘,插件的孔大小更改,丝印位置的更改等。

6、试产的测试按IPS和产线测试的规章制度完成。碰到过裸板耐压打不过的,原因竟然是把裸板放在绿色的静电皮上操作;也有是麦拉片折痕处贴的胶带磨损了。

7、输入有大电容的电源,需要要求测试的工序里面增加一条,测试完毕给大电容放电的一个操作流程。

8、试产完成后开个试产总结会,试产PASS,PCB可以开模了。量产基本上是不会找到研发工程师了,顶多就是替代料的事宜。

9、做完一个产品,给自己写点总结什么的,其中的经验教训,或者是有点失败的地方,或者是不同IC的特点。项目做多了,自然就会了。整个开发过程中都是一个团队的协作,所以很厉害的工程师,沟通能力也是很强的,研发一个产品要跟很多部门打交道,技术类的书要看,技术问题也要探讨,同时沟通与礼仪方面的知识也要学习,有这些前提条件,开发起来也就容易多了。

第三篇:开关电源热设计讨论

开关电源热设计讨论

借本论题探讨热设计的方法及可靠性设计

先开个头:散热设计的一些基本原则

从有利于散热的角度出发,印制版最好是直立安装,板与板之间的距离一般不应小于2cm,而且器件在印制版上的排列方式应遵循一定的规则:

·对于采用自由对流空气冷却的设备,最好是将集成电路(或其它器件)按纵长方式排列,如图3示;对于采用强制空气冷却的设备,最好是将集成电路(或其它器件)按横长方式排列。

·同一块印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集成电路、电解电容等)放在冷却气流的最上流(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却气流最下游。

·在水平方向上,大功率器件尽量靠近印制板边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印制板上方布置,以便减少这些器件工作时对其它器件温度的影响。

·对温度比较敏感的器件最好安置在温度最低的区域(如设备的底部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局。

·设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动路径,合理配置器件或印制电路板。空气流动时总是趋向于阻力小的地方流动,所以在印制电路板上配置器件时,要避免在某个区域留有较大的空域。整机中多块印制电路板的配置也应注意同样的问题。

电子设备散热的重要性

在电子设备广泛应用的今天。如何保证电子设备的长时间可靠运行,一直困扰着工程师们。造成电子设备故障的原因虽然很多,但是高温是其中最重要的因素(其它因素重要性依次是振动Vibration、潮湿Humidity、灰尘Dust),温度对电子设备的影响高达60%。

温度和故障率的关系是成正比的,可以用下式来表示:

F = Ae-E/KT 其中:

F = 故障率, A=常数

E = 功率

K =玻尔兹曼常量(8.63e-5eV/K)T = 结点温度

随着芯片的集成度、功率密度的日愈提高,芯片的温度越来越成为系统稳定工作、性能提升的绊脚石。作为一个合格的电子产品设计人员,除了成功实现产品的功能之外,还必须充分考虑产品的稳定性、工作寿命,环境适应能力等等。而这些都和温度有着直接或间接的关系。数据显示,45%的电子产品损坏是由于温度过高。可见散热设计的重要性。如何对产品进行热设计,首先我们可以从芯片厂家提供的芯片Datasheet为判断的基础依。如何理解Datasheet的相关参数呢?下面将对Datasheet中常用的热参数逐一说明。

一、Datasheet中和散热有关的几个重要参数

P--芯片功耗,单位W(瓦)。功耗是热量产生的直接原因。功耗大的芯片,发热量也一定大。

Tc--芯片壳体温度,单位℃。

Tj--结点温度,单位℃。随着结点温度的提高,半导体器件性能将会下降。结点温度过高将导致芯片工作不稳定,系统死机,最终芯片烧毁。

Ta--环境温度,单位℃。

Tstg--存储温度,单位℃。芯片的储存温度。

Rja/θja--结点到环境的热阻,单位℃/W。

Rjc/θjc--结点到芯片壳的热阻,单位℃/W

Ψjt--可以理解为结点到芯片上表面的热阻。当芯片热量只有部分通过上壳散出的时候的热阻参数。

LFM--风速单位,英尺/分钟。

提供最大Ta、Tj、P--早期的芯片Datasheet一般都是这种。理论上我们只需要保证芯片附近的环境温度不超过这个指标就可以保证芯片可以正常工作。但是实际并非如此。Ta这个参数是按照JEDEC标准测试而得。JEDEC标准是这样定义的:把芯片置于一块3X4.5英寸的4层PCB中间,环境温度测试探头距离这块PCB的板边缘12英寸。可见我们产品几乎不可能满足这种测试条件。因此,Ta在这里对我们来说,没什么意义。在这种情况下保守的做法是:保证芯片的壳体温度Tc﹤Ta-max,一般来说芯片是可以正常工作的。>br>

直接提供Tc-max--这种情况相对较少,处理也相对简单。只需保证Tc﹤Tc-max即可。>br>

提供Tj、Rjc/θjc、P--近2年来,随着热设计的重要性不断提高,大部分的芯片资料都会提供上述参数。基本公式如下:

