第一篇:小论文纳米材料
碳纳米管在有机太阳能电池中的应用
摘要:碳纳米管是一种重要的纳米材料,讨论了碳纳米管在有机太阳能电池的光活性层及透明电极两方面的应用,综述了碳纳米管独特结构、性质对其在电池器件性能的影响,并在此基础上,提出了碳纳米管研制工艺的改良方法,展望了碳纳米管基有机太阳能电池今后的发展趋势。
关键词:碳纳米管;太阳能电池;应用
Application of Carbon Nanotube in Organic Solar Cells Abstract:Carbon nanotube(CNT)is an important nano2 material.Discusses the application of CNT in the photoactive layer and the trans parent electrode of organic solar cells.The relationship be ween its special structure, properties and the performance of organic photovoltaic devices is summarized.On the basis of this discussion, The improved methods of Carbon nanotube technology to develop and the research trends of CNT based organic solar cells are proposed.Key words:Carbon nanotube;solar cells;application
太阳能电池的核心部件是光电转化器,如果某类太阳能电池的光电转化器由有机材料构成,则此类太阳能电池通常被称为有机太阳能电池。实验证明,有机太阳能电池的光电转化效率由有机半导体中激子的分离效率决定,因此,选择合适的有机半导体材料将成为有机光电转化器制备的关键,进而,寻找并运用具有半导体性质的有机材料必将成为有机太阳能电池研究的重点。
事实上,自从1991年日本电气公司(NEC)首席研究员饭岛(S.Iiji ma)博士首次发现碳纳米管(Carbon nanotubes, CNTs)以来,这种具有半导体特性的有机材料就和有机太阳能电池研究结下了不解之缘。它规则的微观结构和纳米尺寸使人们相信它具有某些特殊的物化性质,这些性质使它有条件应用于光电领域并成为成本低廉的大面积器件制作材料。研究表明,上述预测是有根据的,碳纳米管目前已在有机太阳能电池的光活性层、透明电极等方面得到成功应用,为承前启后,本文集中相关成果对此进行叙述。
碳纳米管的结构及其半导体性质
碳纳米管又称巴基管,属富勒碳系,是饭岛博士利用碳电弧放电法合成“巴基球”(C60)时首次发现的。它是由单层或多层石墨片卷曲而成的无缝、中空的纳米级管。每片纳米管是1个碳原子通过SP2杂化与周围3个碳原子完全键合而成,表现为六边形平面组成的圆柱面。根据碳纳米管中碳原子层数的不同,碳纳米管大致可以分为单壁碳纳米管(SWNTs)和多壁碳纳米管(MWNTs)2类.SWNTs由单层碳原子绕合而成,结构具有较好的对称性与单一性。宏观形态的 SWNTs在通常情况下是成束出现的,而MWNTs则一般不成束,所以与MWNTs不同,S WNTs研究生课程考试答题纸
产生了3种不同层次的孔径结构:纳米尺度的开口中空管腔(0.4~5nm)、碳纳米管束中管间的狭长孔隙(约0.4 nm)和碳纳米管束之间形成的堆积孔(约100nm),而MWNTs一般只具有2种孔径结构,即纳米级的中空管内腔(3~4nm)和尺度较大的管间堆积孔(20~40 nm)。
碳纳米管的结构决定其具有非凡的半导体性质。其中,高出任意一种高导电分子若干个数量级的导电率尤其值得称道,这种导电率甚至可以和铜、硅相媲美.实验表明,2类碳纳米管中,单壁碳纳米管易于接受电子,其导电性介于半导体和金属之间且随管身的手性角度及直径改变而改变,当接受电子后,电子通常沿管轴以近乎理想的条件传输;多壁碳纳米管则呈圆柱形多层石墨片层结构,最外层的壳决定其表现为金属或半导体特性,除具有电子受体的性质外,它的高与长径比也完美地契合了电荷沿着管轴的迁移;
