机械设计课程设计展开式二级直齿圆柱齿轮减速器的轴的设计

时间:2019-05-14 04:04:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《机械设计课程设计展开式二级直齿圆柱齿轮减速器的轴的设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《机械设计课程设计展开式二级直齿圆柱齿轮减速器的轴的设计》。

第一篇:机械设计课程设计展开式二级直齿圆柱齿轮减速器的轴的设计

7.1 输入轴的设计计算

1.求轴上的功率,转速和转矩

由前面算得Pr/min,T125.48Nm 12.74kw,n110252.求作用在齿轮上的力

已知高速级小齿轮的分度圆直径为:d170mm

Ft2T1225.4810005096Nd170

FrFttan5096Ntan20o1855N3.初步确定轴的最小直径

现初步估算轴的最小直径。选取轴的材料为45钢,调质处理。据[2]表15-3,取A0112,于是得:dminA03P115.54mm d1因为轴上应开键槽,所以轴径应增大5%得d16.317mm,又此段轴与大带轮装配,综合考虑两者要求取dmin25mm,查知带轮宽B75mm故此段轴长取73mm。

4.轴的结构设计

(1)拟定轴上零件的装配方案

通过分析比较,得出输入轴示意图

(2)据轴向定位的要求确定轴的各段直径和长度 1)第一段是与带轮连接的其d125mm l173mm

2)第二段用于安装轴承端盖,轴承端盖的e21mm(由减速器及轴的结构设计而定)。根据轴承端盖的拆卸及便于对轴承添加润滑油的要求,取端盖与第一段右端的距离为38mm。故取l260mm,因其右端面需制出一轴肩故取d230mm。

3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求并据d230mm,查表初选6207号轴承,其尺寸为dDB35mm72mm17mm故d335mm,取l344mm。又右边采用轴肩定位取d448mm所以l475mm。

4)因为该轴是齿轮轴,故齿轮段轴径为d548mm,l550mm。齿轮左端与左轴承之间用套筒定位,已知齿轮宽度为50mm为使套筒端面可靠地压紧齿轮,此轴段应略短于齿轮宽度,且继续选用6207轴承,则此处故取d635mm,l643mm。

(3)轴上零件的周向定位

带轮与轴之间的定位采用平键连接。按

d125由表查得平键截面bh87键槽用键槽铣刀加工长为63mm。同时为了保证带轮与轴之间配合有

H7良好的对中性,故选择带轮与轴之间的配合为

n6(4)确定轴上圆角和倒角尺寸

参考[2]表15-2取轴端倒角为245.其他轴肩处圆倒角见图。7.2 中间轴的设计计算

1.求轴上的功率,转速和转矩

由前面的计算得P22.60kw,n2266.23r/min,T293.25Nm 2.求作用在齿轮上的力

已知中间轴大小齿轮的分度圆直径为 d2174mm,d368mm

Ft12T21071.84Nmd2

Fr1Ft1tan1071.84Ntan200390.12Nm 同理可解得: Ft22T22742.65Nmd3

Fr2Ft2tan2742.65Nmtan200998.24Nm 3.初步确定轴的最小直径

现初步估算轴的最小直径。选取轴的材料为45钢,调质处理.据[2]表15-3,取A0112,于是得:dminA03P223.934mm T2 因为轴上应开2个键槽,所以轴径应增大5% 故dmin25.13mm,又此段轴与轴承装配,故同时选取轴承,因为轴承上承受径向力,故选用深沟球轴承,参照工作条件可选6206号其尺寸为:dDB30mm62mm16mm故d130mm右端用套筒与齿轮定位,套筒长度取24mm所以l144mm。

4.轴的结构设计

(1)拟定轴上零件的装配方案

通过分析比较,得出中间轴示意图

(2)据轴向定位的要求确定轴的各段直径和长度

1)第二段为高速级大齿轮,由前面可知其宽度为45mm,为了使套筒端面与大齿轮可靠地压紧此轴段应略短于齿轮轮毂宽度。故取l240mm,d238mm。

2)第三段为大小齿轮的轴向定位,此段轴长度应由同轴条件计算得l36mm,d350mm。

3)第四段为低速级小齿轮的轴向定位,由其宽度为73mm可取l470mm,d438mm。

4)第五段为轴承同样选用深沟球轴承6206号,左端用套筒与齿轮定位,取套筒长度为24mm则 l544mm,d530mm。

(3)轴上零件的周向定位

两齿轮与轴之间的定位均采用平键连接。按d2由表查得平键bhL10832,按d4查得平键截面bhL10863其与轴的配合均为H7。轴承与轴之间的周向定位是用过渡配合实现的,此处选轴的直径尺寸公差n6为m6。

(4)确定轴上圆角和倒角尺寸

参考[2]表15-2取轴端倒角为245.个轴肩处圆倒角见图。7.3 输出轴的设计计算

1.求轴上的功率,转速和转矩

由前面算得P32.47kw,n395.42r/minT3247.32Nm 2.求作用在齿轮上的力

已知低速级大齿轮的分度圆直径为 d4190mm

Ft2T32603.37Nmd4

FrFttan200947.55Nm3.初步确定轴的最小直径

现初步估算轴的最小直径。选取轴的材料为45钢,调质处理,据[2]表15-3,取A0112,于是得:dminA03P333.14mm T3同时选取联轴器型号。联轴器的计算转矩TcaKAT3查[2]表14-1取KA1.3。则TcaKAT31.3247.32Nm321.516Nm

按计算转矩应小于联轴器的公称转矩的条件查[5]P99表8-7可选用LT7型弹性柱销联轴器。其公称转矩为500Nm。半联轴器孔径d40mm,故取d140mm半联轴器长度L112mm,半联轴器与轴配合的毂孔长度为82mm。4.轴的结构设计

(1)拟定轴上零件的装配方案

通过分析比较,得出输出轴示意图

(2)据轴向定位的要求确定轴的各段直径和长度

1)为满足半联轴器的轴向定位,第一段右端需制出一轴肩故第二段的直径d246mm;左端用轴端挡圈定位取轴端挡圈直径D65mm。半联轴器与轴配合的毂孔长为84mm,为保证轴端挡圈只压在联轴器上而不压在轴上,故第一段长度应比L1略短一些,现取l182mm。

2)第二段是固定轴承的轴承端盖e21mm。据d246mm和方便拆装可取l275mm。

3)初选轴承,因为有轴向力故选用深沟球轴承,参照工作要求d246mm。查

表选6210型号其尺寸为dDB50mm90mm20mm,故l320mm由于右边是轴肩定位,d462mm,l464mm。

4)第五段轴肩定位,取d568mm,l512mm。

4)取安装齿轮段轴径为d660mm,已知齿轮宽为68mm取l664mm。齿轮右边为轴套定位,轴肩高h5mm则此处d750mm,取l751mm。(3)轴上零件的周向定位

齿轮,半联轴器与轴之间的定位均采用平键连接。按d1由表查得平键截面bh128键槽用键槽铣刀加工长为70mm。选择半联轴器与轴之间的配合为H7,齿轮与轴的连接用平键bh1811键槽用键槽铣刀加工长为56mm。齿k6H7轮与轴之间的配合为轴承与轴之间的周向定位是用过渡配合实现的,此处选

n6轴的直径尺寸公差为m6。(4)确定轴上圆角和倒角尺寸

参考[2]表15-2取轴端倒角为245.个轴肩处圆倒角见图。

第二篇:机械设计课程设计(二级展开式减速器)

二级展开式圆柱齿轮减速器-机械设计课程设计

目 录

l 设计任务.....................................................2 电动机的选择计算............................................3 传动装置的运动和动力参数计算..............................4 带传动的设计计算..........................................5 传动零件的设计计算.............................................6 轴的结构设计和强度校核.......................................7 滚动轴承的选择及计算..........................................8 箱体内键连接的选择及校对...........................9 箱体的结构设计......................................10 联轴器的选择.................................................11 减速器附件的选择............................................12 润滑与密封..............................................13 参考文献.....................................................14 设计小结....................................................xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书