Tj=Tc+Rjc*P

只要保证Tj﹤Tj-max即可保证芯片正常工作。

归根结底,我们只要能保证芯片的结点温度不超过芯片给定的最大值,芯片就可以正常工作。

如何判断芯片是否需要增加散热措施

第一步:搜集芯片的散热参数。主要有:P、Rja、Rjc、Tj等

第二步:计算Tc-max:Tc-max=Tj-Rjc*P

第三步:计算要达到目标需要的Rca:Rca=(Tc-max-Ta)/P

第四步:计算芯片本身的Rca’:Rca’=Rja-Rjc

如果Rca大于 Rca’,说明不需要增加额外的散热措施。

如果Rca小于Rca’,说明需要增加额外的散热措施。比如增加散热器、增加风扇等等。

如前所述,Rja不能用于准确的计算芯片的温度,所以这种方法只能用于简单的判断。而不能用于最终的依据。下面举一个简单的例子:

例:某芯片功耗——1.7W;Rja——53℃/W;Tj——125℃;Rjc——25℃/W,芯片工作的最大环境温度是50℃。判断该芯片是否需要加散热器,散热器热阻是多少。

Tc-max=Tj-Rjc*P =125℃-25℃/W*1.7W =82.5℃

Rca=(Tc-max-Ta)/P =(82.5-50)1.7 =19.12℃/W

Rca’=Rja-Rjc =53-25 =28℃/W

Rca小于Rca’,所以需要增加散热器。

散热器的热阻假设为Rs,则有:

Rs//Rca’小于Rca

Rs*28/(Rs+28)小于19.12 Rs小于60.29℃/W

所以选用的散热器热阻必须小于60.29℃/W。

上面仅是非常简单的例子,当然时间的情况要比这个复杂的多,需要通过仿真软件计算来分析和计算。

在普通的数字电路设计中,我们很少考虑到集成电路的散热,因为低速芯片的功耗一般很小,在正常的自然散热条件下,芯片的温升不会太大。随着芯片速率的不断提高,单个芯片的功耗也逐渐变大,例如:Intel的奔腾CPU的功耗可达到 25W。当自然条件的散热已经不能使芯片的温升控制在要求的指标之下时,就需要使用适当的散热措施来加快芯片表面热的释放,使芯片工作在正常温度范围之内。

通常条件下,热量的传递包括三种方式:传导、对流和辐射。传导是指直接接触的物体之间热量由温度高的一方向温度较低的一方的传递,对流是借助流体的流动传递热量,而辐射无需借助任何媒介,是发热体直接向周围空间释放热量。

在实际应用中,散热的措施有散热器和风扇两种方式或者二者的同时使用。散热器通过和芯片表面的紧密接触使芯片的热量传导到散热器,散热器通常是一块带有很多叶片的热的良导体,它的充分扩展的表面使热的辐射大大增加,同时流通的空气也能带走更大的热能。风扇的使用也分为两种形式,一种是直接安装在散热器表面,另一种是安装在机箱和机架上,提高整个空间的空气流速。与电路计算中最基本的欧姆定律类似,散热的计算有一个最基本的公式:

温差 = 热阻 × 功耗

在使用散热器的情况下,散热器与周围空气之间的热释放的“阻力”称为热阻,散热器与空气之间“热流”的大小用芯片的功耗来代表,这样热流由散热器流向空气时由于热阻的存在,在散热器和空气之间就产生了一定的温差,就像电流流过电阻会产生电压降一样。同样,散热器与芯片表面之间也会存在一定的热阻。热阻的单位为℃/W。选择散热器时,除了机械尺寸的考虑之外,最重要的参数就是散热器的热阻。热阻越小,散热器的散热能力越强。风冷散热原理

从热力学的角度来看,物体的吸热、放热是相对的,凡是有温度差存在时,就必然发生热从高温处传递到低温处,这是自然界和工程技术领域中极普遍的一种现象。而热传递的方式有三种:辐射、对流、传导,其中以热传导为最快。我们要讨论的风冷散热,实际上就是强制对流散热。

对流换热是指流体与其相接触的固体表面或流体,而这具有不同温度时所发生的热量转移过程。热源将热量以热传导方式传至导热导热介质,再由介质传至散热片基部,由基部将热量传至散热片肋片并通过风扇与空气分子进行受迫对流,将热量散发到空气中。风扇不断向散热片吹入冷空气,流出热空气,完成热的散热过程。

对流换热即受导热规律的支配,又受流体流动规律的支配,属于一种复杂的传热过程,表现在对流换热的影响因素比较多。

1.按流体产生流动的原因不同,可分为自然对流和强制对流。

2.按流动性质来区分,有层流和紊流之别。流体从层流过渡到紊流是由于流动失去稳定性的结果。一般以雷诺数(Re)的大小,作为层流或紊流的判断依据。

3.流体的物性对对流换热的影响。例如,粘度、密度、导热系数、比热、导温系数等等,它们随流体不同而不同,随温度变化而变化,从而改变对流换热的效果。

4.换热表面的几何条件对对流换热的影响。其中包括:

1)管道中的进口、出口段的长度,形状以及流道本身的长度等; 2)物体表面的几何形状,尺寸大小等;

3)物体表面,如管道壁面、平板表面等的粗糙程度;

4)物体表面的位置(平放、侧放、垂直放置等)以及流动空间的大小。

5.流体物态改变的影响。

6.换热面的边界条件,如恒热流、恒壁温等,也会影响对流换热。

7.风量和温度的关系

T=Ta+1.76P/Q 式中

Ta--环境温度,℃

P--整机功率,W Q--风扇的风量,CFM T--机箱内的温度,℃

举一个电路设计中热阻的计算的例子:

设计要求: 芯片功耗: 20瓦

芯片表面不能超过的最高温度: 85℃

环境温度(最高): 55℃

计算所需散热器的热阻。

实际散热器与芯片之间的热阻很小,取01℃/W作为近似。则

(R + 0.1)× 20W = 85℃-55℃

得到 R = 1.4 ℃/W

只有当选择的散热器的热阻小于1.4℃/W时才能保证芯片表面温度不会超过85℃。

使用风扇能带走散热器表面大量的热量,降低散热器与空气的温差,使散热器与空气之间的热阻减小。因此散热器的热阻参数通常用一张表来表示。如下例:

风速(英尺/秒)热阻(℃/W)

0

3.5

2.8

200

2.3

300

2.0

400

1.8 PCB表面贴装电源器件的散热设计

以Micrel公司表贴线性稳压器为例,介绍如何在仅使用一个印制电路板的铜铂作为散热器时是否可以正常工作。

1.系统要求:

VOUT=5.0V;VIN(MAX)=9.0V;VIN(MIN)=5.6V;IOUT=700mA;运行周期=100%;TA=50℃

根据上面的系统要求选择750mA MIC2937A-5.0BU稳压器,其参数为:

VOUT=5V±2%(过热时的最坏情况)

TJ MAX=125℃。采用TO-263封装,θJC=3℃/W;

θCS≈0℃/W(直接焊接在电路板上)。

2.初步计算: VOUT(MIN)=5V-5×2%=4.9V

PD=(VIN(MAX)-VOUT(MIN))+IOUT+(VIN(MAX)×I)=[9V-4.9V]×700mA+(9V×15mA)=3W

温度上升的最大值, ΔT=TJ(MAX)-TA = 125℃-50℃=75℃;热阻θJA(最坏情况):ΔT/PD=75℃/3.0W=25℃/W。

散热器的热阻, θSA=θJA-(θJC+θCS);θSA=25-(3+0)=22℃/W(最大)。

3.决定散热器物理尺寸:

采用一个方形、单面、水平具有阻焊层的铜箔散热层与一个有黑色油性涂料覆盖的散热铜箔,并采用1.3米/秒的空气散热的方案相比较,后者的散热效果最好。

采用实线方案,保守设计需要5,000mm2的散热铜箔,即71mm×71mm(每边长2.8英寸)的正方形。

4.采用SO-8和SOT-223封装的散热要求:

在下面的条件下计算散热面积大小:VOUT=5.0V;VIN(MAX)=14V;VIN(MIN)=5.6V;IOUT=150mA;占空比=100%;TA=50℃。在允许的条件下,电路板生产设备更容易处理双列式SO-8封装的器件。SO-8能满足这个要求吗?采用MIC2951-03BM(SO-8封装),可以得到以下参数:

TJ MAX=125℃;θJC≈100℃/W。

5.计算采用SO-8封装的参数:

PD=[14V-5V]×150mA+(14V×8mA)=1.46W;

升高的温度=125℃-50℃=75℃; 热阻θJA(最坏的情况): ΔT/PD=75℃/1.46W=51.3℃/W;

θSA=51-100=-49℃/W(最大)。

显然,在没有致冷条件下,SO-8不能满足设计要求。考虑采用SOT-223封装的MIC5201-5.0BS调压器,该封装比SO-8小,但其三个引脚具有很好的散热效果。选用MIC5201-3.3BS,其相关参数如下:

TJ MAX=125℃

SOT-223的热阻θJC=15℃/W θCS=0 ℃/W(直接焊在线路板上的)。

6.计算采用SOT-223封装的结果:

PD=[14V-4.9V]×150mA+(14V×1.5mA)=1.4W 上升温度=125℃-50℃=75℃;

热阻θJA(最坏的情况): ΔT/PD=75℃/1.4W=54℃/W;

