毕业论文 纳米Fe3O4粒子的制备及其表面改性研究进展

时间:2019-05-14 06:40:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《毕业论文 纳米Fe3O4粒子的制备及其表面改性研究进展》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《毕业论文 纳米Fe3O4粒子的制备及其表面改性研究进展》。

第一篇:毕业论文 纳米Fe3O4粒子的制备及其表面改性研究进展

纳米Fe3O4粒子的制备及其表面改性研究进展

摘要:Fe3O4纳米粒子应用广泛,它的合成有球磨法、高温分解法、沉淀法、水热法、微乳液法、溶胶-凝胶法、生物模板合成法、微波水热法等。本文主要综述了以上的各种合成方法和它们各自的优缺点,以及对他的改性方法做了简单的归纳,主要有表面化学法、溶胶-凝胶法、沉淀反应法及静电自组装等。

关键字: 纳米Fe3O4

磁性

合成改性

Research Progres s on Preparation andSurface Modification of Fe3O4 Magnetic

Nano-particles Wang weijun

Abstract: Fe3O4 nanoparticles widely, it is the synthesis method of ball mill, high temperature decomposition, precipitation, hydrothermal synthesis, microemulsion, sol-gel, biological template synthesis, microwave hydrothermal method.This paper mainly introduces the synthesis methods and their respective advantages and disadvantages, and the modification methods for his brief, basically have apparent velocity, sol-gel, reaction method and electrostatic self-assembly.Key words: Fe3O4 nanotechnology magnetic

synthesis

modified 前言:纳米科技的发展,为各种材料的研究开辟了新的领域。现如今,各种各样的纳米材料已经自相关领域得到了充分的应用,也充分肯定了纳米材料的价值。所以,新型纳米材料的发展已成为现代社会的必需,具有很大的发展前景。纳米Fe3O4有颗粒粒径小、比表面积很高、磁敏等特性,在生物分离[1-2]、靶向物[3-5]、肿瘤磁热疗[6-7]以及免疫检测[8-9]等领域具有很广泛的应用。所以,Fe3O4磁性纳米粒子的制备及一些特性的研究及总结对我国一些相关领域的发展有指导意义,也对参与的一些研究人员提供方便。本文以下就对纳米Fe3O4粒子的制备以及改性做一简述。1 纳米Fe3O4 粒子的制备 1.1固相合成法 1.1.1 球磨法[10]

可分为普通球磨法和高能球磨法两类。普通球磨法是指在球磨机中,将粒度为几十微米的Fe3O4粗颗粒通过钢球之间或钢球与研磨罐内壁之间的撞击,将其破碎成细颗粒。高能球磨法是利用高能球磨机对原料进行机械合金化,把原料合成纳米尖晶石型铁氧体。球磨法产物晶粒尺寸不均匀,易引入杂质。1.1.2高温分解法

高温分解铁有机物法是将铁前驱体(如Fe(CO)

5、Fe(CuP)3 等)高温分解产生铁原子,再由铁原子生成铁纳米粒子,将铁纳米粒子控制氧化得到氧化铁。这种方法制得的纳米粒子结晶度高、粒径可控且分布很窄[11]。窦永华等[12]采用高温有机前驱体分解的方法,以Fe(acac)3 为前驱体制备出了单分散性较好的Fe3O4 纳米粒子,平均粒径为(6.4±0.9)nm,而且通过这些粒子的自组装还得到了排列规整的单层及多层的有序结构。1.2 液相合成法

1.2.1 沉淀法

沉淀法包括共沉淀法、氧化沉淀法、还原沉淀法、交流电沉淀法和络合物分解法等[13]。共沉淀法因具有产率高、成本低等特点,制备中应用较多,但该方法制备过程复杂,所制的的产物易团聚、氧化。张鑫等[14]采用共沉淀法,在Fe3+ 和Fe2+ 溶液物质的量比为1∶

1、反应温度为30 ℃的条件下制备的Fe3O4 粒径在20 nm 以内。Wu Jun-Hua 等[15]研究反应温度对纳米Fe3O4 粒径的影响,20 ℃和80 ℃时得到的粒径最小大约为2~4 nm。共沉淀法最大的难题是如何分散生成纳米Fe3O4粒子并使其不团聚。为此许多学者通过在Fe3O4 粒子生成后加入表面活性剂包覆微粒表面等手段对共沉淀法进行了改进,以达到减少团聚的目的。程海斌等人[16]采用改进共沉淀法以十二烷基苯磺酸钠(SDBS)为表面活性剂制得的纳米Fe3O4复合粒子能在更宽的pH 值范围(1~9)内稳定分散。共沉淀法生成的纳米Fe3O4粒子极不稳定,其稳定性与pH值成反比,在强碱性介质中静置时立即发生聚沉,随着pH 值降低,稳定性有所提高,但静置几分钟后都会析出沉淀。1.2.2 水热合成法

该法利用高温高压下某些氢氧化物在水中的溶解度大于对应的氧化物在水

中的溶解度的特点,因此当氢氧化物溶入水时同时析出相应氧化物纳米粒子。刘奕等[17 ]以FeSO4·7H2O、(NH4)2 Fe(SO4)2·6H2O 和NaOH、NH3·H2O 为原料,以KC1O4 与KNO3 为氧化剂,采用水热合成法在110℃反应14h,成功合成了立方相的六方片状Fe3O4 纳米晶以及Fe3O4 单晶纳米棒,其中Fe3O4 单晶纳米棒的直径为60nm,长度为介于0175~1175um,其饱和磁化强度为39154emu/ g。Chen D 等[18] 用N2 做作为环境气体,Fe(OMOE)2在MOE 中回流4 h,再在磁搅拌下加入一定量MOE 与H2O 的混合溶液,得到的悬浮物在水热釜中反应得到了不同粒径的Fe3O4纳米颗粒。周小丽等[19] 采用氯化亚铁(FeC12·4H2O),氯化铁(FeC13·6H2O),Na2SO3,H2O2,NaOH,水合肼等为原料,用水热合成法成功制备了磁性Fe3O4 纳米颗粒。并研究了不同的表面活性剂、氧化剂对合成过程的影响。该法的优点是可直接生成氧化物,避免了一般液相合成法需要经过煅烧转化为氧化物这一步骤,大大地降低硬团聚。1.2.3 微乳液法[20]

由表面活性剂、油相、水相及助溶剂等在适当比例下形成油包水(W/O)或水包油(O/W)型微乳液,反应仅限于微乳液滴这一微型反应器内部,粒子的粒径受到水核的控制,且可有效避免粒子之间的进一步团聚。因而得到粒径分布窄、形态规则、分散性能好的纳米粉体。同时,可以通过控制微乳液液滴中水的体积及各种反应物的浓度来控制成核、生长,以获得各种粒径的单分散纳米粒子。用微乳液法制备的纳米磁性Fe3O4粒径均匀、粒径较小、分散性好且多为球形。但该法耗用大量乳化剂,产率低,因此价格昂贵,不适于大量生产。1.2.4 水解法[21]

水解法可以分为两种:一种是Massart 法,另一种为滴定水解法。而我们一般说的水解法多指是滴定水解法。水解法对设备的要求低,反应可以在较为温和的条件下进行,所用的原材料为廉价的无机盐,工艺流程简单,反应产物纯度高,粒子分散性比较好。在一定程度上解决了团聚问题。但该方法在制备过程中要求考虑影响粉末粒径和磁学性能的因素较多(如反应物浓度、反应温度、沉淀剂浓度与加入速度、搅拌情况和pH值等),使得对实验的工艺参数必须严格控制。邱星屏[22]采用滴定水解及Massart 合成法分别制备了直径在8nm

左右的Fe3O4 纳米粒子,透射电镜观察发现,由滴定水解法制备的Fe3O4 纳米粒子主要为球形,粒子大小比较均匀,而由Massart 法制备得到的Fe3O4 纳米粒子则呈现从球形到立方形的多种形态,并且粒径分布宽。Zhongbing Huang 等[23]采用水解法制备Fe3O4 纳米粒子粒径大约为10 nm,粒径分布窄。