一、设计任务

1、设计题目:用于带式运输机的二级直齿圆柱齿轮减速器

2、系统简图:

3、工作条件:工作有轻微振动,经常满载、空载起动、两班制工作,运输带允许速度误差为 ,,减速器小批量生产,使用寿命八年,每年按300天计。

4、原始数据 已知

输送带拉力F(KN)2.4 输送带速度v(m/s)1.4 滚筒直径D(mm)400

5、设计工作量: 1.减速器装配图一张(1号图纸)2.零件工作图二张(传动零件、轴各一张)3.设计计算说明书一份(A4纸,6000-8000字)

二、电动机的选择计算

如系统简图所示的胶带运输带的有效拉力F=2.4KN,工作速度v=1.4m/s,传动滚动直径D=400mm,电源为三相交流,电压为380/220V试选择电动机。工作条件:单向运转,有轻微振动,空载起动,单班制工作,使用期限10年,输送带速度容许误差为?5%。

1.选择电动机系列

按工作要求及工作条件选用三相异步电动机,封闭自扇冷式结构,电压为380V,Y系列。

.选择电动机功率 2 FV2400,1.4,3.36,P= kw W10001000 传动装置的总效率: ,0.96 V带传动效率 b 圆柱齿轮的传动效率 η=0.97 g 2 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 一对滚动轴承的效率 η=0.98 r 联轴器的效率 η=0.99 c 传动滚筒效率 η=0.96 滚筒 32,,,, 卷筒bcrg 传动总效率

32,0.96,0.99,0.98,0.98,0.96,0.82 所需电动机功率 3.36Pw,4.1==kw Pr0.82, 3.电动机的转速 ,6060,1.4滚筒转速 ==66.88r/min n,W3.14,0.4,D iV带=2~4 b i双级圆柱齿轮 =8~40 g i=16~160 取i=16~40 n=1070~2675 r/min 取n=1500 r/min 通过比较决定选择电动机型号为Y132S-4, 同步转速为1440r/min,所选电动机的

数据和安装尺寸如下表

5.5 电动机外伸轴直径D/mm 38 额定功率P/kw 0 1440 电动机外伸轴长度E/mm 80 满载转速n(r/min)0 额定扭矩 2.2 电动机中心高H/mm 132

三、传动装置的运动及动力参数计算

1、分配传动比

电动机的满载转数n=1440r/min 0 3 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 总传动比 I= n/n= 1440/66.88=21.5总 0w 分配传动装置各级传动比,取带传动传动比 i,2.5i,ii,iiibbgb12 ii,i/i,21.5/2.5,8.6 12b 令,代入上式求得: i,1.3i12 高速级传动比,低速级传动比。i,2.57i,3.3521

2、各轴功率、转速和转矩的计算 a.各轴转速 1轴转速 n,n/i,1440/2.5,576r/min1mb 2轴转速 n,n/i,576/3.35,171.9r/min 211 3轴转速 n,n/i,171.9/2.57,66.9r/min322 n,n,66.9r/min卷筒轴转速 43 b.各轴功率

P,P,5.5,0.96,5.28kW1轴功率 1nb P,P,,5.28,0.98,0.97,5.02kW2轴功率 21rg P,P,,5.02,0.98,0.97,4.77kW3轴功率 32rg P,P,,,,4.77,0.98,0.99,4.63kW卷筒轴功率 43rcc.各轴转矩 3电机轴 T,9550P/n,9550,5.5/1440,10N,mm,36476N,mmnm0 31轴 T,9550P/n,9550,5.28/576,10N,mm,87542N,mm111 3T,9550P/n,9550,5.02/171.9,10N,mm,278889N,mm2轴 222 3T,9550P/n,9550,4.77/66.9,10N,mm,680919N,mm3轴 333 3T,9550P/n,9550,4.63/66.9,10N,mm,660934N,mm卷筒轴 ww4 4 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 计算结果如下表: 轴名 电动机轴 1轴 2轴 3轴 卷筒轴 参数 转速 n,171.9n,66.9n,66.9n,1440n,576234m,11 n/(r,min)P,5.5P,4.77P,4.63P,5.28P,5.02功率P/kW n3412 转矩 T,680919T,36476T,87542T,278889T,66091430124T/N?mm 传动比i 2.5 3.35 2.57 1 效率η 0.95 0.95 0.95 0.97

四、带传动的设计计算 P1 确定设计功率 d 由《机械设计》表5-6查K=1.1 A P,K,P,1.1,5.5kW,6.05kWdAn 2 选择V带型号

Pn选择V带的带型,由图8-11选用A型 ca0 dv3 确定带轮的基准直径并验算带速 d d?初选小带轮的基准直径。由表8-6和表8-8,查取A型带轮,应 D,75mmd1min使D,D,小带轮转速较低,选。D,100mm1min1 验算带速v ,D3.14,100,1440nv,,7.536m/s 60,100060,1000 D带速在5~25m/s之间,选择合适。1 D,iD(1,),2.5,100,(1,0.01),247.5mm 21 D,250mm参考表8-8给出的带轮直径系列,取。2 250,247.5,0.01,5%转速误差 247.5 5 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 4 确定中心距a和带长 Ld 由式(8-20)0.7(D,D),a,2(D,D)12012 245mm,a,700mm0 初选 a,400mm0 2(D,D),21带长 L,2a,(D,D),,1364mm012d24a0查表8-2取 L,mm1400d L,L,dd中心距 a,a,,418mm02 a的调整范围

a,a,0.015L,397mm mind a,a,0.03L,460mmmaxd 验算包角

DD,21 ,180:,,57.3:,159.4:1a 6 确定V带根数 Pdz,按式(P,,P)KK00ac P,1.32kW由表8-9a,插值求得得 0 ,P,0.17kW由表8-4b查得 0 K,0.95由表8-12查得 a K,0.96由表8-8查得 L 代入求根数公式,得

P6.05dz,,4.45 PPKK(,,)(1.32,0.17),0.95,0.9600aL 取z=5,符合表5-7推荐的轮槽数。F7 确定初拉力 0 6 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 查表8-3得 q,0.1kg/m P2.52d F,500(,1),qv,136.7N0zvKa 8 计算作用在轴上的压力F Q ,1F,2zFsin,1345N Q02 9带轮结构设计

? 小带轮结构采用实心式电动机表8-11查的,D,38mm,e,15,0.4,f,90。轮毂宽,L,(1.5~2),D,57~76mmB,(z-1)e,zf,105mm0带带轮

五、传动零件的设计计算

?--?轴高速传动啮合的两直齿轮(传动比3.35)

1、选精度等级、材料及齿数(1)材料及热处理

选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45#钢(调质),硬度为240HBS,二者材料硬度差为40HBS。

(2)运输机为一般工作机器,速度不高,故选取精度等级7级(3)试选小齿轮齿数Z =23,大齿轮齿数Z ?77 11

2、按齿面接触强度设计: 因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算 按式(10-9)试算,即 ZZZKTu,212,HE3d,(),u,dH

3、确认公式中的各计算数值

(1)由图10-20选取区域系数ZH= 2.5(2)由表8-18选取尺宽系数Фd =1(3)由表10-6查得材料弹性影响系数 ZE=190Mpa 7 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书(4)由式10-13计算应力循环次数 N=60njL=605761(230088)=1.3310,,,,,h11 8 N=N/3.35=3.9710,12(5)由图8-5查得接触疲劳寿命系数为1和1(6)接触疲劳强度极限 由图8-20a查=720Mpa;=580Mpa ,,HlimHlim1Hlim2(7)计算接触疲劳许用应力

取失效概率为1%,安全系数S=1,由式(10-12)得 Z720,HNlim1 =720Mpa ,,,H1S1H Z580,HNlim2 =580Mpa ,,,H2S1H , ,=580Mpa H