θSA=54-15=39℃/W(最大)。根据以上的数据,参考图1,采用1,400 mm2的散热铜箔(边长1.5英寸的正方形)可以满足设计要求。

以上的设计结果可以作为粗略的参考,实际设计中需要了解电路板的热特性,得出更准确、满足实际设计的结果。

(Rcs是器件到散热器的热阻,由于是直接焊在PCB上,可视为零。

在PD等式中的15mA等是器件工作时所需的静态电流,你可以在DATASHEET查出。如:MIC2937A-5.0BU的regulator quiescent current在IL为750mA时的典型值为15mA)散热器材料的选择:

散热片的制造材料是影响效能的重要因素,选择时必须加以注意!目前加工散热片所采用的金属材料与常见金属材料的热传导系数:

317 W/mK

429 W/mK

401 W/mK

237 W/mK

W/mK

AA6061型铝合金

155 W/mK

AA6063型铝合金 201 W/mK

ADC12型铝合金 96 W/mK

AA1070型铝合金 226 W/mK

AA1050型铝合金 209 W/mK

热传导系数的单位为W/mK,即截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率。

热传导系数自然是越高越好,但同时还需要兼顾到材料的机械性能与价格。热传导系数很高的金、银,由于质地柔软、密度过大、及价格过于昂贵而无法广泛采用;铁则由于热传导率过低,无法满足高热密度场合的性能需要,不适合用于制作计算机空冷散热片。铜的热传导系数同样很高,可碍于硬度不足、密度较大、成本稍高、加工难度大等不利条件,在计算机相关散热片中使用较少,但近两年随着对散热设备性能要求的提高,越来越多的散热器产品部分甚至全部采用了铜质材料。铝作为地壳中含量最高的金属,因热传导系数较高、密度小、价格低而受到青睐;但由于纯铝硬度较小,在各种应用领域中通常会掺加各种配方材料制成铝合金,寄此获得许多纯铝所不具备的特性,而成为了散热片加工材料的理想选择。

各种铝合金材料根据不同的需要,通过调整配方材料的成分与比例,可以获得各种不同的特性,适合于不同的成形、加工方式,应用于不同的领域。上表中列出的5种不同铝合金中:AA6061与AA6063具有不错的热传导能力与加工性,适合于挤压成形工艺,在散热片加工中被广为采用。ADC12适合于压铸成形,但热传导系数较低,因此散热片加工中通常采用AA1070铝合金代替,可惜加工机械性能方面不及ADC12。AA1050则具有较好的延展性,适合于冲压工艺,多用于制造细薄的鳍片。风扇的选择:

风扇是风冷散热器中必不可少的组成部分,对散热效果起着至关重要的作用,是散热器中唯一的主动部件;同时,更对散热器的工作噪音有着决定性的影响。风扇在散热中的职责为:凭借自身的导流作用,令空气以一定的速度、一定的方式通过散热片,利用空气与散热片之间的热交换带走其上堆积的热量,从而实现“强制对流”的散热方式。

散热片即使结构再复杂,也只是一个被动的热交换体;因此,一款风冷散热器能否正常“工作”,几乎完全取决于风扇的工作状态。在不改变散热器结构与其它组成部分的情况下,仅仅是更换更加合适、强劲的风扇,也可以令散热效果获得大幅度的提升;反之,如果风扇搭配不合适或不够强劲,则会使风冷散热器效能大打折扣,令散热片与整体设计上的优点被埋没于无形;更有甚者,由于风扇是风冷散热器中唯一确实“工作”的部分,它本身的故障也就会导致散热器整体的故障,令其丧失大部分的散热性能,进而引起系统的不稳定或当机,甚至因高温而烧毁设备。

风扇可分为:含油轴承、单滚珠轴承、双滚珠轴承、液压轴承、来福轴承、Hypro轴承、磁悬浮轴承、纳米陶瓷轴承等,下面是其性能

从由表中可以看出,轴承技术对风扇的性能、噪音、寿命起着重要的决定性作用,实际选购风扇时必须加以注意。通常可根据性能、噪音、寿命以及价格四方面要求综合考虑:

1.性能不高,噪音小,价格低,含油轴承是唯一的选择,但寿命较短,使用一段时间后噪音可能会逐渐增大,需做好维护或更换的心理准备。

2.性能强悍,寿命长,价格不高,滚珠轴承是不二之选,但需忍受其工作时产生的较大噪音。

3.性能与噪音都没有特殊要求,但希望寿命长,价格不高,来福、Hypro轴承等含油轴承的改进型均是值得考虑的选择。

4.性能好,噪音低,寿命长,如此便不能对价格提出进一步的要求了,只要资金充足,液压、精密陶瓷等特色轴承技术都可列入选择范围之内。

5.对静音与寿命要求极高,磁悬浮轴承是仅有的选择,只是性能不佳,价格过高。

(1,散热器或壳体的颜色很重要.我用半砖0.9寸散热器分别做两组试验,发现黑色的比不加色的温升低.2,散热器的方向(非正方形)也很重要.)