1.2.5 溶胶-凝胶法

利用金属醇盐水解和聚合反应制备金属氧化物或金属氢氧化物的均匀溶胶,再浓缩成透明凝胶,经干燥、热处理得到氧化物超微粉。娄敏毅等[24]将超声分散后的纳米级Fe3O4 磁性粒子加入浓聚SiO2溶胶中, 与丙酮、去离子水、氨水混合形成油包水型乳液, 最后经过溶剂置换、洗涤和热处理, 制备了粒径主要分布在20 nm 左右、单分散的球形磁性微球, 并且表现出良好的超顺磁性和磁响应性。该研究的特色在于采用了酸碱两步催化法,利用两种催化法的各自特点, 优势互补, 同时将溶胶-凝胶法与乳液成球技术相结合, 解决了SiO2 磁性微球球形度不好的问题。该方法可在低温下制备纯度高、粒径均匀、化学活性大的单组分或多组分分子级混合物,以及可制备传统方法不能或难以制得的产物等优点,而使其得到了广泛的应用。但前驱体的金属醇盐毒性大、对痕量的水分敏感且价格昂贵。1.2.6 生物模板合成法

由于DNA 结合蛋白、小热激蛋白、李斯特细菌、铁蛋白等内部是空穴结构,可利用它们作为模板合成磁性纳米Fe3O4 粒子。例如,铁蛋白空穴内径为8nm,外径为12nm,DNA 结合蛋白空穴内径为6nm,外径为9nm。烟草花叶病毒空穴内径为8nm,外径为12nm。利用这些空穴结构,研究者们成功合成了纳米Fe3O4 粒子。1.2.7 微波水热法

微波水热法于1992 年被美国宾州大学的ROYR[25]提出。微波水热法制备微细粉体是用微波场作为热源,反应介质在特制的、能通过微波场的耐压反应釜中进行反应,在微波辐射作用下,极性分子接受微波辐射能量后,偶极子以数亿次每秒的高速旋转产生热效应。由于微波水热法具有加热速度快、反应灵

敏、受热体系均匀等特点,使其能快速制备粒径分布窄、形态均一的纳米粒子。因此微波水热法在制备超细粉体方面具有巨大的潜在研究价值。研究者海岩冰等[26]用微波炉8 s 就可以制备出平均粒度为30 nm 的Fe3O4 纳米粒子,产率到达90%,同时具有良好的分散性。1.2.8 氧化法[27]

氧化法是制备超细Fe3O4的最常用方法,是将一定浓度的铁盐及碱液,经混合沉淀生成Fe(OH)2,恒温下通空气搅拌,将Fe(OH)2中Fe2+部分氧化成Fe3+而直接获得Fe3O4微粉,但合成的Fe3O4粒度均匀性还有待于进一步解决。2 纳米Fe3O4 粒子的表面改性

由于制备的Fe3O4粒子容易团聚、容易被氧化,或者在某些方面不够完善,在使用时需对其表面进行改性,有目的地改变粒子表面的物理化学性质,如表面化学结构、表面疏水性、化学吸附和反应特性等。常用的表面改性方法如下:

2.1 表面化学改性法

利用表面化学方法,如有机物分子中的官能团在Fe3O4粒子表面的吸附或化学反应对粒子表面进行局部包覆使其表面有机化,从而达到表面改性,这是目前Fe3O4粒子表面改性的主要方法。表面化学改性所用的表面改性剂多为阴离子表面活性剂、非离子表面活性剂和带有官能团的有机聚合物。油酸、月桂酸、十二烷基硫酸钠、十二烷基苯磺酸钠等阴离子表面活性剂,是其带负电的极性端借助库仑力与 Fe3O4所带正电荷相互吸引而在粒子表面吸附。聚乙二醇等非离子型表面活性剂在水中不电离,对Fe3O4粒子表面的吸附主要是通过范德华力和氢键的形式进行。而有机聚合物多是通过分子中的官能团与Fe3O4粒子表面形成化学键结合,如硅烷是通过其水解后的羟基与粒子表面富含的羟基脱水结合,聚(丙烯酸-丙烯酸羟乙酯)则是通过羧基与粒子表面形成配位键结合。2.2 沉淀反应改性法

沉淀反应改性是指通过无机化合物在Fe3O4粒子表面进行沉淀反应形成包覆层,从而改善其抗氧化性、分散性等。张冠东等[28]对共沉淀得到的Fe3O4纳米粒子在硅酸钠溶液中进行酸化处理,获得了表面包覆SiO2层的核壳结构的磁

性粒子。由于SiO2的位阻作用,限制了Fe3O4微晶的团聚和继续生长,使Fe3O4核分散在产物中保持较小的晶粒尺寸,包覆产物表现出超顺磁性,同时提高了磁性组分的耐候性。2.3 溶胶-凝胶法改性

溶胶-凝胶过程指无机前驱体通过各种反应形成三维网状结构。SiO2是溶胶-凝胶法改性Fe3O4中应用最为广泛的一种调节表面和界面性质的表面修饰剂。该方法通常是采用正硅酸乙酯为原料,通过优化水解条件在Fe3O4粒子表面包覆一层SiO2,提高Fe3O4粒子的稳定性。娄敏毅等[24]将超声分散后的纳米级Fe3O4磁性粒子加入浓聚SiO2溶胶中,与丙酮、去离子水、氨水混合形成油包水型乳液,最后经过溶剂置换、洗涤和热处理,制备了粒径主要分布在20!m左右、单分散的球形磁性微球,并且表现出良好的超顺磁性和磁响应性。该研究的特色在于采用了酸碱两步催化法,利用两种催化法的各自特点,优势互补,同时将溶胶-凝胶法与乳液成球技术相结合,解决了SiO2磁性微球球形度不好的问题。

2.4 静电自组装改性

静电自组装,又称层层自组装或逐层自组装,是近年来出现的一种新型的粒子自组装的方法,它为合成新型、稳定和功能化的核壳式微球提供了新的选择,并且技术简便易行,无须特殊装置,通常以水为溶剂。因此,备受国内外研究学者的关注。运用这种技术,将复合式的壳层通过层层吸附组装在固相粒子上,可以制备出新型的复合式的核-壳材料,其壳层可以是单一组分的无机物或聚合物,也可以是组分不同的混杂式的无机物壳层或无机物/聚合物混杂层。它使各种结构的材料可以组装在极性底物上,或是固相的粒子上,从而使更多组分可以组成复合材料,为研究新型材料提供了新的合成路线。3 展望

纳米Fe3O4 作为一种磁性粒子,在各种材料领域中起着不可替代的作用。故而纳米Fe3O4的发展成了当今社会的必然。纵观上述的几种制备和改性的方法,他们各有优缺点。在制备中,现阶段用的最广泛的当属共沉淀法,可共沉

淀法制得的粒子很不稳定、易团聚。所以,发展更好的制备方法成了纳米Fe3O4研究的重点。在改性方面,根据不同的使用,有不同的改性方法,以达到较专业、高性能的效果。

参考文献

[1] 李文兵, 周蓬蓬, 余龙江, 朱敏, 鲁明波.生物相容Fe3O4磁性纳米颗粒的合成及应[J].现代化工 , 2006,(S1)

[2] 王永亮;李保强;周玉.超顺磁性Fe3O4纳米颗粒的合成及应用[J].功能材料, 2009年 07期

[3]Sonti S V, Bose A.Cell separation Using Protein-A-Coated Magnetic Nanoclusters [J].J.Colloid Interface Sci.,1995,170:575-585.[4] 李桂银;杨栋梁;黄可龙;蒋玉仁.Fe3O4羧基改性壳聚糖复合纳米粒子的制备、表征及生物学应用[J].功能材料, 2009年 07期