实际应用中,单壁碳纳米管可用于电极制作或与共轭高分子掺杂形成本体异质结以充当器件活性层,多壁碳纳米管则可用作半透明、柔性的空穴收集极。除导电率之外,碳纳米管中还具有优异的力学性能、热性能和环境耐受力。所有这些非凡的半导体性质使碳纳米管作为碳材料中的优秀代表被应用于有机太阳能电池制造中。
碳纳米管在有机太阳能电池中的应用
2.1 碳纳米管在有机太阳能电池活性层中的应用
碳纳米管在有机太阳能电池活性层中的应用主要体现在纳米活性层和光活性层2个方面。其中,纳米活性层的活动形态对有机太阳能电池的光电转换效率有重要影响。之前IMEC公布的P3HT:PCBM结构太阳能电池的发电效率虽已接近5%,但对于目前的市场来说,其寿命还相对太短。实践证明,基于有机半导体材料的太阳能电池在长时间使用之后性能下降,究其原因,是由于有机混合物分离成不同状态最终导致光电转换率的下降。IMEC指出,这种状态分离与有机聚合物的活动性相关,一旦稳定其活动形态,则可延长电池的使用寿命。IMEC/I MOMEC实验发现,采用新共轭聚合物与碳纳米管结合的有机太阳能电池在使用100h之后,效率保持不变,太阳能电池的使用寿命也大大提高,而其发电效率提升近4%。
同时,为了将共轭高分子的物化性质与碳纳米管的长程电荷传输特性结合起来,以获得高效性优的有机太阳能器件,人们将碳纳米管分散到光活性层。虽然将碳纳米管作为以ITO为基底的太阳能器件的电子受体材料已获得了令人欣喜的性能,但将碳纳米管分散到光活性基底却并非易事。从有机太阳能电池电流产生机理出发,不难看出,控制电子受体碳纳米管和电子给体共轭高分子均一的掺杂对总能量转换效率至关重要,因此,以往的实验中研究人员总是先将碳纳米管纯化,然后与聚合物基底掺杂形成聚合物纳米管器件,并期望聚合物纳米管器件的能量转换效率能得到显著提高。Kymakis等人报道了基于单壁碳纳米管与共轭高分子聚三辛基噻吩[poly(32octylthi ophene)](P3OT)混合物制作光电器件的成果。成果表明,将单壁碳纳米管加入到P3OT基底中会使光电流增加2个数量级,Kymakis等人认为聚合物2纳米管结处电荷的
第1页 研究生课程考试答题纸
分离和纳米管孔道有效的电荷传输是使电流增加的主要原因。
然而,并非所有实验都如人所愿,当Pradhan等人通过物理方法将功能化多壁碳纳米管掺杂到聚三己基噻吩(P3HT)中,希望通过以提供附加的分离位来增加P3HT2MWNT/C60双层器件的空穴传输能力时,在100mWcm-2的白光照射下,器件却仅得到了相当低的能量转换效率。究其原因,Pradhan等人认为这可能是由于双层结构中供体给体界面激子分离困难和C60层低效率的电子传输造成的。后期跟踪研究表明,聚合物纳米管器件的状态常常表现为亚稳态,在100mWcm-2的白光照射下,Pradhan等人的器件仅得到了0.01%的能量转换效率,光电效率也仅仅达到0.25mA /cm2~0.5 mA / cm2。为此,研究人员希望通过改良聚合物纳米管器件来提高它的效率。因此,人们认为电荷的复合是限制聚合物纳米管器件效率的主要因素。与 PCBM比较,碳纳米管仅是无序地分散在P3HT基底上,使复合几率增加,激子分离不完全,特别在碳纳米管为低浓度(单壁碳纳米管1.0 wt%,多壁碳纳米管5.0wt%)的条件下,激子的分离更不完全。起初,研究人员试图通过在聚合物基质中溶解更多的碳纳米管来解决这一问题,但事与愿违,当聚合物基质中溶解更多的碳纳米管后效率反而降低了,如果碳纳米管的长度与光电层总的厚度相当时,将单壁碳纳米管以更高的百分比掺杂到聚合物基底中甚至可能会导致短路。几经尝试,研究人员不得不通过提高碳纳米管的纯化程度并调配基底聚合物的掺杂比例的方法来解决问题,事实证明,这条途径是有效的,近期实验结果表明,通过提高纯化程度和调配掺杂比例,碳纳米管复合物在光照下的状态可提高16%。