(黑色的热辐射能力强,自然散热时有优势。如果是风冷,主要靠空气对流散热,两者就差不多了。)

第四篇:基于SG3525的开关电源设计

引言

随着电子技术的高速发展,电子设备的种类与日俱增。任何电子设备都离不开可靠的供电电源,对电源供电质量的要求也越来越高,而开关电源在效率、重量、体积等方面相对于传统的晶体管线性电源具有显着优势。正是由于开关电源的这些特点,它在新兴的电子设备中得到广泛应用,已逐渐取代了连续控制式的线性电源。

图1 功率主电路原理图 功率主电路

本电源模块采用半桥式功率逆变电路。如图1 所示,三相交流电经EM I 滤波器滤波,大大减少了交流电源输入的电磁干扰,同时防止开关电源产生的谐波串扰到输入电源端。再经过桥式整流电路、滤波电路变成直流电压加在P、N 两点间。P、N 之间接入一个小容量、高耐压的无感电容,起到高频滤波的作用。半桥式功率变换电路与全桥式功率变换电路类似,只是其中两个功率开关器件改由两个容量相等的电容C1 和C2代替。在实际应用中为了提高电容的容量以及耐压程度,C1 和C2 往往采用由多个等值电容并联组成的电容组。C1、C2 的容量选值应尽可能大,以减小输出电压的纹波系数和低频振荡。由于对体积和重量的限制,C1和C2 的值不可能无限大,为使输出电压的纹波达到规定的要求,该电容值有一个计算公式 , 即:

式中,IL 为输出负载电流,V L 为输出负载电压,V M 为输入交流电压幅值,f 为输入交流电频率,VU为输出的纹波电压值。

这是一个理论上的计算公式,得到的满足要求的电容计算值比较大,实际取的电容应尽量大一些,由于输出端电压较小,也可以在二次整流滤波时加大电容,这样折算到该公式的电容值也不小。C1 和C2 在这里实现了静态时分压,使V A= V in/2。

当VT1导通、VT2截止时,输入电流方向为图中虚线方向,向C2 充电,同时C1通过V T1 放电; 当V T 2 导通、V T 1 截止时,输入电流方向为图中实线方向,向C1 充电,同时C2 通过V T 2 放电。

当V T1 导通、V T 2 截止时,V T 2 两端承受的电压为输入直流电压V in。IGBT 的集-射极间并接RC 吸收网络,降低开关管的开关应力,减小IGBT 关断产生的尖峰电压; 并联二极管实现续流的作用。二次整流采用单相桥式整流电路,通过后续的LC 滤波电路,消除高频纹波,减小输出直流电压的低频振荡。LC 滤波电路中的电容由多个高耐压、大容量的电容并联组成,以提高电源的可靠性,使输出直流电压更加平稳。

PWM 集成芯片SG3525 的功能特点

SG3525 是一款功能齐全、通用性强的单片集成PWM 芯片。它采用恒频脉宽调制控制方案,适合于各种开关电源、斩波器的控制。其主要功能包括基准电压产生电路、振荡器、误差放大器、PWM 比较器、欠压锁定电路、软启动控制电路、推拉输出形式。SG3525 的基本外围电路接线图如图2 所示。该芯片与其它同类型的芯片相比具有许多突出的特点。

图2 SG3525 的基本外围接线图

(1)频率可调,一般通过改变CT 和R T(见图2)的值来调节PWM 波的输出频率,其频率的计算公式为:

(2)死区时间可调,通过调节R D 即可改变死区时间的大小,防止逆变桥的上下桥臂直通。

(3)具有PWM 脉冲信号封锁功能,当10 脚电压高于2.5V 时,可及时封锁脉冲输出,防止出现过压、过流、过热故障时对电路产生危害。

(4)芯片内振荡器工作频率为100Hz~ 400kHz。设有引脚3 为同步端,为多个SG3525 联用提供方便。

(5)具有软启动电路,比较器的反相输入端即软启动控制端芯片的引脚8, 可外接软启动电容C。该电容器内部的基准电压V ref由恒流源供电,达到2.5V 的时间t=(2.5V /50uA)C, 占空比由小到大(50%)变化。

(6)内置PWM(脉宽调制)锁存器将比较器送来的置位信号锁存,并将误差放大器上的噪声、振铃及系统所有的跳动和振荡信号消除。只有在下一个时钟周期才能重新置位,系统的可靠性高。SG3525 的应用电路及工作原理

利用SG3525 建立的大功率直流开关电源控制电路如图3 所示,下面主要介绍调压和限流模块。

图3 SG3525 外围控制电路

如图3, 电压反馈电路通过光电耦合器实现了强电输出部分与弱电控制部分的隔离。光电耦合器采用的是Hp 4504, 当输入端电流在0~ 4mA 之间的时候,输入与输出之间的电流传递比呈线性关系,设计的时候选择合适的限流电阻,控制输入端电流在0~ 3mA 之间变化。当输出电压U out升高时,光电耦合器的输出端发射极电流I e 呈线性增大,使发射极电压V e 增大,通过C2、C3、R