[5]周永国,杨越冬,郭学民,等.磁性壳聚糖微球的制备、表征及其靶向给药研究[J].应用化学,2002,19(12):1178-1182.[6] 马明, 朱毅, 张宇, 等.四氧化三铁纳米粒子与癌细胞相互作用的初步研究[J].东南大学学报: 自然科学版, 2003, 33(2): 205-207.[7]Ma M.Preparation and characterization of magnetitenanoparticlescoated by amino silane [J].Colloids Surf.,A,2003,212:219-226.[8] 刘美红, 陈晓明.磁性微球在生物医学领域的最新进展[J].精细与专用化学品, 2006, 14(2): 6-9.[9]Stoeva S I,Huo F W, Lee J S ,etal.Three-layer composite magneticnanoparticle probes for DNA[J].J.Am.Chem.Soc.,2005,127:15362-15363.[10] 汪礼敏.高能机械研磨制备铁氧体的研究[J].粉末冶金工业,1999,17(2):125~129.[11] 陈辉.高温分解法合成Fe3O4磁性纳米微粒[J].河南化工, 2004(2):11-12.[12] 窦永华, 张玲, 古宏晨.单分散Fe3O4纳米粒子的合成、表征及其自组装[J].功能材料, 2007, 38(1): 119-122.[13]何运兵, 邱祖民, 佟珂.制备纳米Fe3O4的研究进展[J].化工科技,2004, 12(6): 52-57.[14] 张鑫, 李鑫钢, 姜斌.四氧化三铁纳米粒子合成及表征[J].化学工业与工程, 2006, 23(1): 45-48.[15] WU Jun-Hua, KO Seung Pil, LIU Hong-Ling.Sub 5 nm magnetitenanoparticles: synthesis, microstructure, and magnetic properties[J].Materials Letters, 2006, 11(2): 1-6.[16] 程海斌, 刘桂珍, 李立春.纳米Fe3O4的ζ电位和分散稳定性[J].武汉理工大学学报,2003, 25(5): 4-6.[17] 刘奕,高勇谦,郭范.[J ].人工晶体学报,2005 ,5(34):7282785.[18] Chen D , Xu R.[J ].Materials Research B ul letin , 1998 , 33(7):101521021.[19] 周小丽,毕红.[J ].安徽大学学报(自然科学版),2006 ,2(30):75279.[20] Deng Y,Wang L,Yang W,et al.Preparation of magnetic polymeric particles via inverse microemulsion polymerization process[J].J Magn Magn Mater,2003,257(1):69~78.[21] 郑举功,陈泉水,杨婷.磁性四氧化三铁纳米粒子的合成及表征[J].无机盐工业,2008(11):15~17.[22] 邱星屏.四氧化三铁磁性纳米粒子的合成及表征[J].厦门大学学报:自然科学版, 1999, 38(5): 711-715.[23] MAO Baodong, KANG Zhenhui, WANG Enbo.Synthesis of magnetiteoctahedrons from iron powders through a mild hydrothermalmethod[J].Materials Research Bulletin, 2006, 41: 2 226-2 231.[24] 娄敏毅, 王德平, 黄文旵, 等.单分散核壳结构SiO2 磁性微球的制备及性能[J].硅酸盐学报, 2006, 34(3): 277-283.[25] YEUR-LUEN Tu, MARIA L Clalzada, NICOLAS J Phillips.Synthesisand electrical characterization of thin films of PT and PZT madefrom a diol-based sol-gel route[J].J Am Ceram Soc, 1996, 79(2):441-448.[26] 海岩冰, 袁红雁, 肖丹.微波法制备纳米Fe3O4 [J].化学研究与应用,2006, 6(18): 744-746.[27] 王全胜,刘颖,王建华,张先武.沉淀氧化法制备Fe3O4的影响因素研究[J].北京理工大学学报,1994(2):200~205.[28] 张冠东, 官月平, 单国彬, 等.纳米Fe3O4 粒子的表面包覆及其在磁性氧化铝载体制备中的应用[J].过程工程学报, 2002, 2(4):319-324.谢辞

在我完成论文期间,得到了导师王彦博老师的精心指导。他治学严谨,对工作一丝不苟。其严以律己、宽以待人的崇高风范、平易近人的人格魅力令我倍感温馨。我无法用准确生动的语言来淋漓尽致地描述自己的真实感受,只好将它深深地埋在心底,化作一道虔诚的祝福:愿导师合家欢乐,一生平安!

在即将毕业离校之际,首先,我要感谢我的父母,母亲的和蔼善良,父亲的坚强拼搏,对我影响至深,给了我最强有力的鼓励和支持,教会我如何做人,如何处世。再多的言语也难表达我对他们的感谢和爱…….祝福我的父母永远健康快乐!

其次,我要感谢生化学院的领导和辅导员老师,他们的关心和培养使我从一个不懂世事的少年成长为一名坚强的、积极向上的青年,感谢他们对我的支持和培养,为我今后的人生旅程打下了坚实的基础。同时也感谢生化学院的专业课老师,他们精心教授使我学会了大量的专业课知识,终身受益!

最后,我要感谢06级化学4班的全体同学以及06级的所有朋友们、特别是我的室友对我的支持和帮助,你们是群风华正茂的有志青年,你们永远是我高歌猛进的力量之源。

我愿在未来的学习和研究过程中,以更加丰厚的成果来答谢曾经关心、帮助和支持过我的所有领导、老师、同学和朋友。

王维军

2010年5月10日

第二篇:金属纳米材料制备技术的研究进展

金属纳米材料制备技术的研究进展

摘要:本文从金属纳米材料这一金属材料重要分支进行了简要的阐述,其中重点讲述了强行塑性变形及胶束法制备纳米材料,并分析了金属纳米材料的现状及对今后的展望。

关键字:晶粒细化;强烈塑性变形;胶束法;块状纳米材料

引言:

金属材料是指金属元素为主构成的具有金属特性的材料的统称。包括金属、合金、金属间化合物和特种金属材料等。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。

现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。同时,人类文明的发展和社会的进步对金属材料的服役性能提出了更高的要求,各国科学家积极投身于金属材料领域,向金属材料的性能极限不断逼近,充分利用其为人类服务。

一种崭新的技术的实现,往往需要新材料的支持。例如,人们早就知道喷气式航空发动机比螺旋桨航空发动机有很多优点,但由于没有合适的材料能承受喷射出燃气的高温,是这种理想只能是空中楼阁,直到1942年制成了耐热合金,才使喷气式发动机的制造得以实现。

1金属纳米材料的提出

从目前看,提高金属材料性能的有效途径之一是向着金属结构的极端状态发展:一方面认为金属晶界是薄弱环节,力求减少甚至消除晶界,因此发展出了单晶与非晶态合金;另一方面使多晶体的晶粒细化到纳米级(一般<100 nm,典型为10 nm左右)[1]。细化晶粒是金属材料强韧化的重要手段之一,它可以有效地提高金属材料的综合力学性能,尤其是当金属材料的晶粒尺寸减小到纳米尺度时,金属表现出更加优异的力学性能[2]。因此,金属材料晶粒超细化/纳米化技术的发展备受人们关注,一系列金属纳米材料的制备技术相继提出并进行了探索,包括电沉积法、溅射法、非晶晶化法、强烈塑性变形法(Severe Plastic Deformation, SPD)、[3]粉末冶金法以及热喷涂法等。

金属纳米材料是指三维空间中至少有一维处于纳米尺度或由它们作为基本单元构成的金属材料。若按维数,纳米材料的基本单元可分为(类:一是零维。指在空间三维尺度均在纳米尺度,如纳米粉体、原子团簇等;二是一维。指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等;三是二维。指在三维空间中有一维处于纳米尺度,如超薄膜、多层膜及超晶格等。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料[4]。金属纳米颗粒表现出许多块体材料所不具备的优越性质,可用于催化、光催化、燃料电池、化学传感、非线性光学和信息存储等领域。