除分散到光活性基底外,碳纳米管在聚合物基底中的均一分布也是亟待解决的问题。通常,解决这一问题采用的方法是LBL(layer2 by2layer)方法,主要包括LBL沉积、LBL电泳和LBL旋涂等。简单的说,LBL就是在基底上逐层沉积,是一种技术难度为大众所接受的方法。目前,LBL技术已经从单壁碳纳米管应用拓展到双壁碳纳米管,多壁碳纳米管和薄2多壁碳纳米管,其中,薄2多壁碳纳米管表现出最佳的太阳能性能,该电子受体层材料的最高IPCE值达1.9%。2.2碳纳米管在有机太阳能电池透明电极中的应用
透明电极是有机太阳能器件的必备部件,目前,制作电极的主要材料则是旋涂有40 nm厚 PEDOT: PSS层的ITO(氧化铟锡),涂层PEDOT: PSS的作用是选择性地将空穴注入电极并润滑 ITO表面,以便降低针孔密度且抑制漏电流。虽然ITO制作透明电极的使用已经普及,且优化的ITO/PEDOT: PSS/P3HT: PCBM /Al有机太阳能器件效率能达到10.6 mA / cm2,但在高沉积温度(约600 ℃)条件下,ITO与柔性基底相容困难,且机械性能差,容易破碎,因此开发高质量的ITO成为有机太阳能器件研究中迫切需要解决的问题。事实证明高质量的ITO是可以开发的,但却难以推广,因为高质量的ITO成本昂贵且主要成分铟具有毒性,因此,开发ITO的替代品并使之商业化成为了另一出路,通过寻找,在导电、透光和柔性等方面都呈现良好的特性的碳纳米管脱颖而出。
2.2.1柔性 单壁碳纳米管膜与脆ITO相比,高度柔软且不易发生蠕变,究其原因,聚乙烯基对苯二甲酸盐上的单壁碳纳米管膜在混合后不会裂缝,而ITO混合后则会变得生硬。因此,人们通常将碳纳米管分散于供电子共轭高分子溶液(如P3HT,P3OT)中,并将混合溶液旋涂于透
第2页 研究生课程考试答题纸
明电极表面以形成能代替氧化物薄膜和铂薄膜的碳纳米管薄膜(膜厚可达60~120nm)。在已有的多种碳纳米管薄膜制作方法中(如溅射、旋涂、浇铸、L2 B沉积等),将一种溶剂以胶膜的形式从滤膜传到透明基底上是获得柔性透明薄膜的最佳方法。这种可谓高效而实用,高效是指碳纳米管在溶剂中溶解充分且分散均匀,实用则是指溶剂移除简便,只需通过简单润洗即可。2.2.2导电性
碳纳米管薄膜在导电性方面同样表现优异.研究证实,单壁碳纳米管功函数的取值范围是4.8~4.9eV,而ITO的取值范围仅为4.6~4.7eV,换句话说,如果ITO的功函数都足以满足有效空穴收集的话,那单壁碳纳米管则更不在话下。
2.2.3透光性
虽然许多透明的导电材料在光谱中的可见光区是透明的,但仅有一部分材料在红外光区仍保持好的透光性和导电性,而单壁碳纳米管正是佼佼者之一。实验发现,单壁碳纳米管的电阻值为100Ohm sq-1,高于典型的ITO片的电阻(10 Ohm sq-1),且具有宽的光谱范围,从紫外2可见延伸至远红外区都具有很高的透光性,显然,由单壁碳纳米管组成的网络将具有更高的光电转换效率。
除此之外,碳纳米管还具有较高的热传导性,抗热分解性和抗光照性(即使在空气中)。所以,与目前的ITO器件相比,碳纳米管薄膜作为透明电极的制作材料将更具竞争力。
碳纳米管研制工艺的改进
以上事实均可说明,碳纳米管在有机太阳能电池领域有着广泛的应用,但如何提高碳纳米管的研制工艺仍是一个值得深究的问题,对此,笔者认为应从分离、变短、纯化几个关键步骤着手考虑。(1)分离·分离的目的是将溶剂或混合物中的碳纳米管束散开,并由此获得更小的复合膜,从而尽量保证膜厚小于平均激子扩散长度。分离过程需要重点考虑膜结构的优化,优化后的膜结构将对激子和载流子损失的控制产生至关重要的作用,为此,笔者建议使用N2甲基222吡咯烷酮,此化合物的强离析性将膜结构优化及膜形态保持起到积极作用。(2)变短·之所以要变短,是因为与长的碳纳米管相比,短的碳纳米管具有较小的范德华力,更易于开束和加工,变短的主要手段是对合成碳纳米管常用的化学气相淀积方法进行改进,而改进是关键则是在化学气相淀积过程中加入抗氢和抗硫化物质,抗氢和抗硫化物质可以阻止长碳纳米管束的生成,并且改善碳纳米管束的排列规则。(3)纯化·纯化是使碳纳米管产生沉积,并为共沉积聚合物提供最佳的前线轨道能级补偿,对电子传输效率而言,取向碳纳米管优于无序分散的碳纳米管,垂直定向阵列则表现出更强的载流子传输性能[10]。对此,笔者认为,采用强酸对定向碳纳米管进行氧化处理,改变纳米粒子表面的性质,使其表面具有有机活性,从而抑制纳米粒子间的团聚,这将大力改善碳纳米管在聚合物中的分布。研究表明,采用超声波分散,经强酸氧化,碳纳米管分散性较好;纯化后的碳纳米管表面引入了有机基团;电镜分析表明,碳纳米管呈单管分散在基体中;溶液为碱性状态下,碳纳米管分散性最优。