4、计算载荷系数K(1)已知载荷轻微冲击,所以取Ka=1.25 根据8级精度,由图8-6查得动载系数Kv=1.1(2)(3)由表8-5查得 K,1.1, K 由表10-4插值法查8级精度、小齿轮相对支撑非对称布置时=1.05 , 载荷系数 K,K.K.K.K,1.25,1.1,1.1,1.05,1.59AVH,H, Z(4)确定重合度系数 , 11 ,1.88,3.2(,),1.7 zz12 4,Z, =0.88 ,3(5)所需小齿轮直径d1 ZZZKTu,212HE,3d,()1,u,dH 8 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 2,1.59,875423.35,1190,2.5,0.8823 ==57.26mm ,()13.35580 d1 模数m==2.49 z

5、根据齿根弯度强度设计 由式(10-17)YY2KTFS1, ,m32,,zFd1 确定计算参数

1)由图10-20c查的小齿轮的弯度疲劳强度极限,=300Mpa;大齿轮,=220Mpa F1F2 2)由图10-18取弯度疲劳寿命系数为YN为1和1 3)Yx1=1;Yx2=1 4)计算许用应力

取安全系数S=1.6,由式10-12得 YY2,FNxlim, =1=375Mpa F1SF YY2,FNxlim =1=275Mpa ,F2SF 5)查取齿型系数和应力校正系数 YY 由表10-5查得=2.52;=2.18 F,1F,2 YY 由表10-5查得=1.625;=1.81 S,1S,2 YYFS,6)计算大、小齿轮的并比较 ,,F YYF1S1, =0.01092 ,,F1 YY,F2S2 =0.01434 ,,F2 大齿轮的数值大 7)载荷系数K=1.59 9 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 8)设计计算

2,1.59,875423 ?1.96 m,0.0143421,23

6、标准模数的选择 由于齿面接触疲劳强度计算模数m大于齿根弯度疲劳强度计算模数,由于齿轮模数的大小取决于弯度强度所决定的承载能力,而齿面接触疲劳的强度所决定的承载能力仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯度强度算得的模数1.96优先采用第一系列并就近圆整为标准值m=2mm,按接触疲劳强度算的分度圆直径的d1=57.26mm。

1)小齿轮的齿数 Z1=d1/m=28.6,取z1=28 2)大齿轮的齿数

Z2=z1×3.35=93.8,取z2=94

7、几何尺寸计算 1)计算中心距,z,zm12 =122mm;a,2 2)计算大、小齿轮的分度圆直径

=×m=28×2=56mm;=×m=94×2=188mm, dzdz1122 计算齿轮宽度 b,,d =56mm d1 小齿轮齿宽相对大一点,因此B1=60mm,B2=56mm ?--?轴低速传动啮合的两直齿轮(传动比2.57)

1、选精度等级、材料及齿数(1)材料及热处理

选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45#钢(调质),硬度为240HBS,二者材料硬度差为40HBS。(2)选取精度等级7级(3)试选小齿轮齿数Z =30,大齿轮齿数Z =77 11 10 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书

2、按齿面接触强度设计: 因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算 按式(10-9)试算,即 KTu,ZZZ212,HE3 d,(),u,dH

3、确认公式中的各计算数值

(1)由图10-30选取区域系数ZH= 2.5(2)由表10-7选取尺宽系数Фd =1(3)由表10-6查得材料弹性影响系数 ZE=190Mpa(4)由式10-13计算应力循环次数

8L N=60nj=60171.91(230088)=3.9610,,,,,h11 8 N=N/2.57=1.5410,12(5)由图10-19查得接触疲劳寿命系数为1和1(不许出现点蚀)(6)接触疲劳强度极限 由图8-20a查=720Mpa;=580Mpa ,,HlimHlim1Hlim2(7)计算接触疲劳许用应力

取失效概率为1%,安全系数S=1,由式(10-12)得 Z720,HNlim1 ,,=720Mpa ,H1S1H Z580,HNlim2 ,,=580Mpa ,H2S1H ,, =580Mpa H

4、计算载荷系数K(1)已知载荷轻微冲击,所以取Ka=1.25(2)根据8级精度,由图8-6查得动载系数Kv=1.1 K,1.1(3)由表8-5查得 , K 由表10-4插值法查8级精度、小齿轮相对支撑非对称布置时=1.05 , 载荷系数 K,K.K.K.K,1.25,1.1,1.1,1.05,1.59AVH,H, 11 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 Z(4)确定重合度系数 , 11 ,1.88,3.2(,),1.732zz12 4, Z,=0.87 ,3(6)所需小齿轮直径d1 KTu,ZZZ212HE,3 d,()1,u,dH 2,1.59,6809192.57,1190,2.5,0.8723,()==115mm 12.57580 d1 模数m==3.83 z

5、根据齿根弯度强度设计 17)由式(10-2KTYYFS1, ,3m2,,zFd1 确定计算参数 ,1)由图10-20c查的小齿轮的弯度疲劳强度极限=300Mpa;大齿轮=220Mpa F1F2 2)由图10-18取弯度疲劳寿命系数为YN为1和1 3)Yx1=1;Yx2=1 4)计算许用应力

取安全系数S=1.6,由式10-12得 YY2,FNxlim, =1=375Mpa F1SF YY2,FNxlim =1=275Mpa ,F2SF 5)查取齿型系数和应力校正系数 YY 由表10-5查得=2.52;=2.18 F,1F,2 YY 由表10-5查得=1.625;=1.81 S,1S,2 12 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 YYFS,6)计算大、小齿轮的并比较 ,,F YYF1S1, =0.01092 ,,F1 YYF,2S,2 =0.01434 ,,F2 大齿轮的数值大 7)载荷系数K=1.59 8)设计计算

2,1.59,6809193 ?3.25 m,0.0143421,30

7、标准模数的选择

由于齿面接触疲劳强度计算模数m大于齿根弯度疲劳强度计算模数,由于齿轮模数的大小取决于弯度强度所决定的承载能力,而齿面接触疲劳的强度所决定的承载能力仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯度强度算得的模数3.2优先采用第一系列并就近圆整为标准值m=3mm,按接触疲劳强度算的分度圆直径的d1= 115mm。

3)小齿轮的齿数 Z1=d1/m=38.3,取z1=38 4)大齿轮的齿数

Z2=z1×2.57=97.7, 取z2=98

7、几何尺寸计算 1)计算中心距,z,zm12 =204mm a,2 2)计算大、小齿轮的分度圆直径

=×m=38×3=114mm;=×m=98×3=294mm, dzdz1122 计算齿轮宽度 b,,d =114mm d1 小齿轮齿宽相对大一点,因此B1=120mm,B2=114mm 13 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书

六、轴的结构设计和强度校核 第一部分 轴的设计(一)结构设计

1、初选轴的最小直径

选取轴的材料为45#钢,热处理为调质。A 取=110,=30~40Mpa ,,0 P1dA3 1轴 23.02mm,考虑到联轴器、键槽的影响,取=25mm ,d110n1 P23 2轴 d,A,33.87mm,取=35mm d202n2 P33dd,A,45.6 3轴 mm,取=46mm 330n3

2、初选轴承

1轴高速轴选轴承为7207C 2轴中间轴选轴承为7208C 3轴低速轴选轴承为7211C 各轴承参数见下表

基本尺寸/mm 安装尺寸/mm 基本额定/kN 轴承代号 d D B da Da 动载荷Cr 静载荷Cor 7207C 35 72 17 42 65 23.5 17.5 7208C 40 80 18 47 73 36.8 30.8 7211C 55 100 21 64 91 42.8 36.8