以金金属具体来说,与块状金不同,金纳米粒子的价带和导带是分开的。当金粒子尺寸足够小时,会产生量子尺寸效应,引起金纳米粒子向绝缘体转化,并形成不同能级间的驻电子波。若其能级间隔超出一定的范围并发生单电子跃迁时,将表现出特殊的光学和电子学特性,这些性质在晶体管、光控开关、传感器方面都有其潜在的应用前景。是因为金纳米粒子的特殊性质,使其在生物传感器、光化学与电化学催化、光电子器件等领域有着极其广阔的应用前景。近几年来,基于金纳米粒子在发生吸附后其表面等离子共振峰会发生红移这一性质,对担载金纳米粒子的DNA及糖类分子进行研究,发现其在免疫、标定、示踪领域中有着广阔的应用前景。此外,金纳米粒子作为一种新型催化剂在催化氧化反应中有着很高的催化活性,而担载金纳米粒子后,TiO2薄膜的光催化活性极大提高[5]。

2金属纳米材料的制备技术

如今,金属纳米材料的制备技术已趋于多样化发展,按不同的分类标准具有不同的分类方法。其中基本的可分为物理法,化学法及其他方法,物理法大致包括粉碎法和构筑法,化学法由气相反应法和液相法。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。常借助的外力有机械力、流能力、化学能、声能、热能等。一般的粉碎作用力都是几种力的组合,如球磨机和振动磨是磨碎和冲击粉碎的组合;雷蒙磨是压碎、剪碎和磨碎的组合;气流磨是冲击、磨碎与剪碎的组合。构筑法是由小极限原子或分子的集合体人工合成超微粒子。

气相法制备金属纳米微粒,主要有气相冷凝法、活性氢—熔融金属反应法、溅射法、流动液面上真空蒸镀法、通电加热蒸发法、混合等离子法、激光诱导化学气相沉积法、爆炸丝法、化学气相凝聚法和燃烧火焰—化学气相凝聚法。

液相法制备金属纳米微粒,主要有沉淀法、喷雾法、水热法、溶剂挥 发分解法、溶胶—凝胶法、辐射化学合成法。此外还包括物理气相沉积、化学气相沉积、微波等离子体、低压火焰燃烧、电化学沉积、溶液的热分解和沉淀等。

2.1块体材料制备

金属纳米块体材料制备加工技术:两种大块金属纳米材料的制备方法[6]-[8]。第一种是由小至大,即两步过程,先由机械球磨法、射频溅射、溶胶—凝胶法、惰性气体冷凝法等工艺制成纳米颗粒,再由激光压缩、原位加压、热等静压或热压制成大块金属纳米材料。凡能获得纳米粉末的方法一般都会通过后续加工得到大块金属纳米材料。第二种方法为由大变小,是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。使大块非晶变成大块纳米晶材料或利用各种沉积技术获得大块金属纳米材料。

大块金属纳米材料制备技术发展的目标是工艺简单,产量大及适应范围宽,能获得样品界面清洁且无微孔的大尺寸纳米材料制备技术。其发展方向是直接晶化法。实际上今后相当一段时间内块状纳米晶样品制备仍以非晶晶化法和机械合金化法为主[4]。现在需要克服的是机械合金化中微孔隙的大量产生,亦应注意其带来的杂质和应力的影响。今后纳米材料制备技术的研究重点将是高压高温固相淬火,脉冲电流及深过冷直接晶化法和与之相关的复合块状纳米材料制备及研究工作。

2.2 强烈塑性变形法(SPD技术)

强烈塑性变形法(SPD技术)是在不改变金属材料结构相变与成分的前提下,通过对金属材料施加很大的剪切应力而引入高密度位错,并经过位错增殖、运动、重排和湮灭等一系列过程,将平均晶粒尺寸细化到1μm以下,获得由均匀等轴晶组成、大角度晶界占多数的超细晶粒金属材料的一种工艺方法[9]。SPD是一种致力材料纳米化的方法,其特点是利用剧烈塑性变形的方式,在较低温度下(一般<0.4Tm, Tm为金属熔点)使常规金属材料粗晶整体细化为大角晶界纳米晶,无结构相变与成分改变,其主要的变形方式是剪切变形。它不仅是一种材料形状加工的手段,而且可以成为独立改变材料内部组织和性能的一种技术,在某些方面,甚至超过热处理的功效。它能充分破碎粗大增强相,尤其是在促使细小颗粒相均匀分布时比普通轧制、挤压效果更好,显著提高金属材料的延展性和可成形性。在应用方面,到目前为止,通过SPD法取得了纯金属、合金钢、金属间化合物、陶瓷基复合材料等的纳米结构,而且投入了实际应用并获得了认可[3]。譬如,通过SPD法制备的纳米Ti合金活塞,已用于小型内燃机上;通过SPD法制备的纳米Ti合金高强度螺栓,也已广泛应用于飞机和宇宙飞船上。这些零件可以满足高强度、高韧性、较高的疲劳性能的要求,从而大大提高了使用寿。

经过近年的快速发展,人们对采用SPD技术制备金属纳米/超细晶材料已经有了一定的认识。但是,不管是何种SPD法制备纳米材料,目前,还处在工艺可行性分析及材料局部纳米化的实验探索阶段,存在诸如成形效率低、变形过程中出现疲劳裂纹、工件尺寸小、显微组织不均匀、材料纳米化不彻底等问题,对SPD制备纳米/超细晶金属材料的成形机理没有统一的定论。

2.3胶束法

胶束法是控制金属纳米颗粒形状的另一个重要方法[10]。胶束以一小部分增溶的疏水物质或亲水物质形式存在。如果表面活性剂的浓度进一步增大,增溶程度会相应提高。胶束尺寸可增大到一定的范围,此时胶束尺寸比表面活性剂的单分子层厚度要大很多,这是因为内池中的水或者油的量增大的缘故。如果表面活性剂的浓度进一步增大,胶束则会被破坏而形成各种形状,这也为合成不同形状的纳米粒子提供了可能。合成各种形貌的金属纳米颗粒的方法还包括高温分解法、水热法、气相沉积法、电化学法等。其中,高温分解法是在高温下分解前驱体;水热法是一种在高温高压下从过饱和水溶液中进行结晶的方法;气相沉积法是将前驱体用气体带入反应器中,在高温衬底上反应分解形成晶体。这3种方法均可以得到纯度高、粒径可控的纳米粒子,但是制备工艺相对复杂,设备比较昂贵。电化学方法中可采用石墨、硅等作阴极材料,在水相中还原制备不同金属纳米颗粒,也可采用模板电化学法制备金属纳米管、纳米线等不同形貌的纳米材料。这种方法的优点是反应条件温和、设备简单,但目前还没有大规模合成方面的应用。

2.4双模板法制纳米点阵[11]

采用先后自组装、沉积和溶解的方法,制成2种模板,然后在其中空球模板中电化学沉积得到纳米粒子点阵,溶去另外一种模板后得到纳米粒子点阵。这是目前获得粒子均匀排列有序纳米粒子点阵的最有效的方法,关键是如何控制粒子的大小和获得较窄且均匀的粒度分布。

3金属纳米材料的现状分析

纳米技术在生产方式和工作方式的变革中正在发挥重要作用,它对社会发展、经济繁荣、国家安定和人类生活质量的提高所产生的影响无法估量。鉴于纳米技术及纳米材料特别是金属纳米材料在未来科技中的重要地位及产业化的前景一片光明,目前世界上各国特别是发达国家非常重视金属纳米材料,从战略高度部署纳米技术研究,以提高未来10年至20年在国际上的竞争能力。

诺贝尔奖获得者罗雷尔说过:20世纪70年代重视微米研究的国家如今都成为发达国家,现今重视纳米技术和纳米材料的国家极可能成为下世纪的先进国家。最近美国在国家科学技术理事会的主持下,提出“国家纳米技术倡议”:纳米技术将对21世纪的经济、国防和社会产生重大影响,可能与信息及生物技术一样,引导下一个工业革命,应该置其于科技的最优先位置。世界各国制定纳米技术和纳米材料的战略是:以未来的经济振兴和国家的实际需求为目标,牵引纳米材料的基础研究和应用开发研究;组织多学科的科技人员交叉创举,重视基础和应用研究的衔接,重视技术集成;重视纳米材料和技术改造传统产品,提高高技术含量,同时部署纳米技术和纳米材料在环境、能源和信息等重要领域的应用,实现跨越式发展。我国纳米技术和纳米材料始于20世纪80年代末。“八五”期间,纳米材料科学列入国家攀登项目。纳米材料的应用研究自1996年以后在准一维纳米丝纳米电缆的制备等几个方面取得了重大成果。我国约有1万人从事纳米研究与发展,拥有20多条生产能力在吨级以上的纳米材料粉体生产线。生产的纳米金属与合金的种类有:银、钯、铜、铁、钴、镍、铝、钽、银-铜合金、银-锡合金、铟-锡合金、铜-镍合金、镍-铝合金、镍-铁合金、镍-钴合金[4]。