第3页 研究生课程考试答题纸
小结
综上所述,碳纳米管在有机太阳能电池的光活性层及透明电极等方面具有重要应用价值,如果能深入研究碳纳米管的结构及其物化性质,挖掘其特性对有机太阳能电池器件的影响,并在此基础上改良碳纳米管的研制工艺,则可使碳纳米管成为有机太阳能电池器件制作的理想材料。可以预见,碳纳米管必将在有机太阳能电池及相关光电领域产生重大作用。
【 参考文献】
[ 1 ] II J I MA S.Helicalmicr otubules of graphitic carbon[ J ].Nature, 1991, 354: 562-58.[ 2 ] EBBESEN TW, H I RUA H, FUJ IT A J.Patterns in the bulk growth of carbon nanotubes[ J ].Chem PhysLett, 1993, 209(1-2);83-90.[ 3 ] D I LLON A C, JONES KM, BEKKEDAHL T A, et al.Storage of hydrogen insing2 walled carbon nanotubes[ J ].Nature, 1997,386: 377-379.[ 4 ] YE Y, AHH C C, W ITHAM C, et al.Hydrogen adsorption and cohesive energy of single2 walled carbon nanotubes [ J ].AppPhys Lett , 1999, 74(16): 2307-2309.[ 5 ] CHEN P, WU X, L I N J , et al.High H2up take by alkali2 doped carbon nanotubes under ambient pressure and moderate temperature[ J ].Science, 1999, 285: 91-93.[ 6 ] ANG L M, HOR T S, XU G Q, et al.Decorati on of activated carbon nanotubes with copper and nicke [ J ].Carbon, 2000, 38(3): 363-372.[ 7 ] K ONG F Z, ZHANG X B, XI ONGW Q, et al.ContinuousNi-layer onmulti wall carbon nanotubes by an electroless platingmethod [ J ].Surface and Coating Technology, 2002, 155(1);33-36.[ 8 ] LEROUX F, METEN IER K, G AUTIER S, et al.Electrochemical inserti on of lithium in catalytic multi2 walled carbon nanotubes[ J ].J Power Sources, 1999, 81-82: 317-322.[ 9 ] CLAYE A S, F ISCHER J E, HUFFMAN C B, et al.Solid2state electro-chemistry of the L i single wall carbon nanotube system[ J ].J Elec-trochem Soc, 2000, 14(8): 2845-2852.[ 10 ] L I U C, FAN Y Y, L I UM, et al.Hydrogen storage in single2 walled car2 bon nanotubes at room temperature[ J ].Science, 1999,第4页
第二篇:纳米薄膜小论文
纳米技术在薄膜中的应用与发展