3、确定轴上零件的位置和定位方式 14 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书

1轴:由于高速轴转速高,传动载荷不大时,为保证传动平稳,提高传动效率,将高速轴取为齿轮轴,使用角接触球轴承承载。

2轴:低速啮合、高速啮合均用锻造齿轮。低速啮合齿轮左端用甩油环定位,右端用轴肩定位,高速啮合齿轮左端用轴肩,右端用甩油环定位,两端使用角 接触球轴承承载。

3轴:采用锻造齿轮,齿轮左端用甩油环定位,右端用轴肩定位,为减轻轴的 重量采用中轴颈,使用角接触球轴承承载,右端连接单排滚子链。(?)高速轴的结构设计

1)根据轴向定位的要求确定轴的各段直径和长度: A)为了满足V带轮的轴向定位,此段设计应与带轮轮毂孔的设 计同步进行 选为25mm。

选毡圈油封,查表8-27,选取毡圈30JB/ZQ4606—1997,则d2=30mm B)C)该段轴要安装轴承,考虑到轴肩要有2.5mm的圆角,则轴承选用7207C 型,该段直径定位35mm。

D)该段轴为齿轮,考虑到轴肩要有2mm的圆角,经标准化,定为40mm。E)为了齿轮轴向定位可靠,定位轴肩高度应达5mm,所以该段直径选为50mm。F)轴肩固定轴承,直径为35mm。2)各段长度确定: A)该段轴连接带轮与轴配合的毂孔长度为65mm,该段长度定为63mm;B)该段取90mm;C)该段安装轴承,考虑间隙取该段为40mm D)该段考虑齿轮的宽度,根据齿轮校核,选定该段54mm;E)该段轴肩选定10mm;F)该段取17mm;(?)中间轴的结构设计 15 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 1)拟定轴上零件的装配方案轴的各段直径: a)I段轴用于安装轴承7208,故取直径为40mm。b)II段该段轴要安装齿轮,考虑到轴肩要有2mm的圆角,经强度计算,直径

定为44mm。

c)III段为轴肩,相比较比II段取直径为52mm。d)IV段安装大齿轮直径为44mm。

e)V段安装轴承,与I段相同直径为40mm。2)根据轴向定位的要求确定轴的各段长度: a)I段轴承安装轴承和挡油环,轴承7208C宽度B=18,该段长度选为28mm。b)II段轴考虑到齿轮齿宽的影响,所以长度为80mm。c)III段为定位轴肩,长度略小8mm。

d)IV段用于安装大齿轮,考虑齿宽长度为44mm。e)V段用于安装轴承与挡油环,长度与I相同,为28mm。

(?)低速轴的结构设计

1)拟定轴上零件的装配方案轴的各段直径 a)I段轴用于安装轴承7211C,故取直径为55mm。b)II段该段轴要安装齿轮,考虑到轴肩要有2.5mm的圆角,经强度计算,直径定为60mm。

c)III段为定位轴肩,取72mm。

d)IV段安装大齿轮直径与II段相同,直径为60mm。e)V段安装轴承,与I段相同直径为55mm。

f)VI段直径52mm g)VII段直径与弹性注销选择有关,取LX3,直径为46mm。2)根据轴向定位的要求确定轴的各段长度

a)I段轴承安装轴承和挡油环,7211C宽度B=21,该段长度选为28mm。b)II段轴考虑到齿轮齿宽的影响,所以长度为68mm。c)III段为定位轴肩,长度略小8mm。

d)IV段用于安装大齿轮,考虑齿宽长度为62mm。e)V段用于安装轴承与挡油环,长度与I相同,为28mm。xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 f)VI长度为32mm。

g)VII长度与联轴器有关,取56mm。第二部分 强度校核 ?高速轴

对于角接触球轴承7207C从手册中可以查得a=15.7mm 校核该轴和轴承: 1L=82.8mm 2L=120.8mm 3L=30.8mm 轴的最小直径:d1=25mm 3 轴的抗弯截面系数:W1=1533mm 作用在齿轮上的力: 2T1=3126.5N F,t1d1 F,Ftan,=3126.5×tan20=1138N r1t1 按弯扭合成应力校核轴的强度: 17 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书

30.8F,F=635.2N H1t1151.6 F,F,F=3126.5-635.2=2491.3N H2t1H1 N,mFM=120.8=76.7 HH1 30.8F,F=231N v1r1151.6 F,F,F=1138-231=907N v2r1v1 MF=120.8=27.9 N,mvv1 22M,M,M总弯矩:=81.6 N,mmHv T扭矩:=87.5 N,m1 ,, 45#钢的强度极限为=275Mpa,由于轴受的为脉动循环载荷,所以a=0.6 p 18 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 22MT,,,m1, =84.2Mpa, ,,ppW 所以该轴安全 ?中间轴

对于角接触球轴承7208C从手册中可以查得a=17mm 校核该轴和轴承: 1L=53mm 2L=70mm 3L=35mm 轴的最小直径:d1=35mm 33 轴的抗弯截面系数:W2=0.1d =4207mm作用在2,3齿轮上的圆周力: 2T2N,m=2967 ,F2td2 2T2F,=5025 N,mt1d1 径向力: F,Ftan,=1080 N,mr2t2 F,Ftan,=1829 N,mr1t1 求垂直面的之反力: ,Fl,F,l,l,23123rrF,=976N 1vl,l,l123 F,F,F,F=1835-1086-765=-227N 2vr11vr2 计算垂直弯矩: M,Fl=51.7 N,mavm1v1,M,Fl,l,Fl=-8 N,mavn1v12r12 求水平面的支撑力: Fl,F,l,l,23123ttF,=3997N 1Hl,l,l123 F,F,F,F=3995N 2Ht1t21H 19 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 计算、绘制水平弯矩图: =211.8 M,FlN,maHm1H1 =-139.9,M,Fl,l,FlN,maHn1H12t12 求合成弯矩图,按最不利情况考虑: 22M,M,M=218 N,mamavmaHm 22M,M,M=140.1 N,manavnaHn 求威胁截面当量弯矩:

从图可见,m-m,m-n处截面最危险,当量弯矩为:(取折合系数a=0.6)20 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 22,M,M,,T=275 N,meam2 22',M,M,,T =218 eN,man2 计算危险截面处轴的强度: 22MT,,,2e, =76.5Mpa, ,ppW2 2'2MT,,,2e,, =65.3Mpa, ,ppW2 所以该轴安全 ?低速轴

对于角接触球轴承7211C从手册中可以查得a=20.9mm 校核该轴和轴承: 1L=49mm 2L=107mm 轴的最小直径:d1=46mm 33 d /32=9556mm轴的抗弯截面系数:W3=, 作用在齿轮上的力: 2T3F,=4632N t3d3 F,Ftan,=4632×tan20=1686N r3t3 按弯扭合成应力校核轴的强度: 21 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书

49=1455N F,FH1t3156 F,F,F=4632-1455=3177N H2t3H1 FM=107=340 N,mHH1 49=530N F,Fv1r3156 F,F,F=1686-530=1156N v2r3v1 MF=107=56.7 N,mvv1 22M,M,M总弯矩:=345 N,mmHv 扭矩:=681 TN,m3 22 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书

45#钢的强度极限为,=275Mpa,由于轴受的为脉动循环载荷,所以a=0.6 ,p 22MT,,,m3, =56Mpa, ,,ppW 所以该轴安全

七、滚动轴承的选择及计算 ?高速轴: 轴承7207C的校核,即轴承寿命校核: ,6,fc10t轴承寿命可由式进行校核,轴承只承受径向载荷的作用,由于,L,h,60np, 工作温度不高且冲击不大,故查表13-4和13-6可取

3ff,=1,=1.1,取=10/3,e=0.6,Y=1.1,基本额定负载C=23.5×10N pt 22F,F,F=676N r11H1v 22F,F,F=2651N r22H2v ,6,fc10t,=46417h>38400h 轴承寿命满足使用8年 ,Lhh,60npf1p, ?中间轴: 轴承7208C的校核,即轴承寿命校核: ,6,fc10t,轴承寿命可由式进行校核,轴承只承受径向载荷的作用,由于L,h,60np, 工作温度不高且冲击不大,故查表13-4和13-6可取