4结束语及展望

随着金属纳米科技的发展,金属纳米材料的制备已日渐成熟,并广泛应用于我们生活的各个方面,金属纳米科学也将成为受人瞩目的学科。但目前还存在一些不足,如在对复杂化学反应过程与机理的探索、金属纳米材料的规模化生产与应用等方面还需要我们进行更加深入和系统的研究。不过,我们有理由相信随着科学技术的不断发展进步,上述金属纳米材料化学制备的新技术和新方法将会得到不断创新与发展完善并将产生新的突破,它们将极大地推动金属纳米材料的规模制备与广泛实际应用,并最终在不久的将来产生较大的社会和经济效益。

今后金属纳米的发展趋势: 1在制备方面,大量的新方法、新工艺不断出现,希望找到产量大、成本低、无污染、尺寸可控的制备方法,为产业化服务。

2实用化研究提到日程上,出现基础研究和应用并行发展的问题,对传统金属材料进行纳米改性,以期获得优良性能。

3日益体现出多学科交叉的特点。纳米结构材料的研究不仅依赖于物理、化学等学科的发展,而且同电子学、生物学、测量学等产生越来越紧密的联系。

参考文献:

[1]GleiterH.Nanocrystalline materials [J].Progress in Materials Science, 1989, 33(4): 223-315.[2]王军丽,史庆南.纳米超细晶材料的制备方法[J].材料导报, 2005, 19(5): 15-19.[3]杨保健,夏琴香,张 鹏.SPD制备纳米/超细晶金属材料的成形方法[J].锻压技术,2011,36(2):48-51.[4]张代东,王钦清.金属纳米材料的发展动态研究[J].科技情报开发与经济,2002,12(5):89-91.[5] 姚素薇,邹毅,张卫国.金纳米粒子的特性、制备及应用研究进展[J].化工进展,2007,26(3):310-313.[6] 田春霞.金属纳米块体材料制备加工技术及应用[J].材料科学与

工程,2001,19(4):127-131.[7] 李景新,黄因慧,沈以赴.纳米材料的加工技术[J].材料科学与工

程,2001,19(4):117-121.[8] 刘建军,王爱民,张海峰.高压原位合成块体纳米镁-锌合金[J].材料研究学报,2001,15(3):299-302.[9] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nano-structured materials from severe plastic deformation [J].Prog.Mater.Sci., 2000, 45(2): 103-189 [10] 刘惠玉,陈 东,高继宁.贵金属纳米材料的液相合成及其表面等离子体共振性质应用[J].化学进展,2006,18(7/8):890-894.[11] 曹立新,屠振密,李宁.电沉积法制备单金属纳米晶材料的研究进展[J].材料保护,2009,42(6):47-52.

第三篇:高分子材料改性用金红石型纳米Tio的制备及表征论文

创先职称论文发表网 www.xiexiebang.com 高分子材料改性用金红石型纳米Tio的制备及表征论文

摘要:金红石型纳米Tio:作为一种性能优异的无机紫外光屏蔽剂和吸收剂,不仅能散射进入材料内部的紫外光,而且还可通过电子跃迁有效吸收紫外光能量,在高分子材料的耐紫外光老化改性领域已获得广泛应用。然而,纳米TIO:颗粒表面易吸收大量经基而显亲水性,导致其与大多数高分子材料相容性差,容易产生聚集和分相。因此,为提高纳米TIO:在高分子材料中的分散性,纳米TIOZ 的表面修饰已成为该领域研究的重点。本文针对当前纳米Tio:粉体先分散再修饰工艺存在的分散及修饰效果不佳的问题,提出在低温下制备金红石型纳米 TIOZ,并在其制备过程后期引入有机表面改性剂进行表面修饰,确保金红石型纳米TIOZ制备和修饰的连续进行,从而减少传统纳米粉体修饰前的预分散过程,实现对纳米TIO:一次粒子的表面修饰,提高纳米TIO:在聚丙烯高分子材料中的分散性(高分子材料改性)。

关 键 词:高分子材料;耐紫外光老化;金红石表面修饰

自20世纪提出高分子材料概念以来,高分子材料在短短几十年间已取得惊人的发展,在日常生活各个领域有着越来越广泛的应用。然而,高分子材料长期暴露于紫外光和含氧大气中,高能量的紫外光可使高分子材料发生分子链断裂或交联,且伴随着生成含氧基团如酮、梭酸、过氧化物和醇,导致材料韧性和强度急剧下降,造成材料过早失效,不但在经济上受到很大损失,导致资源的浪费,甚至因材料的失效分解造成对环境的污染。高分子材料的紫外光老化失效已成为高分子材料应用研究所关注的重要问题之一。高分子材料紫外光老化原理紫外光通过光子所携带的能量作用于高分子材料,激发分子链中活性基团使其发生光解作用,在外界水或氧气等物质存在的条件下,发生光氧化作用,最终导致高分子材料的降解老化。不同的高分子材料对紫外光的敏感程度不同,芳香族聚合物,比如聚胺脂、聚碳酸脂、环氧树脂等,由于分子中含有发色基团对紫外光非常敏感,很容易受紫外光激发降解或光氧化;大部分的脂肪族聚合物和丙烯酸树脂等,分子链中不含发色基团,理论上是不会因吸收紫外光发生降解,但是在加工和制备过程中难免引入添加剂、杂质等,因此在紫外光作用下仍会发生降解。除发色基团外,高分子材料本身的化学结构、加工方法等也是其对紫外光敏感程度的影响因素。下面以最常用塑料之一的聚丙烯塑料受紫外光辐射发生降解为例,说明高分子材料紫外光老化原理: 聚丙烯塑料的光降解老化分为光解作用和光氧化作用两个过程。聚丙烯分子链中,叔碳容易受紫外光激发脱去活泼氢而形成自由基,这是聚丙烯分子链降解的初始活性中心。在氧气存在条件下自由基发生氧化并攻击其它分子链形成氢过氧化物。氢过氧化物不稳定,自发重新排列形成拨基化合物。拨基化合物是新的活性中心,可吸收紫外光发生断裂形成新的自由基对聚丙烯分子产生链式反应破坏。因此,光氧降解老化的最终产物主要是拨基化合物,包括酮类、醋类和酸类,当然老化产物中经基化合物(包括氢过氧化物和醇类)也会增加。高分子材料耐紫外光老化改性方法目前,提高高分子材料耐紫外光老化性能最方便、最经济的方法是添加光稳定剂,光稳定剂的种类很多,按照作用机理可分为四大类

自由基捕获剂自由基捕获剂也就是常用的受阻胺光稳定齐((HALS)。它自身不吸收紫外光,但是可以通过捕获激发态聚合物中的活性自由基、分解氢过氧化物,从而切断光氧化的链式反应起到保护高分子材料的作用。受阻胺光稳定剂含碱性基团使得它的应用领域受到限制,特别是在一些含 第一章绪论酸性组分的高分子材料(如PVC、PC、PMMA等)中不能使用。虽然受阻胺的碱性较低(pH=4.4),但是高温加工过程中能分解成强碱性化合物,创先职称论文发表网 www.xiexiebang.com 使聚合物在发生分解。因此受阻胺光稳定剂被限制在不含酸性组合或在低温下加工成型的聚合物中。