4、R 5 的滤波稳压后输入到引脚1 的V 1 也随之增大。当V 1 增大时,经误差放大9 脚电压下降,比较器输出的脉冲宽度变宽,11 和14 脚输出的PWM 脉冲宽度反而变窄,从而使输出电压U out降低; 反之,当U out下降使1 脚电压减小,9 脚电压升高,11 和14 脚输出的PWM 脉冲宽度变宽。总之,1 脚电压V 1 的增大与减小反映了输出电压U out的上升与下降,最终都表现在11、14 脚输出PWM 脉冲的宽窄变化上,以实现电路的自动稳压调节。

利用光耦电流传输比的线性段,可以做到输入输出的线性变化,用在反馈电路当中,不仅降低了成本,而且使输入与输出隔离,同时在稳压效果上也能与电压传感器相媲美,在实际应用当中,不失为一种可取的方法。

通过输出端电流传感器得到的电流采样信号V i与给定的限流基准电压U refi作比较,外接负载变化使输出电流U out变化时,V i 也会相应的改变。当Iout增大使V i 大于V refi时,运算放大器L 1A 的输出端V b 为低电平。此时,L 2A 的输出端V 2 将被直接拉低为低电平,2脚相当于接地,输出端11 和14 脚无脉冲输出,开关电源出现“打嗝”现象,起到了限流作用。与此同时,输出电流Iout减小使得V 2 再次被拉高,11 和14 脚恢复脉冲输出,开关电源正常工作,以此达到输出电流的动态平衡过程。

图4 赛米控SKYPER32PRO 驱动模块 IGBT 的驱动电路

IGBT 的触发和关断要求给其栅极和发射极之间加上正向和反向电压,并且需要一定的动态驱动功率,才能保证IGBT 的及时触发和关断。

本电源的IGBT 驱动采用赛米控(Sem ik ron)SKYPER32PRO 驱动模块。该控制核是一个半桥式驱动模块,集驱动、内部隔离、电气保护于一体。与同类型的产品相比,SKYPER32PRO 具有许多特点。

(1)采用具有双向传输功能的脉冲变压器,通过这种方法在原边与副边之间传输驱动信号和状态信号,并将能量传递到副边。

(2)该组件设计为即插即用,使用方便,并且已经进行了全面的电测试和温度测试。

(3)采用单电源供电模式,同时对驱动桥臂的双边供电。

(4)具有短脉冲抑制功能,能自动修复由SG3525送出的双路PWM 波,使波形更加平稳。

(5)具有VCE 监测、欠压监测、欠压复位和死区互锁功能等。

样机研制

主要技术指标:

输入电压: 三相AC380V ±5%

输出电压:DC220V ±2%

输出电流: 50A

额定功率: 11kW

所得试验样机额定负载时的输出波形如图5(a)所示。由图5(a)实际读数可知,输出电压从0V 上升到220V 的响应时间为1s 左右,电源系统具有较快的响应速度。同时,由图5(b)中的电压波形局部放大图可见,输出电压为220V 时,电压波动在2V 左右,其最大电压波动小于1%。

图5 结论

利用SG3525 和SKYPER32PRO 的强大功能设计了一台11kW、220V 的直流开关电源。本电源设计简单,调试方便,所需元器件较少,体积小,成本低。负载在全范围内变化时,本电源均能够保持良好的输出性能。试验数据表明指标满足设计要求,输出纹波系数控制在小于1% 的范围内。

第五篇:基于SG3525的开关电源设计

基于SG3525的开关电源设计

摘要 介绍了SG3525芯片的内部结构,分析了其特性和工作原理,设计了一款基于SG3525可调占空比的推挽式DC/DC开关电源,给出了系统的电路设计方法以及主要单元电路的参数计算,并对该电源进行了性能测试。实验表明,该电源具有效率高、输出电压稳定等优点。

关键词 SG3525;高频变压器;PWM;开关电源

随着电能变换技术的发展,功率MOSFET被广泛应用于开关变换器中。为此,美国硅通用半导体公司(Silieon General)推出了SG3525,以用于驱动n沟道功率MOSFET。SG3525是电流控制型PWN控制器,可在其脉宽比较器的输入端直接用流过输出电感线圈信号与误差放大器输出信号进行比较,从而调节占空比,使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,开关电源无论是电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。介绍了由SG3525芯片为控制核心的500 W高频开关电源模块,该电源模块可应用于车载逆变电源的前级升压。SG3525的结构特性

SG3525脉宽调制控制器,不仅具有可调整的死区时间控制功能,而且还具有可编式软起动,脉冲控制封锁保护等功能。通过调节SG3525第5脚上CT的电容和第6脚RT上的电阻就可以改变输出控制信号PWM的频率,调节第9脚COMP的电压可以改变输出脉宽,这些功能可以改善开关电源的动态性能和简化控制电路的设计。1.1 SG3525内部结构