3ff,=1,=1.1,取=10/3,e=0.6,Y=1.1,基本额定负载C=36.8×10N pt 22F,F,F=4114N r11H1v 22F,F,F=4001N r22H2v ,6,fc10t,,Lh=39567h 轴承寿命满足使用8年 h,60npf1p, ?低速轴: 23 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 轴承7211C的校核,即轴承寿命校核: ,6,fc10t轴承寿命可由式进行校核,轴承只承受径向载荷的作用,由于,L,h,60np, 工作温度不高且冲击不大,故查表13-4和13-6可取 3ff=1,=1.1,取=10/3,基本额定负载C=42.8×10N ,pt 22F,F,F=3381N r22H2v ,6,fc10t,=221890h 轴承寿命满足使用8年 ,Lhh,60npf1p,,八、箱体内键连接的选择及校对: 1.递转矩已知;2.键的工作长度l=L-b b为键的宽度;3.键的工作高度k=0.5h h为键的高度;4.普通平键的强度条件

由于键采用静连接,材料钢,冲击轻微,以上全符合要求小于110Mpa。

九、箱体的结构设计: 箱体结构对减速器的工作性能、加工工艺、材料消耗、质量及成本等有很大影响。

1.减速器箱体为铸造箱体,材料HT200。2.箱体结构为剖分时,剖分面为水平面,与传动件轴心线平面重合,有利于轴系

部件的安装与拆卸。24 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 3.剖分时箱体的结构尺寸选择: 1)箱座壁厚δ=0.025a+5>=8mm;a为二级圆柱齿轮减速器的低速级中心距a=204,δ=10.1>=8满足要求,取壁厚δ=10mm;(2)箱盖壁厚δ=(0.8~0.85),1δ>=8mm,则δ1=8.5mm;d(3)地脚螺栓直径=0.036a+12=19.3,选择M20 f(4)地脚螺栓数目:由于a=204<250,所以n=4;(5)根据表5-2得: 名称 符号 尺寸确认 箱座凸缘厚度 b 1.5δ=15mm 箱盖凸缘厚度 1.5=12.75mm b,11 箱座底凸缘厚度 2.5δ=25mm b2 轴承旁连接螺栓直径 d=14.5 M16 0.75 df1 箱盖与底座连接螺栓直径 d M14 0.5~0.6 df2 L 150~200 取160mm 连接螺栓的间距 d2 轴承盖螺钉直径 d 取M12 0.4~0.5d f3 视孔盖螺钉直径 d0.3~0.4 取M10 df4 定位销直径 d 0.7~0.8 取8mm d2 查表5-3 24 20 16mm d、、至外箱壁距离 ddc121 查表5-3 22 14mm d、至凸缘边缘距离 d cf22 轴承旁凸台半径 22 14mm Rc12 凸台高度 h 图7-2 >50mm 外箱壁至轴承座端面距离 ++(5~8)mm Lcc112 大齿轮顶圆与内壁箱距离 ?δ 15mm ,1 25 xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 齿轮端面与内壁距离 ?δ 12~20 ,2 箱盖肋厚 0.85=7.5mm m,11 箱盖肋厚 0.85δ=8.5mm m2

十、联轴器的选择

根据轴的计算转矩,转速和三轴T,KT,1.3,680.9N,m,885.2N,mn,57.4r/mincaA33的最小直径,从《机械设计课程设计》表16-2查得,采用弹性柱销联轴器

JA48,84HL4GB/T5014,2003,其公称转矩,许用转速T,1250N,mnYA48,112。[n],4000r/min 由于,T,Tn,[n]can3 可知联轴器满足要求。

十一、减速器附件的选择: 1.通气器:由于在室内使用,选用通气器(一次过滤),采用M8x1.5。2.油面指示器:选用游标尺M16。3.起吊装置:采用箱盖吊耳、箱座吊耳。4.放油螺塞:选用外六角油塞及垫片M16x1.5。

十二、润滑与密封: 1.齿轮的轮滑: 根据表5-4浸油深度推荐值,选取二级圆柱式齿轮减速器类型: h 由于低速级周向速度小于12m/s,采用浸油润滑,?级大齿轮浸油高度约为0.7f h各齿高但不小于10mm,该大齿轮高=2.5,10mm,所以二级大齿轮浸油高度取f h=11mm。f h?级大齿轮浸油高度大于一个齿高小于1/6半径(3.125-43.2mm),由于?级大s 齿轮和二级大齿轮半径差为26mm。所以大齿轮浸油深度选为50mm。h大齿轮齿顶圆到油池底面的距离为30-50mm,所以选取的油池深度为80mm。02.滚动轴承的润滑

由于轴承周向速度小于2m/s,所以采用脂润滑,为防止轴承室内的润滑脂流入箱体而造成油脂混合,在箱体轴承座箱内一侧装设甩油环。xxxx工 业 大 学 机 械 设 计 基 础 课 程 设 计 说 明 书 3.润滑油的选择

齿轮润滑油,考虑到该装置用于小型设备,选用L-AN15润滑油。

轴承润滑脂,选用锂基润滑脂ZL-1,普遍应用在各种机械部位。4.密封方法的选取

选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。轴承盖结构尺寸按用其定位的轴承的外径决定。

十三、参考资料

[1]《机械设计课程设计》,高等教育出版社,李育锡主编,2008年6月第1版;[2]《机械设计课程设计》,北京大学出版社,许瑛主编,2008年8月第1版;[3]《机械设计课程设计》,科学出版社,巩云鹏,田万禄,张伟华,黄秋波主编,2008年3月第一版;[4]《机械设计综合课程设计》,机械工业出版社,王之栎,王大康主编,2009年1月第二版;[5]《机械设计(第八版)》,高等教育出版社,濮良贵,纪名刚主编,2006年5月第八版;[6]《机械原理(第七版)》,高等教育出版社,孙桓,陈作模,葛文 杰主编,2006年5月第七版;[7]《机械制图(第2版)》,西北工业大学出版社,臧宏琦,王永平主编,2004年9月第2版;[8]《机械精度设计与检测技术》,国防工业出版社,王玉主编,2005年8月第1版。

十四、设计小结

机械设计课程设计是一次对机械设计和机械原理课程知识的全面复习和综合运用。设计题目是从工程实际中选取复杂的机械系统,要求从全面、整体的角度进行一次完整的设计,使我从整体上把握机械设计课程的全貌,使知识系统化,同时也培养了解决实际问题的能力。

设计的优缺点

经过设计计算和校核,减速器设计完成后在理论上基本能够设计要求。由于设计过程中对某些知识缺乏实际工作经验,未能充分考虑实际工作条件,所完成的设计在特定实际工况中可能出现问题。

设计的改进意见

本设计的改进方向之一是重新设计三根轴的尺寸,以使在满足的强度的前提下能够节省材料。27

第三篇:机械设计课程设计--单级直齿圆柱齿轮减速器设计说明书

机械课程设计说明书

单级直齿圆柱齿轮减速器设计

设计题目 单级直齿圆柱齿轮减速器设计

学 院

___________________________ 专业班级 ___________________________ 设 计 人 ___________________________ 学 号

___________________________ 指导教师

_________________________ 完成日期

_________________________

目 录

一、前言…………….…………………………………………2

二、设计任务…………….……………………………………2

三、计算过程及计算说明…………………………………….3

(一)电动机选择…………………………………………….3

(二)计算总传动比及分配各级的传动比………………….4(三)运动参数及动力参数计算…………………………….4(四)传动零件的设计计算…………………………………...5

(五)轴的设计计算及轴承的选择计算……………………...9(六)键联接的选择及校核计算…………………………………….13

四、减速器的润滑与密封……………………………………………..14 五 减速器箱体及其附件………………………………………………..15

六、设计小结……………………………………………………17

七、参考资料……………………………………………………19

一、前言(一)设计目的:

通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。(二)传动方案的分析:

机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。-

本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了一级传动,传动为单级直齿圆柱齿轮减速器。齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。

二、设计任务

设计一台用带式运输的直齿圆柱齿轮减速器运输机运送沙子单向连续运转载荷,有轻微冲击,环境有轻度粉尘,使用期限八年,两班制工作(每班8小时,每年按300天计算)。

原始数据:运输带工作拉力F=1800N;带速V=1m/s;滚筒直径D=200mm,带速允许误差<5%。具体要求:

1、电动机类型确定

2、单机减速器的齿轮、轴、轴承、箱体等的设计及强度计算

3、A1装配图一张

4、编写一份设计说明书

三、计算过程及计算说明

(一)电动机选择

1、电动机类型的选择: Y系列三相异步电动机

2、电动机功率选择(1)传动装置的总功率:

η总=0.96×0.99×0.99×0.97×0.99×0.96=0.86(2)电机所需的工作功率: P工作=FV/1000η总 =1800×1/1000×0.86 =2.09KW

3、确定电动机转速: 计算滚筒工作转速: n筒=60×1000V/πD =60×1000×1/π×200 =95.49r/min 按手册推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I‘1=3~6。取V带传动比I’2=2~4,则总传动比理时范围为I‘a=6~24。故电动机转速的可选范围为n’d=I‘a×n筒=573~2291r/min 符合这一范围的同步转速有750、1000、和1500r/min等。

根据容量和转速,由有关手册查出有三种适用的电动机型号,综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min。

4、确定电动机型号

根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y112M-6。其主要性能:额定功率:2.2KW,满载转速940r/min,质量45kg

(二)计算总传动比及分配各级的传动比 总传动比:i总=n电动/n筒=940/95.49=10 i2=i/2.5=4(三)、运动参数及动力参数计算

1、计算各轴转速(r/min)V带高速轴 nI=n电机=940r/min 减速器高速轴nII=nI/iV带=940/2.5=376(r/min)减速器低速轴nIII=nII/ i减速器=376/4=94(r/min)

2、计算各轴的输入功率(KW)V带低速轴 PI=P工作=2.2KW 减速器高速轴 PII=PI×η带=2.2×0.96=2.11KW 减速器低速轴 PIII=PII×η轴承×η齿轮= 2.03KW

3、计算各轴扭矩(N•m)电动机输出轴 TI=9550×PI/nI =9550×202/940=22.35N•m 减速器高速轴 TII=9550×PII/nII =9550×2.11/376=53.59N•m 减速器低速轴 TIII=9550×PIII/nIII =9550×2.03/94=206.23N•m(四)传动零件的设计计算

1、齿轮传动的设计计算

(1)选择齿轮材料及精度等级

考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS,取260HBS。大齿轮选用45钢,调质,齿面硬度220HBS;根据课本P74表6-5选8级精度。齿面精糙度Ra≤1.6~3.2μm(2)按齿面接触疲劳强度设计

由d1≥76.43(kT1(u+1)/φdu[σH]2)1/3 确定有关参数如下:传动比i齿=4 取小齿轮齿数Z1=24。则大齿轮齿数: Z2=iZ1=4×24=96 齿数比:u=i0=4 由课本取φd=0.75(3)转矩T1 T1=22350N•mm(4)载荷系数k 由课本取k=1.2(5)许用接触应力[σH] [σH]= σHlimZNT/SH由课本查得: σHlimZ1=710Mpa σHlimZ2=620Mpa 由课本P133式6-52计算应力循环次数NL NL1=60n1rth=60×458.2×1×(16×365×8)=1.28×109 NL2=NL1/i=1.28×109/6=2.14×108 由课本P135图6-34查得接触疲劳的寿命系数: ZNT1=0.92 ZNT2=0.98 通用齿轮和一般工业齿轮,按一般可靠度要求选取安全系数SH=1.0 [σH]1=σHlim1ZNT1/SH=710×0.92/1.0Mpa =653.2Mpa [σH]2=σHlim2ZNT2/SH=620×0.98/1.0Mpa =607.6Mpa 故得:

d1≥76.43(kT1(u+1)/φdu[σH]2)1/3 =76.43[1.2×22350×(6+1)/0.75×4×607]1/3mm =46.21mm 模数:m=d1/Z1=46.21/24=1.93mm 根据课本取标准模数:m=2mm(6)校核齿根弯曲疲劳强度 根据课本 式

σF=(2kT1/bm2Z1)YFaYSa≤[σH] 确定有关参数和系数

分度圆直径:d1=mZ1=2×24mm=48mm d2=mZ2=2×96mm=192mm 齿宽:b=φdd1=0.75×48mm=36mm 取b=40mm b1=45mm(7)齿形系数YFa和应力修正系数YSa 根据齿数Z1=20,Z2=120由表6-9相得 YFa1=2.80 YSa1=1.55 YFa2=2.14 YSa2=1.83(8)许用弯曲应力[σF] 根据课本 式:

[σF]= σFlim YSTYNT/SF 由课本图 查得:

σFlim1=290Mpa σFlim2 =210Mpa 由图6-36查得:YNT1=0.88 YNT2=0.9 试验齿轮的应力修正系数YST=2 按一般可靠度选取安全系数SF=1.25 计算两轮的许用弯曲应力

[σF]1=σFlim1 YSTYNT1/SF=290×2×0.88/1.25Mpa =408.32Mpa [σF]2=σFlim2 YSTYNT2/SF =210×2×0.9/1.25Mpa =302.4Mpa 将求得的各参数代入式(6-49)σF1=(2kT1/bm2Z1)YFa1YSa1 =(2×1×50021.8/45×2.52×20)×2.80×1.55Mpa =77.2Mpa< [σF]1 σF2=(2kT1/bm2Z2)YFa1YSa1 =(2×1×50021.8/45×2.52×120)×2.14×1.83Mpa =11.6Mpa< [σF]2 故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩a a=m/2(Z1+Z2)=2/2(24+96)=100mm(10)计算齿轮的圆周速度V V=πd1n1/60×1000=3.14×48×940/60×1000 =2.36 m/s

(五)轴的设计计算及轴承的选择计算 输入轴的设计计算

1、按扭矩初算轴径

选用40Cr调质,硬度217~255HBS 根据课本,取c=110 d≥110(2.11/382.1)1/3mm=19.44mm 考虑有键槽,将直径增大5%,则 d=19.7×(1+5%)mm=20.69 ∴选d=25mm

2、轴的结构设计

(1)轴上零件的定位,固定和装配

单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定(2)确定轴各段直径和长度

工段:d1=25mm 长度取L1=50mm ∵h=2c c=1.5mm II段:d2=d1+2h=25+2×2×1.5=31mm ∴d2=31mm 初选用6207型深沟球轴承,其内径为35mm, 宽度为16mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长: L2=(2+20+16+55)=93mm III段直径d3=35mm L3=L1-L=50-2=48mm Ⅳ段直径d4=45mm 由手册得:c=1.5 h=2c=2×1.5=3mm d4=d3+2h=35+2×3=41mm 长度与右面的套筒相同,即L4=20mm 但此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:(30+3×2)=36mm 因此将Ⅳ段设计成阶梯形,左段直径为36mm Ⅴ段直径d5=30mm.长度L5=19mm 由上述轴各段长度可算得轴支承跨距L=100mm(3)按弯矩复合强度计算

①求分度圆直径:已知d1=48mm ②求转矩:已知T2=52780N•mm ③求圆周力:Ft 根据课本 式得

Ft=2T2/d2=52780/48=1099.583N ④求径向力Fr 根据课本P127(6-35)式得

Fr=Ft•tanα=1099.58×tan200=400.21N ⑤因为该轴两轴承对称,所以:LA=LB=50mm(7)校核危险截面C的强度 由式(6-3)