激发态碎灭剂这类光稳定剂本身不具吸收紫外光功能。它的作用是通过分子间的作用把激发态聚合物的能量去除。紫外光作用于高分子材料使其处于不稳定的激发态,为了防止它分解生成自由基对高分子材料产生进一步的破坏,碎灭剂能够从受激聚合物上将激发态消除使之回到低能状态,从而避免了高分子材料的光解作用。目前使用最广泛的碎灭剂主要是一些二价的有机镍络合物,它的有机部分是取代酚和硫代双酚等。该类物质由于含镍而显绿色使其应用场合受到限制,此外有机镍络合物热稳定性差,在加热到时300℃会分解产生黑色物质,更为重要的是生产和处理这类光稳定剂的过程中会排放出重金属离子,对环境造成危害,因此已经被很多国家禁止使用。

紫外光吸收剂这是目前使用最广泛的一类光稳定剂,主要有邻经基二苯甲酮类、苯并三哇类、三傣类、取代丙烯睛类等。这类光稳定剂能够选择性地吸收高能紫外光,使自身分子处于激发态,然后通过自身分子内部的氢键作用使得分子在吸光后发生共振,然后以较低的振动能将所吸收的能量耗散并回到基态,从而起到保护高分子材料的作用。紫外光吸收剂多为小分子有机物,其分子能从试样的中心向表面扩散。在试样的表面创门会因蒸发、滤出和光化学反应的分解而被消耗。此外,紫外光吸收剂的吸光作用是随光程的增加而增大,造成其最大的缺点就是只能对厚样品才有好的保护作用,而对薄膜产品、纤维产品和高分子材料表面的保护则很有限。这类光稳定剂中最具前景的是一些半导体无机物,特别是金红石型TIOZ 在整个紫外光谱内都具有较强的吸光能力。光屏蔽剂光屏蔽剂是利用对紫外光不透明的物质阻止紫外光进入高分子材料内部。通过在紫外光源和高分子材料之间建立一道屏障,使紫外光在照射到高分子材料之前就受到吸收或散射,从而对高分子材料起到保护作用。这类物质主要是炭黑、铁白粉等其它有机或无机颜料。由于颜料具有染色性而使它的使用场合受到一定的限制。此外,颜料在高分子材料中的分散性也是影响它屏蔽紫外光能力的一个重要因素。钦白粉作为最优秀的白色颜料,如果将其颗粒缩小至纳米级别,并能够解决分散性差等问题,它将在高分子材料耐紫外光老化改性领域具有广阔的应用前景。

第四篇:毕业论文-溶胶凝胶法制备纳米二氧化钛

摘要

二氧化钛(Tio2),多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。TiO2可制作成光催化剂,净化空气,消除车辆排放物中25%到45%的氮氧化物,可用于治理PM2.5悬浮颗粒物过高的空气污染。

自20世纪80年代以来,纳米TiO2由于强的吸收和散射紫外线性能,作为优良的紫外线屏蔽剂,用于防晒护肤品、纤维、涂料等领域。本文分别采用沉淀法和溶胶凝胶法制备二氧化钛纳米颗粒,并对其形貌进行检测和分析。关键词:二氧化钛 沉淀法 溶胶凝胶法 纳米 形貌 Abstract titanium dioxide(TiO2),usually used for photocatalyst、cosmetic,can disinfection and sterilization by ultraviolet light,now it developed widely,maybe become a new industry in the future.Tio2 can be made into photocatalyst,make the air clean,eliminate 25% to 45% oxynitride from vehicle emissions.Can be used for the treatment of PM2.5 particles of highair pollution.Since the 1980s,nanoTiO2 because it strong performance of Absorption and scattering of radiation,as a good ultraviolet screening agent, Used to prevent bask in skin care products, fiber, coating, etc.Precipitation method and sol gel method are used to synthesis fabricate TiO2 nano materials in the article, and test and analyze the morphology of production.Key words:TiO2

Precipitation method sol gel method nanometer morphology

第一章 绪论 1.1 引言

纳米 TiO2在结构、光电和化学性质等方而有许多优异性能,能够把光能转化为电能和化学能,使在通常情况下难于实现或不能实现的反应(水的分解)能够在温和的条件下(不需要高温高压)顺利的进行。纳米 TiO2具有独特的光催化性、优异的颜色效应以及紫外线屏蔽等功能,在能源、环保、建材、医疗卫生等领域 有重要应用 前景,是 一种重要的功能材料。1.2 二氧化钛的结构

TiO2在自然界中主要存在三种晶体结构:锐钛矿型(图1a)、金红石型(图1b)和板钛矿型,而金红石型和锐钛矿型都具有催化活性。锐钛矿型TiO2为四方晶系,其中每个八面体与周围8个八面体相连接(4个共边,4个共顶角),4个TiO2分子组成一个晶胞。金红石型TiO2也为四方晶系,晶格中心为Ti原子,八面体棱角上为6个氧原子,每个八面体与周围10个八面体相联(其中有两个共边,八个共顶角),两个TiO2分子组成一个晶胞,其八面体畸变程度较锐钛矿要小,对称性不如锐钛矿相,其Ti–Ti键长较锐钛矿小,而Ti-O键长较锐钛矿型大。板钛矿型TiO2为斜方晶系,6个TiO2分子组成一个晶胞。

1.3二氧化钛的应用

1.3.1基于半导体性质和电学特性的应用领域

TiO2是一种多功能性的化工材料,基于其电磁和半导体性能,在电子工业中有

广泛应用,基于其介电性制造高档温度补偿陶瓷电容器、以及热敏、温敏、光敏、压敏、气敏、湿敏等敏感元件。

TiO2气敏元件可用来检测多种气体,包括H2、Co等可燃性气体和O2。TiO2气敏元件可用作汽车尾气传感器,通过测定汽车尾气中O2含量,可以控制和减少汽车尾气中的CO和NOx的污染,同时提高汽车发动机效率。1.3.2基于紫外屏蔽特性和可见光透明性的应用领域 1.3.2.1防日晒化妆品

纳米TiO2,无毒、无味,对皮肤无刺激,无致癌危险性,使用安全可靠;对UVA和UVB都有很好的屏蔽作用,且可透过可见光;稳定性好,吸收紫外线后不分解、不变色。因此被广泛用于防晒霜、粉底霜、口红、防晒摩丝等。1.3.2.2食品包装材料

紫外线易使食品氧化变质,破坏食品中的维生素,降低营养价值。用含0.1~0.5%纳米TiO2的透明塑料薄膜包装食品,既具透明性,又防紫外线。不仅能从外面看清食品,而且能使食品长时间保存不变质。1.3.2.3透明外用耐久性涂料和特种涂料

当纳米TiO2用于涂料并达到纳米级的分散时,可作为优良的罩光漆,由于其可见光透明性和紫外光屏蔽特性,因而可大大增加其保光、保色及抗老化(耐候性)性能。这种涂料可用于汽车、建筑、木器、家具、文物保护等领域。利用其吸收远红外和抗远红外探测的性能,制造特种涂料用于隐形飞机、隐形军舰等国防工业中。

1.3.3基于光催化性质的应用领域 1.3.3.1光催化合成

利用纳米TiO2优良的光催化活性,在化学工业中可光催化合成NH3,苯乙烯的环氧化等。这方面的工作还处于研究阶段,尚未工业应用。1.3.3.2在能源领域的应用

利用纳米TiO2的光催化活性,可做成太阳能电池(光电池)将太阳能转变为电能。还可以光催化分解水制氢(氢是一种最清洁、无污染,又便于利用的新能源),将太阳能转变成化学能。目前的问题是光利用率和产率太低,需继续研究解决。

1.3.3.3在环保领域的应用

这是最有希望、最有前途的一个领域。纳米TiO2作为光催化剂,在环保领域中的应用是当前研究的一个重点和热门课题。利用它治理污染,具有能耗低,操作简便,反应条件温和,无二次污染等优点。纳米TiO2用于废气处理,可使工业废气脱硝、脱硫和使CO转化为无害的N2、CO2、H2O等,可制造环保用废气转换器。