摘要:近年来纳米技术的发展研究是一个热烈的话题,受到了广泛的关注。而纳米薄膜材料是一种新型材料,由于其特殊的结构特点,时期作为功能材料和结构材料都具有良好的发展前景。本文简单介绍了纳米薄膜材料的性能、制备方法,应用领域等几个方面,为初步认识和了解纳米薄膜材料有推动作用。
关键字:纳米技术,薄膜,材料
纳米技术在今天已经不是个陌生的话题,所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项技术。这是21世纪最有竞争力的技术之一。科学家们在研究微观粒子结构与性能过程中,发现在纳米尺度下的原子或分子,可以表现出许多新的特性,而利用这些特性制造具有特定功能的设备与仪器,能够在改善人们的日常生活中起到相当显著的作用。纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。而我所研究的是纳米技术在薄膜中的部分应用与其今后发展。新型薄膜材料对当代高新技术起着重要的作用,是国际上科学技术研究的热门学科之一。
1.纳米薄膜材料概述
纳米薄膜是一类具有广泛应用前景的新材料, 按用途可以分为两大类,即纳米功能薄膜和纳米结构薄膜。前者主要是利用纳米粒子所具有的光、电、磁方面的特性,通过复合使新材料具有基体所不具备的特殊功能。后者主要是通过纳米粒子复合, 提高材料在机械方面的性能。由于纳米粒子的组成、性能、工艺条件等参量的变化都对薄膜的特性有显著影响, 因此可以在较多自由度的情况人为地 控制纳米复合薄膜的特性, 获得满足需要的材料。纳米多层膜指由一种或几种金属或合金交替沉积而形成的组分或结构交替变化的合金薄膜材料, 且各层金属或合金厚度均为纳米级, 它也属于纳米薄膜材料。多层膜的主要参数为调制波长,指的是多层膜中相邻两层金属或合金的厚度之和。当调制波长比各层薄膜单晶的晶格常数大几倍或更大时,可称这种多层膜结构为超晶格薄膜。组成复合薄膜的纳米粒子可以是金属、半导体、绝缘体、有机高分子等材料,而复合薄膜的基体材料可以是不同于纳米粒子的任何材料。人们采用各种物理和化学方法先后制备了一系列金属/绝缘体、半导体/绝缘体、金属/半导体、金属/高分子、半导体/高分子等纳米复合薄膜。特别是硅系纳米复合薄膜材料得到了深入的研究,人们利用热蒸发、溅射、等离子体气相沉积等各种方法制备了Si/SiOx、Si/a-Si:H、Si/SiNx、Si/SiC等纳米镶嵌复合薄膜。尽管目前对其机制不十分清楚,却有大量实验现象发现在此类纳米复合薄膜中观察到了强的从红外到紫外的可见光发射。由于这一类薄膜稳定性大大高于多孔硅,工艺上又可与集成电路兼容,因而被期待作为新型的光电材料应用于大规模光电集成电路。
由于纳米薄膜的纳米相粒子的量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效 应等使得它们的光学性能、电学性能、力学性能、催化性能、生物性能等方面呈现出常规材料不具备的特性。因此,纳米薄膜在光电技术、生物技术、能源技术等各个领域都有广泛的应用前景。现以纳米薄膜材料在润滑方面的作用为例介绍它们的特性及其应用。
2.纳米薄膜的制备方法
纳米薄膜的制备方法按原理可分为物理方法和化学方法两大类。粒子束溅射沉积和磁空溅射沉积,以及新近出现的低能团簇束沉积法都属于物理方法;化学气相沉积(VCD)、溶胶-凝胶(Sol-Gel)法和电沉积法属于化学方法。2.1离子束溅射沉积
使用这种方法制备纳米薄膜是在多功能离子束辅助沉积装置上完成。该装置的本底真空度为 0.2MPa, 工作气压为 7MPa。沉积陶瓷材料可以通过使用3.2KeV/100mA 的 Ar+ 离子束溅射相应的靶材沉积得到, 而沉积聚四氟乙烯材料需要使用较小的束流和束压(15KeV/30mA)。沉积陶瓷材料时的速率为6nm/min, 沉积金属和聚四氟乙烯材料时的速率为 12nm/min。2.2磁控溅射沉积
磁控溅射沉积法制备薄膜材料是在磁控溅射仪上实现的, 其真空室中有三个阴极靶(一个直流阴极, 两个射频阴极), 三个阴极可分别控制。首先将溅射材料安装在射频阴极上, 通过基片架转动, 基片轮流在两个射频靶前接受溅射原子, 控制基片在各靶前的时间, 即可控制多层膜的调制波长。同时在真空室内通入一定压力的气体, 可以作为保护气氛, 或与溅射金属原子反应生成新的化合物, 沉积到基片上。此外在基片高速旋转的条件下, 还可制备近似均匀的复合薄膜。磁控溅射法具有镀膜速率易于控制, 稳定性好, 溅射材料不受限制等优点。2.3低能团簇束沉积法