σe=Mec/0.1d33=99.6/0.1×353 =14.5MPa< [σ-1]b=60MPa ∴该轴强度足够。输出轴的设计计算

1、按扭矩初算轴径

选用45#调质钢,硬度(217~255HBS)根据课本 取c=115 d≥c(P3/n3)1/3=33.41mm 取d=35mm

2、轴的结构设计

(1)轴的零件定位,固定和装配

单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。(2)确定轴的各段直径和长度

初选6209型深沟球轴承,其内径为45mm,宽度为19mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长41mm,安装齿轮段长度为轮毂宽度为2mm。(3)按弯扭复合强度计算

①求分度圆直径:已知d2=192mm ②求转矩:已知T3=20300N•mm ③求圆周力Ft:根据课本P127(6-34)式得 Ft=2T3/d2=2×271×103/300=1806.7N ④求径向力Fr根据课本P127(6-35)式得 Fr=Ft•tanα=1806.7×0.36379=657.2N ⑤∵两轴承对称 ∴LA=LB=49mm(六)键联接的选择及校核计算 轴径d1=25mm,L1=50mm 查手册得,选用C型平键,得:

键A 8×7 GB1096-79 l=L1-b=50-8=42mm h=7mm 根据课本得

σp=4T2/dhl=4×48000/22×7×42 =29.68Mpa<[σR](2、输入轴与齿轮联接采用平键联接

轴径d3=35mm L3=48mm T=271N•m 查手册P51 选A型平键 键10×8 GB1096-79 l=L3-b=48-10=38mm h=8mm σp=4T/dhl=4×271000/35×8×38 =101.87Mpa<[σp](110Mpa)

3、输出轴与齿轮2联接用平键联接 轴径d2=50mm L2=50mm T=61.5Nm 查手册P51 选用A型平键 键16×10 GB1096-79 l=L2-b=50-16=34mm h=10mm 据课本P243式(10-5)得

σp=4T/dhl=4×6100/51×10×34=60.3Mpa<[σp]

四、减速器的润滑与密封 齿轮传动的润滑

高速级齿轮圆周转速为2.0m/s 低速级齿轮圆周转速为0.69m/s 所以选择脂润滑的润滑方式,可用旋盖式、压注式油杯向轴承室加注润滑脂。润滑油牌号的确定及油量计算

减速器中传动件通常用浸油(油浴)润滑

选用牌号为L-AN32的全损耗系统用油,其主要用于一般机床齿轮减速箱、中小型机床导轨。油面高度为浸过高速级大齿轮一个全齿,油量计算: V=a×b×h=543×146×57=4.52×106mm3 轴承的润滑

选用牌号为ZGN69-2的滚动轴承脂,该润滑脂适用于各种机械设备的滚动轴承润滑,适用工作温度≤90°C 脂润滑结构简单、易于密封,但润滑效果不如油润滑,故常用于开式齿轮传动、开式蜗杆传动和低速滚动轴承的润滑。

滚动轴承采用脂润滑时,润滑脂的填充量不应超过轴承空间的1/3~1/2。减速器的密封 选用毡圈密封方式。

其密封效果是靠矩形毡圈安装于梯形槽中所产生的径向压力来实现的。其特点是结构简单、价廉,但磨损较快、寿命短。它主要用于轴承采用脂润滑,且密封处轴的表面圆周速度较小的场合,对粗、半粗及航空用毡圈其最大圆周速度分别为3m/s、5m/s、7m/s,工作温度t≤90°C

五、减速器箱体及其附件(1)窥视孔和视孔盖

窥视孔应设在箱盖顶部能看见齿轮啮合区的位置,大小以手能伸入箱体内检查操作为宜。

窥视孔处应设计凸台以便于加工。视孔盖可用螺钉紧固在凸台上,并考虑密封。(2)通气器

通气器设置在箱盖顶部或视孔盖上。较完善的通气器内部制成一定曲路,并设置金属网。

选择通气器类型的时候应考虑其对环境的适应性,其规格尺寸应与减速器大小相适应。(3)油面指示器

油面指示器应设置在便于观察且油面较稳定的部位,如低速轴附近。

常用的油面指示器有圆形油标、长形油标、管状油标,油标尺等形式。

油标尺的结构简单,在减速器中较常采用。油标尺上有表示最高及最低油面的刻线。装有隔离套的油尺可以减轻油搅动的影响。

油标尺安装位置不能太低,以避免油溢出油标尺座孔。(4)放油孔和螺塞

放油孔应设置在油池的最低处,平时用螺塞堵住。采用圆柱螺塞时,座箱上装螺塞处应设置凸台,并加封油垫片。放油孔不能高于油池底面,以避免排油不净。(5)起吊装置

吊环螺钉可按照起重量选择。为保证起吊安全,吊环螺钉应完全拧入螺孔。箱盖安装吊环螺钉处应设置凸台,以使吊环螺钉孔有足够深度。

箱盖吊耳、吊钩和箱座吊钩的结构尺寸在设计时可以进行适当修改。(6)定位销

常采用圆锥销作定位销。两定位销之间的距离越远越可靠,因此,通常将其设置在箱体联接凸缘的对角处,并应作非对称布置。定位销的长度应大于箱盖、箱座凸缘厚度之和。(7)起盖螺钉

起盖螺钉设置在箱盖联接凸缘上,其螺纹有效长度应大于箱盖凸缘厚度。起盖螺钉直径可与箱盖凸缘螺钉直径相同,螺钉端部制成圆柱形并光滑导角或制成半球形。

六、设计小结

一个星期的课程设计结束了。这一个星期以来,我是感慨良多,有痛苦也有快乐,发过火,流过汗,学到的东西也很多。大家常挂在嘴边的一句话:哥画的不是图,画的是寂寞。但经过了那么多天的奋战,当我们平生最大的一幅图在我们自己的设计中成型时,我们才发现:我们画的不是寂寞,而是成功的历程。成就感在我们的心中荡漾……

首先,我要感谢顶着炎热的天气在教室里指导我们的陈老师,是他在我们几乎绝望的时候给了我们鼓励,给了我们信心,也是他在我们遇到困难的时候出现在我们的身边。

通过一个星期的学习与实践,我知道了在设计的过程中必须严肃认真,刻苦专研,一丝不苟,精益求精,才能在设计思想,方法和技能各方面获得较好的锻炼与提高。必须发挥设计的主动性,主动思考问题分析问题和解决问题设计中要正确处理参考已有资料和创新的关系。熟悉和利用已有的资料,既可避免许多重复的工作,加快设计进程,同时也是提高设计质量的重要保证。善于掌握和使用各种资料,如参考和分析已有的结构方案,合理选用已有的经验设计数据,也是设计工作能力的重要方面。机械设计应边计算,边绘图,边修改,设计计算与结构设计绘图交替进行,这与按计划完成设计任务并不矛盾,应从第一次设计开始就注意逐步掌握正确的设计方法。

安排课程设计的基本目的,在于通过理论与实际的结合、人与人的沟通,进一步提高思想觉悟。尤其是观察、分析和解决问题的实际工作能力,以便培养成为能够主动适应社会主义现代化建设需要的高素质的复合型人才。-

作为整个学习体系的有机组成部分,课程设计虽然安排在一周进行,但并不具有绝对独立的意义。它的一个重要功能,在于运用学习成果,检验学习成果。运用学习成果,把课堂上学到的系统化的理论知识,尝试性地应用于实际设计工作,并从理论的高度对设计工作的现代化提出一些有针对性的建议和设想。检验学习成果,看一看课堂学习与实际工作到底有多大距离,并通过综合分析,找出学习中存在的不足,以便为完善学习计划,改变学习内容与方法提供实践依据。