1.3.4基于颜色效应的应用领域

将纳米TiO2与闪光铝粉和云母钛珠光颜料拼配使用制成的涂料具有随角异色效应,作为金属闪光面漆涂装在小汽车上,将产生富丽雅致的效果。这是纳米TiO2最重要,最有前途的应用领域之一。1.3.5基于表面超双亲性和表面超疏水性的应用

利用玻璃基体上的纳米TiO2涂膜在紫外光照射下具有表面水油超亲合性,可使表面附着的水滴迅速扩散展开成均匀的水膜,从而防雾、防露,维持高度的透明性,不会影响视线,制成建筑物窗玻璃、车辆挡风玻璃、后视镜、浴室镜子、眼镜镜片,测量仪器的玻璃罩等,能保证车辆交通安全和各种用途玻璃的能见度。

又在氟树脂中加入纳米TiO2后,其表面与水的接触角可达160度,显示出超疏水特性,就如同荷叶上的水珠一样,可使之具有防雪、防水滴、防污等特性,从而在某些领域中具有特殊用途。1.4合成制备纳米二氧化钛的方法

近年来,伴随着全球环境污染日益严重,纳米半导体光催化剂材料一直是材料学和光催化学研究的热点。目前,比较简单的半导体光催化剂有TiO2、SnO2、Fe2O3、MoO3、WO3、PbS、ZnS、ZnO 和CdS 等,纳米TiO2因其具有性质稳定、抗光腐蚀性强、耐酸碱腐蚀性强、原料丰富等优点。

目前,制备纳米TiO2粉体的方法有很多,按照所需粉体的形状、结构、尺寸、晶型、用途选用不同的制备方法。根据粉体制备原理的不同,这些方法可分为物理法、化学法和综合法。无论采用何种方法,制备的纳米粉体都应满足以下条件: 表面光洁;粒子的形状及粒径、粒度分布可控;粒子不易团聚;易于收集;热稳 定性好;产率高。

1.4.1物理法

物理法是最早采用的纳米材料制备方法,其方法是采用高能消耗的方式,“强制”材料“细化”得到纳米材料。物理法的优点是产品纯度高。1.4.1.1气相蒸发沉积法

此法制备纳米TiO2粉体的过程为: 将金属Ti 置于钨舟中,在(2 ~ 10)× 102 Pa 的He 气氛下加热蒸发,从过饱和蒸汽中凝固的细小颗粒被收集到液氮冷却套管上,然后向反应室注入5 ×103 Pa 的纯氧,使颗粒迅速、完全氧化成TiO2 粉体。利用该方法制备的TiO2纳米粉体是双峰分布,粉体颗粒大小为14 nm。1.4.1.2蒸发-凝聚法

此法是将将平均粒径为3μm的工业TiO2轴向注入功率为60 kW的高频等离子炉Ar-O2混合等离子矩中,在大约10 000 K的高温下,粗粒子TiO2汽化蒸发,进入冷凝膨胀罐中降压,急冷得到10~50 nm的纳米TiO2。1.4.2化学法

化学法可以根据反应物的物态,将其划分为液相化学反应法、气相化学反应法和固相反应法。此类方法制造的纳米粉体产量大,粒子直径可控,也可得到纳米管和纳米晶须,同时,该法能方便地对粒子表面进行碳、硅和有机物包覆或修饰处理,使粒子尺寸细小且均匀,性能更加稳定。1.4.2.1液相化学反应法

该方法是生产各种氧化物微粒的主要方法,是指在均相溶液中,通过各种方式溶质和溶剂分离,溶质形成形状、大小一定的颗粒,得到所需粉末的前驱体,加热分解后得到纳米颗粒的方法。液相化学法制备纳米TiO2又分为溶胶-凝胶法、水解法、沉淀法、微乳液法等。

溶胶-凝胶法(Sol - gel 法)是以钛醇盐为原料,在无水乙醇溶剂中与水发生反应,经过水解与缩聚过程而逐渐凝胶化,再经干燥、烧结处理即可得到纳米TiO2粒子。此法制得的产品纯度高、颗粒细、尺寸均匀、干燥后颗粒自身的烧结温度低,但凝胶颗粒之间烧结性差,产物干燥时收缩大。

水解法是以TiCl4(化学纯)作为前驱体,在冰水浴下强力搅拌,将一定量的TiCl4滴入蒸馏水中,将溶有硫酸铵和浓盐酸的水溶液滴加到所得的TiCl4水溶 5

液中搅拌,混合过程中温度控制在15 ℃,此时,TiCl4的浓度为1.1 mol /L,Ti4 + /H+ = 15,Ti4 + /SO2 -4 = 1 /2。将混合物升温至95 ℃并保温1 h 后,加入浓氨水,pH 值为6 左右,冷却至室温,陈化12 h 过滤,用蒸馏水洗去Cl-后,用酒精洗涤3次,过滤,室温条件下将沉淀真空干燥,或将真空干燥后的粉体于不同温度下煅烧,得到不同形貌的TiO2粉体。利用该方法制备的TiO2粉体,粒径仅为7 nm,且晶粒大小均匀。在制备过程中探讨了煅烧温度对粉体的影响,水解反应机理、水解温度对结晶态的影响,硫酸根离子对粉体性能的影响等问题。

沉淀法是向金属盐溶液中加入某种沉淀剂,通过化学反应使沉淀剂在整个溶液中缓慢地析出,从而使金属离子共沉淀下来,再经过过滤、洗涤、干燥、焙烧而得到粒度小分布窄、团聚少的纳米材料。赵旭等采用均相沉淀法,以尿素为沉淀剂,控制反应液钛离子浓度、稀硫酸及表面活性剂十二烷基苯磺酸钠的用量,制备的粒子为20 ~ 30 μm 球型TiO2粒子,该粒子晶体粒径在纳米范围内5 ~ 208 nm。

微乳液法是近年来发展起来的一种制备纳米微粒的有效方法。微乳液是利用两种互不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相制备纳米材料的方法。乳液法可使成核、生长、聚结、团聚等过程局限在一个微小的球形液滴内形成一个球形颗粒,避免了颗粒之间进一步团聚。1.4.2.2 气相化学反应法

气相热解法。该方法是在真空或惰性气氛下用各种高温源将反应区加热到所需温度,然后导入气体反应物或将反应物溶液以喷雾法导入,溶液在高温条件下挥发后发生热分解反应,生成氧化物。1992 年日本Tohokuoniuemi - tu 采用高频感应喷雾热解法以钛氯化物(如TiCl4)为原料制备得到四方晶系纳米TiO2 粉末。

气相水解法。日本曹达公司和出光产公司制备纳米氧化钛采用的技术方法主要是以氮气、氦气或空气等作载体的条件下,把钛醇盐蒸汽和水蒸气分别导入反应器的反应区,在有效反应区内进行瞬间混合,同时快速完成水解反应,以反应温度来调节并控制纳米TiO2的粒径和粒子形状。此制备工艺可获得平均 6

粒径为10 ~ 150 nm,比表面积为50 ~ 300 m2 /g 的非晶型纳米TiO2。该工艺的特点是操作温度较低,能耗小,对材质纯度要求不是很高,并在工业化生产方面容易实现续化生产。其主要化学反应为:

nTi(OR)4(g)+ 4nH2O(g)→nTi(OH)4(S)+ 4nROH(g)

nTi(OH)4(S)→nTiO2·H2O(s)+ nH2O(g)

nTiO2·H2O(s)→nTiO2(s)+ nH2O(g)1.4.3综合法 1.4.3.1 激光CVD 法

该方法集合了物理法和化学法的优点,在80 年代由美国的Haggery 提出,目前,J David Casey 用激光CVD 法已合成出了具有颗粒粒径小、不团聚、粒1.4.3.2 等离子CVD 法

该方法是利用等离子体产生的超高温激发气体发生反应,同时利用等离子体高温区与周围环境巨大的温度梯度,通过急冷作用得到纳米颗粒。该方法有两个特点:

(1)产生等离子时没有引入杂质,因此生成的纳米粒子纯度较高;(2)等离子体所处空间大,气体流速慢,致使反应物在等离子空间停留时间长,物质可以充分加热和反应。1.5本课题研究的目的和意义

如上所述,纳米二氧化钛以其特殊的性能和广阔的发展前景引起科学家们的广泛关注。以其独特的表面效应、小尺寸效 应、量子尺寸效应和宏观量子效应等性质,而呈现出许多奇异的物理、化学性质,使其在众多领域具有特别重要的应用价值和广阔的发展前景。纳米二氧化钛是20世纪80年代末发展起来的一种新型无机化工材料,它具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能,纳米TiO2是当前应用前景最为广泛的一种纳米材料, 具有很强的吸收紫外线能力, 奇特的颜色效应, 较好的热稳定性, 化学稳定性和优良的光学、电学及力学等方面的特性。其中锐钛矿型具有较高的催化效率, 金红石型结构稳定且具有较强的覆盖力、着色力和紫外线吸收能力。因而倍受国内外研究学者的关注。

纳米TiO2具有许多优异的性能,不仅具有优异的颜料特性——高遮盖率、高消 7

色力、高光泽度、高白度和强的耐候性外,还具有特殊的力学、光、电、磁功能;更具有高透明性、紫外线吸收能力以及光催化活性、随角异色效应。特别是随着环境污染的日益严重,纳米TiO2高效的光催化降解污染物的能力而成为当前最为活跃的研究热点之一。而其独特的颜色效应、光催化作用及紫外线屏蔽等功能,在汽车工业、防晒化妆品、废水处理、杀菌、环保等方面一经面世就备受青睐。

今年来随着各种技术的发展,纳米TiO2已应用在多种领域中,但由于其在环境治理中有其独特的优点,所以其在环保领域会更有大发展。

众所周知,二氧化钛的组成结构、尺寸大小和形貌特征等因素对其性质影响较大,实现二氧化钛的应用不仅需要充分发挥其本征性质,还可以通过尺寸和形貌控制对其性质进行调控。本文主要是研究使用不同制备方法,在不同条件下制备不同形貌的纳米二氧化钛。第二章 原材料及表征 2.1试剂及仪器 2.1.1主要试剂

本实验中,所使用的主要试剂如表2.1所示

所有试剂均未经进一步的处理,实验所用水为蒸馏。2.1.2主要实验仪器

表2.2所示是本实验中所用主要仪器设备及测试所用的大型仪器。2.2样品的表征

扫描电子显微镜的基本结构如图2.1所示,扫描电子显微镜以炽热灯丝所发射的电子为光源,灯丝发射的电子束在通过栅极之后,聚焦成电子束。在加速电压作用下,通过三个电磁透镜组成的电子光学系统,之后汇聚成直径约几十个埃的电子束照射到被观测样品表面。电子束与样品作用,产生不同的电子其其他射线,如二次电子、背散射电子、透射电子、吸收电子及X射线等。这些信号在经收集器吸收后,传输到放大器,经放大器放大,送至显像管,显示出样品的形貌。在扫描电子显微镜表征样品表面形貌时,用来成像的信号主要是二次电子,所谓二次电子,就是指电子束光源与样品作用,样品中的价电子受激发而脱离出来的电子。本实验中,采用中国科仪公司的KYKY-2800B型的扫描 8

电子显微镜对对样品的表面形貌进行表征,扫描电子显微镜的加速电压为20KV。

第三章 沉淀法制备纳米二氧化钛 3.1制备过程

第五篇:报告题目基于硅刻蚀化学的介孔氧化硅空心纳米粒子的可控制备及应用研究

报告题目:基于硅刻蚀化学的介孔氧化硅空心纳米粒子的可控制备及应用研究

& 科研工作中的一些心得

摘要:介孔材料由于具有大的比表面积、高的孔容和均匀可调的孔径,在催化、吸附分离、能源、生物医药等领域显示出良好的应用前景。特别是具有空腔结构的介孔氧化硅空心纳米粒子,可以有效地提高客体药物分子的负载量,减少载体的使用量和给药频率,因此具有更高的生物安全性。此外,该纳米粒子可以作为纳米反应器在纳米催化领域中显示出良好的性能。该报告基于简单的硅刻蚀化学调控介孔氧化硅空心纳米粒子的形貌、组成、粒径、孔径等关键结构参数,并简要介绍其在药物共输运、分子影像、逆转肿瘤细胞耐药性、抑制肿瘤细胞转移、HIFU增效等领域中的应用。此外,该报告结合报告人的科研工作实际,从科研选题、文献阅读/整理、数据整理/分析、软件使用、论文撰写、论文修改、生物材料类论文写作规律等方面分享一些心得和体会。

陈雨:男,博士,助理研究员,中科院青年创新促进会会员。1984年7月出生,2012年7月于中国科学院上海硅酸盐研究所博士毕业。目前在中科院上海硅酸盐研究所高性能陶瓷与超微结构国家重点实验室主要从事纳米介孔主客体复合材料的控制合成及其在生物医药领域的应用和纳米生物学效应研究。荣获2012中科院院长特别奖、2012上海市优秀毕业生、2012上海硅酸盐研究所“撷英”青年学术报告一等奖、2009和2012中科院三好学生称号、2011中科院三好学生标兵称号、2010中科院上海硅酸盐研究所严东生奖学金特等奖、2011上海市高校学生创造发明三等奖、2011宝钢优秀学生奖、2010-2012研究生创新成果培育计划、2012中科院上海硅酸盐研究所“首届青年学术海报大赛”二等奖、2012第一届国际超声分子影像学研讨会中青年论坛优秀论文奖。共发表SCI论文46篇。其中以第一作者在Angew.Chem.Int.Ed., Advanced Materials, ACS Nano, Advanced Functional Materials, Biomaterials, Small等材料和化学类期刊上发表14篇SCI论文。此外,作为合作者在J.Am.Chem.Soc., Adv.Mater., Biomaterials, Chem.Eur.J., J.Mater.Chem., Clin.Breast Cancer, Micro.Meso.Mater.等SCI期刊上发表论文32篇。论文被引用670余次(单篇最高引用>100次,H因子为15)。申请国家发明专利4项,授权1项。参与编著了《纳米孔材料化学》一书。

(1)Adv.Mater., 2013, 25, 3144-3176.(2)Adv.Mater., 2013, 25, 3144-3176.(Back cover story)

(3)Adv.Porous.Mater., 2013, 1, 34-62.(4), Y.Gao, H.Chen, D.Zeng, Y.Li, Y.Zheng, F.Li, X.Wang, F.Chen, Q.He, L.Zhang and J.Shi, Adv.Funct.Mater., 2012, 22, 1586-1597.(5)Biomaterials, 2012, 33, 2388-2398.(6).Zheng, Y.Sun, H.Qu, Z.Wang, Y.Li, X.Wang, K.Zhang, L.Zhang and J.Shi, Biomaterials, 2012, 33, 7126-7137.(7).Sun, Y.Zheng, D.Zeng, F.Li, S.Zhang, X.Wang, K.Zhang, M.Ma, Q.He, L.Zhang and J.Shi, Angew.Chem.Int.Ed., 2011, 50, 12505-12509.(8)ACS Nano, 2010, 4, 529-539.(9).Tian, F.Chen, J.Feng and J.Shi, ACS Nano, 2010, 4, 6001-6013.(10)Adv.Funct.Mater., 2011, 2, 270-278.(11).Zhou, H.Chen, F.Chen, Q.He, Y.Zhang, L.Zhang and J.Shi, Small, 2011, 7, 2935-2944.(12)J.Mater.Chem., 2011, 21, 5290-5298.(13)Y.Gao†, †, X.Ji, X.He, J.Shi and Y.Li, ACS Nano, 2011, 5, 9788-9798.(†共同第一作者)

(14)J.Nanosci.Nanotechno., 2011, 11, 10844-10848.

下载毕业论文 纳米Fe3O4粒子的制备及其表面改性研究进展word格式文档
下载毕业论文 纳米Fe3O4粒子的制备及其表面改性研究进展.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