SG3525的内部结构如图1所示,由基准电压调整器、振荡器、误差放大器、比较器、锁存器、欠压锁定电路、闭锁控制电路、软起动电路和输出电路构成。

1.2 欠压锁定功能

基准电压调整器的输入电压为15脚的输入电压VC,当VC低于8 V时,基准电压调整器的输出精度值就得不到保证,由于设置了欠压锁定电路,当出现欠压时,欠压锁定器输出一个高电平信号,再经过或非门输出转化为一个低电平信号输出到T1和T5的基极,晶体管T1和T5关断,SG3525的13脚输出为VC,11脚和14脚无脉冲输出,功率驱动电路输出至功率场效应管的控制脉冲消失,变换器无电压输出,从而实现欠压锁定保护的目的。

1.3 系统故障关闭功能

集成控制器SG3525内部的T3晶体管基极经一个电阻连接10引脚。当系统过流时,过流保护保护电路将输送给10脚一个高电平,由于T3基极与两个或非门相连,故障信号产生的关闭过程与欠电压锁定过程类似。在电路中,过流保护环节还输出一个信号到与门的输入端,当出现过流信号时,检测环节输出一低电平信号到与门的输入端,使脉冲消失,与SG3525的故障关闭功能一起构成双重保护。1.4 软起动功能

软起动功能的实现主要由SG3525内部的晶体管T3、外接电容C3及锁存器来实现的。当出现欠压或者有过流故障时,欠压锁定器的高电平传到T3晶体管基极,T3导通为8引脚的外接电容C3提供放电的途径,C3经T3放电到零电压后,限制了比较器的PWN脉冲电压输出,使PWN比较器输出为高电平,PWM高电平经PWN锁存器输出至或非门仍为恒定的逻辑高电平,晶体管T1和T5关断,封锁输出。当故障消除后,欠压锁定器输出恢复为低电平正常值,T3截止,C3电容由50μA电流源缓慢充电,C3充电对PWM比较器和PWN锁存器的输出产生影响,同时对两个或非门的输出脉冲产生影响,其结果是使输出脉冲由窄缓慢变宽,只有C3充电结束后,脉冲宽度不受C3充电的影响。这种软起动方式,可使系统主回路电机及功率场效应管承受过大的冲击浪涌电流。2 系统结构设计

电源输入电压是由12 V蓄电池提供,图2是选用SG3525设计的DC/DC直流变换器原理图。性能指标是:输入电压为DC 10~35 V,输入额定电压为12 V,输出为360 V,额定功率为500 W。系统由SG3525产生两路反向方波来控制MOSFET的导通与关闭,MOSFET驱动采用由8050和85 50构成图腾柱输出的直接推挽方式,增强了驱动能力。本设计在变压器的中心抽头加入12 V直流电压,输出部分采用桥式整流,在输出点上有分压电阻,将采样到的电压反馈到SG3525的1脚和9脚,以调节控制输出方波占空比来稳定输出电压。采用推挽式功率变换电路,由于开关电源中的两个开关管轮流交替工作,其输出电压波形对称,并且开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度高、电压输出特性良好。推挽式变压器开关电源是所有开关电源中电压利用率最高的开关电源,在输入电压低的情况下,仍能维持较大功率输出。

2.1 控制及驱动电路设计

如图2所示,电路以SG3525为控制芯片,外围电路简单。电路中的锯齿波生成电路由RT、CT和内部电路组成,取CT=2.2 nF,RT=11kΩ,RD=220 Ω。根据f=1/[CT(0.7RT+3RD)]计算出振荡器输出频率约54 kHz,PWM输出频率约为27 kHz。软启动电容接人端接一个4.7μF的软启动电容。只有软启动电容充电至其上的电压使引脚8处于高电平时,SG3525才开始工作。系统中的基准比较调节电路则由基准引脚Uref,同相输入端及外围电阻构成。2脚的电压固定值为5.1 V。SG3525的1,2,9脚及其外围电路构成了PI调节器,其输出与5脚锯齿波和软启动电容一起可控制PWM控制器以产生方波。它的输出级11、14脚输出两路互补的PWM波,采用图腾柱式结构,灌电流和拉电流最大可达400mA。

2.2 过流保护

如图3所示,过流保护是通过在电压输出端串接一个0.33 Ω/5W的精密电阻作为电流检测元件,再将其采样到的信号输送到线性光耦PC817中,假如流过采样电阻的电流过大,将导致光耦的发光二极管导通,进而使光耦输送给SG3525的脚10一个高电平,使得其11脚和14脚输出的PWM波立即消失,开关管停止工作,变压器无输出,达到过流保护的目的。设计省去了传统的电流检测元件:电流互感器,采用线性光耦进行输入和输出的隔离,使电路结构简单可靠,降低了误报率。