对我们非机械专业的本科生来说,实际能力的培养至关重要,而这种实际能力的培养单靠课堂教学是远远不够的,必须从课堂走向实践。这也是一次设计工作的预演和准备。通过课程设计,让我们找出自身状况与实际需要的差距,并在以后的学习期间及时补充相关知识,为求职与正式工作做好充分的知识、能力准备,从而缩短从校园走向社会的心理转型期。课程设计促进了我系人才培养计划的完善和课程设置的调整。课程设计达到了专业学习的预期目的。在一个星期的课程设计之后,我们普遍感到不仅实际动手能力有所提高,更重要的是通过对机械设计流程的了解,进一步激发了我们对专业知识的兴趣,并能够结合实际存在的问题在专业领域内进行更深入的学习。

课程设计需要刻苦耐劳,努力钻研的精神,有时可能需要连续几个小时、十几个小时不停的工作进行攻关, 虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。最后出成果的瞬间是喜悦、是轻松、是舒了口气!-

至于此次课程设计中的不足,我将在今后的学习的加以改进,不断的完善自己,认真学习自己的专业知识,希望在毕业的时候能成为一个合格的工科人才。

七、参考资料目录

机械设计(机械设计基础)课程设计 高等教育出版社 1995年12月版 机械设计基础 湖南大学出版社 2005年8月版

第四篇:二级减速器 课程设计 轴的设计

轴的设计

图1传动系统的总轮廓图

一、轴的材料选择及最小直径估算

根据工作条件,小齿轮的直径较小(选用45钢,正火,硬度HB=

。),采用齿轮轴结构,按扭转强度法进行最小直径估算,即

直径轴段开有键槽,还要考虑键槽对轴的强度影响。

值由表26—3确定:

1、高速轴最小直径的确定

=112

初算轴径,若最小由轴器,设有一个键槽。则,因高速轴最小直径处安装联,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不得相差太大,否则难以选择合适的联轴器,取,为电动机轴直径,由前以选电动机查表6-166:,综合考虑各因素,取

2、中间轴最小直径的确定

。,因中间轴最小直径处安装滚动轴承,取为标准值

3、低速轴最小直径的确定

。,因低速轴最小直径处安装联轴器,设有一键槽,则见联轴器的选择,查表6-96,就近取联轴器孔径的标准值,参。

二、轴的结构设计

1、高速轴的结构设计

图2(1)、各轴段的直径的确定

:最小直径,安装联轴器

:密封处轴段,根据联轴器轴向定位要求,以及密封圈的标准查表6-85(采用毡圈密封),:滚动轴承处轴段,:过渡轴段,取 :滚动轴承处轴段,滚动轴承选取30208。(2)、各轴段长度的确定

:由联轴器长度查表6-96得,取

:由箱体结构、轴承端盖、装配关系确定 :由滚动轴承确定

:由装配关系及箱体结构等确定 :由滚动轴承、挡油盘及装配关系确定 :由小齿轮宽度

2、中间轴的结构设计

确定,取

图3(1)、各轴段的直径的确定 :最小直径,滚动轴承处轴段,:低速级小齿轮轴段,滚动轴承选30206 :轴环,根据齿轮的轴向定位要求 :高速级大齿轮轴段 :滚动轴承处轴段(2)、各轴段长度的确定 :由滚动轴承、装配关系确定 :由低速级小齿轮的毂孔宽度:轴环宽度

确定

确定

:由高速级大齿轮的毂孔宽度 :由滚动轴承、挡油盘及装配关系等确定

3、低速轴的结构设计

图4(1)、各轴段的直径的确定 :滚动轴承处轴段 :低速级大齿轮轴段,滚动轴承选取30210

:轴环,根据齿轮的轴向定位要求 :过渡轴段,考虑挡油盘的轴向定位 :滚动轴承处轴段

:密封处轴段,根据联轴器的轴向定位要求,以及密封圈的标准(采用毡圈密封)

:最小直径,安装联轴器的外伸轴段(2)、各轴段长度的确定

:由滚动轴承、挡油盘及装配关系确定 :由低速级大齿轮的毂孔宽:轴环宽度

确定

:由装配关系、箱体结构确定 :由滚动轴承、挡油盘及装配关系确定

:由箱体结构、轴承端盖、装配关系确定 :由联轴器的毂孔宽

确定

轴的校核

一、校核高速轴

1、轴上力的作用点位置和支点跨距的确定

齿轮对轴的力作用点按简化原则应在齿轮宽度的中点,轴上安装的30208轴承,从表6-67可知它的负荷作用中心到轴承外端面的距离为,支点跨距速级小齿轮作用点到右支点,距B,高的距离为A

图5

2、计算轴上的作用力

如图4—1,求

3、计算支反力并绘制转矩、弯矩图(1)、垂直面

图6

图7(2)、水平面

图8

; ;

图9(3)、求支反力,作轴的合成弯矩图、转矩图

图10

1轴的弯矩图

图11

1轴的转矩图

(4)、按弯扭合成应力校核轴的强度

进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面C)的强度,因为是单向回转轴,所以扭转应力视为脉动循环应力,折算系数。

已选定轴的材料为45钢正火处理,由表26-4查得因此,严重富裕。,二、校核中间轴

1、轴上力的作用点位置和支点跨距的确定

轴上安装30206轴承,它的负荷作用中心到轴承外端面距离为,跨距,高速级大齿轮的力作用点C到左支点A的距离,低速级小齿轮的力作用点D到右支点B的距离用点之间的距离轴的受力简图为:。

。两齿轮力作

图12

2、计算轴上作用力

齿轮2:

;

齿轮3:;

3、计算支反力

(1)、垂直面支反力

图13 由,得

由,得

由轴上合力校核:,计算无误

(2)、水平面支反力

图14 由,得

由,得

由轴上合力校核:,计算无误

(3)、总支反力为

(4)、绘制转矩、弯矩图

a、垂直面内弯矩图 C处弯矩

D处弯矩

图15

b、水平面内弯矩图 C处弯矩

D处弯矩

图16 c、合成弯矩图

图17 d、转矩图

图18(5)、弯扭合成校核

进行校核时,通常只校核轴上承受最大弯矩和转矩的截面(即截面D)的强度。去折算系数为

已选定轴的材料为45钢正火处理,由表26-4查得。,因此

三、校核低速轴

1、轴上力的作用点位置和支点跨距的确定

齿轮对轴的力作用点按简化原则应在齿轮宽度的中点,轴上安装的30210轴承,从表12—6可知它的负荷作用中心到轴承外端面的距离为,支点跨距,低速级大齿轮作用点到右支点B的距离为A为,距

图19

2、计算轴上的作用力

如图4—15,求

: ;

3、计算支反力并绘制转矩、弯矩图(1)、垂直面

图20

图21(2)、水平面

图22

; ;

图23(3)、求支反力,作轴的合成弯矩图、转矩图

图24

图25(4)、按弯扭合成应力校核轴的强度

校核危险截面C的强度,因为是单向回转轴,所以扭转应力视为脉动循环应力,折算系数。

已选定轴的材料为45钢正火处理,由表26-4查得因此,强度足够。,则传动系统轮廓图为

图26

第五篇:课程设计-二级圆柱齿轮减速器设计说明书(CAD图)

课程设计报告

二级展开式圆柱齿轮减速器

一.设计题目

设计一用于卷扬机传动装置中的两级圆柱齿轮减速器。轻微震动,单向运转,在室内常温下长期连续工作。卷筒直径D=500mm,运输带的有效拉力F=10000N, 卷筒效率=0.96,运输带速度v0.3m/s,电源380V,三相交流.二.传动装置总体设计:

1.组成:传动装置由电机、减速器、工作机组成。

2.特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。

3.确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。其传动方案如下:

三.选择电动机

1.选择电动机类型:

按工作要求和条件,选用三相笼型异步电动机,封闭型结果,电压380V,Y型。

2.选择电动机的容量

Pd

电动机所需的功率为:

PWFV KW 1000PWa

KW

下载机械设计课程设计展开式二级直齿圆柱齿轮减速器的轴的设计word格式文档
下载机械设计课程设计展开式二级直齿圆柱齿轮减速器的轴的设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