2.3 变压器设计

2.3.1 最大磁通变化选择

对于大部分的铁氧体材料,磁感应强度在±0.2T范围内时,磁滞回线的变化可近似等于线性变化,如果超出了这个范围,铁氧体磁芯的磁滞回线就进入了弯曲部分,此时当开关管导通结束时,励磁电流将会增大,线圈损耗不可避免的会增大。但是对于大多数铁氧体来说,选择峰值磁感应强度为0.2 T仍然很危险,因为当供电电压或者负载快速变化时,如果误差反馈放大器在某些开关周期内变化没有这么快速的话,那么磁感应强度就会达到饱和值,进而损坏开关管,因此,选择峰值磁感应强度为0.16T。2.3.2 磁芯选择

假设变压器效率为80%,窗口使用系数为0.4,当输入电压为最小值Vin(min)=10 V时,每个开关管在其半周期内的占空比最大,假设为0.8 T/2,则变压器的磁芯

式中,Bmax为最大磁感应强度;f为变压器工作频率;Ae为变压器磁芯的有效截面积;Ab为变压器磁芯的窗口面积;Dcma为绕线电流密度,取500圆密尔每有效值安培。

选取的磁芯材料为PC40,磁芯型号为EE42/21/20,该磁芯的有效截面积Ae=2.35cm2,窗口面积Ab=2.75cm2,代人上式得PD=620.4W,远大于设计目标500 W,所以选用该磁芯已经足够。2.3.3 变压器匝数的选择

初级匝数NP可由法拉第定律得

/2时间内的磁通 变化。

取NP=2匝,次级绕组匝数

式中,Vin(min)为输入电压的最小值;T为周期;Ae为磁芯有效截面积;△B为0.8 T

2.4 输出滤波器的设计 2.4.1 输出电感的设计

在变压器的绕制过程中,为减少漏感,要将初级绕组和次级绕组紧密耦合。

输出电感不允许进入不连续工作模式,否则反馈环对负载变化的调节性能将严重下降,于是

经过实验,取L0=4mH已经足够,上式中L0、V0和T的单位分别为H、V、和s;Idc(min)为最小输出电流;Io为额定输出电流,单位均为A。

2.4.2 输出电容的设计

输出电容C0的选择应满足最大输出纹波电压的要求,输出纹波电压由滤波电容的ESR的大小决定,纹波电压峰峰值Vr为

式中,dI是所选的电感电流纹波的峰峰值。

另外,对于铝电解电容,在很大容值及额定电压范围内,其R0C0的值基本不变,范围是50×10-6~80×10-6。因此C0可选为

/450 V的铝电解电容。设计验证

假设Vr=V0/5 000,dI=2Io/10,代入数据得C0≈310 μF,实际当中选用的是330 μF 参照以上分析所得到的参数设计了一款基于SG3525控制芯片的推挽式DC/DC直流升压变换器,经过测试,满载时,最大占空比接近0.5,电源效率为85%。图4和图5给出了电源正常工作时相关点的实测波形。结束语

集成开关电源芯片的应用克服了以往开关电源设计中外围元件和辅助电路复杂等问题,使开关电源高效化、模块化,缩短了研发周期。该设计方案适用于要求低电压输入,而输出功率又比较大的场合。实验证明,此结构的电源性能稳定,可靠性高,抗干扰能力强。

下载开关电源设计思路及计算方法word格式文档
下载开关电源设计思路及计算方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    开关电源EMI设计经验

    开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。1.开关电源的EMI源 开关电源的EMI......

    开关电源EMI设计经验5篇

    开关电源EMI设计经验 2010-05-24 来源:工控商务网 浏览:56 [推荐朋友] [打印本稿] [字体:大 小] 开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境......

    开关电源5篇范文

    开关电源 开关电源 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电......

    基于DSP开关电源

    基于DSP的开关电源 摘要 本文以TMs320LF2407A为控制核心,介绍了一种基于DSP的大功率开关电源的设计方案。该电源采用半桥式逆变电路拓扑结构,应用脉宽调制和软件PID调节技术实......

    开关电源及模块市场需求分析范文大全

    开关电源及模块电源的市场需求分析简要介绍一下相关市场需求量大、而又急需,供应少的电源需求。 1. 电力电源(针对中国新电网标准,电网改造的新电源标准) 这两年我国电网改革,据我......

    开关电源心得

    单端反激式开关电源设计心得体会 原理图 一、电路组成及工作原理 单端反激式开关电源是一种单片开关电源,采用美国IP公司的开关电源芯片TOP226Y。单端是指开关电源芯片(本文......

    开关电源心得

    班级:电气技术 姓名:张 学号: 单端反激式开关电源设计 原理图 一、电路组成及工作原理 、 电路组成根据要求,本次设计控制电路形式为反激式,单端反激式电路比正激式开关电源少用......

    设计思路2014

    2014华北设计工作思路 图纸进度节点: 根据各项目两书三控内容,规划合理可行的设计计划,并充分考虑集团设计管理中心及集团总工室审核图纸时间,另加后台进行预算的时间。 要求......