低能团簇束沉积方法是新近出现的一种纳米薄膜制备技术。该技术首先将所沉积材料激发成原子状态, 以 Ar、He 作为载气使之形成团簇, 同时采用电子束使团簇离化, 利用质谱仪进行分离, 从而控制一定质量、一定能量的团簇沉积而形成薄膜。在这种条件下沉积的团簇在撞击表面时并不破碎, 而是近乎随机分布;当团簇的平均尺寸足够大, 则其扩展能力受到限制, 沉积薄膜的纳米结构对团簇尺寸具有很好的记忆特性。2.4电沉积法
电沉积法可以制得用喷射法不能制得的复杂形状,并且由于沉积温度较低, 可以使组分之间的扩散程度降到最低。匈牙利的Eniko TothKadar 利用交流脉冲电源在阴极镀制纳米晶 Ni膜, 试样制备与普通电镀相同, 电镀时电流保持不变, idep = 20Adm-2, 脉冲电流通电时间 ton ,断电时间 toff在 0.001,0.01,0.1, 1, 10s 之间变化。
此外用电沉积法在 AISI52100 钢基体上制得铜-镍多层膜, 试样预先淬硬到 HRC62 左右, 然后抛光清洗,进行电沉积, 镀铜时电压 u = 1600mV, i = 0.881mA cm-2 , 镀镍时电压 u = 600mA, i = 22.02mA cm-2。2.5胶体化学法
采用溶胶-凝胶法制备纳米薄膜,首先用化学试剂制备所需的均匀稳定水溶胶, 然后将溶胶滴到清洁的基体上,在匀胶机上匀胶, 或将溶胶表面的陈化膜转移到基体上, 再将薄膜放入烘箱内烘烤或在自然条件下干燥, 制得所需得薄膜。根据制备要求的不同, 配制不同的溶胶, 即可制得满足要求的薄膜。用溶胶-凝胶法制备了纳米微孔 SiO2薄膜和 SnO2纳米粒子膜。
此外,还有用这种方法制备 TiO2/SnO2 超颗粒及其复合 LB(Langmuir-Blodgett)膜、SiC/AIN 膜、ZnS/Si 膜、CuO/SiO2 膜的报道。2.6化学气相沉积法
在电容式耦合等离子体化学气相沉积(PCVD)系统上, 用高氢稀释硅烷和氮气为反应气氛制备纳米硅氮(Nc-SiNx:H)薄膜。其试验条件为: 电极间距 3.2cm,电极半径 5cm。典型的沉积条件为: 衬底温度 320℃, 反应室压力为 100Pa, 射频功率为70W SiH4/H2的气体流量比为 0.03, N2/SiH4的气体流量比为 1~10。
此外,还有用化学沉积法制备 Fe-P 膜, 射频溅射法制备 a-Fe/Nd2Fe4B 多层膜, 热化学气相法制备 SiC/Si3N4膜的报道。
3.纳米薄膜的应用领域
3.1纳米光学薄膜
利用纳米薄膜吸收光谱的蓝移与红移特性,人们已制造出了各种各样的紫外吸收薄膜和红外反射薄膜,并在日常生产、生活中取得应用。如在平板玻璃的两面镀制的Ti02纳米薄膜,在紫外线作用下,该薄膜可分解沉积在玻璃上的有机污物,氧化室内有害气体,杀灭空气中的有害细菌和病毒;在眼镜上镀制的TiO2 纳米粒子树脂膜或Fe2O3纳米微粒聚醇酸树脂膜,可吸收阳光辐射中的紫外线,保护人的视力;在灯泡罩内壁涂敷的纳米SiO2和纳米TiO2 微粒多层干涉膜,灯泡不仅透光率好,而且具有很强的红外线反射能力,可大大节约电能等。此外,利用Si纳米晶粒薄膜的紫外线光致发光特性,还可获得光致变色效应,从而产生新的防伪、识别手段。3.2纳米耐磨损膜与纳米润滑膜 在一些硬度高的耐磨涂层/薄膜中添入纳米相,可进一步提高涂层/薄膜的硬度和耐磨性能,并保持较高的韧性。此外,一些表面涂层/薄膜中加入一些纳米颗粒,如C60 富勒烯、巴基管等还可达到减小摩擦系数的效果,形成自润滑材料,甚至获得超润滑功能。事实上,在Ni等基体表面上沉积纳米Ni-La2O3 曲,薄膜后,除了可以增加基体的硬度和耐磨性外,材料的耐高温、抗氧化性也显著提高。3.3纳米磁性薄膜
经过纳米复合的涂层/薄膜具有优异的电磁性能。利用纳米粒子涂料形成的涂层/薄膜具有良好的吸波能力,可对飞行器、重型武器等装备起到隐身作用;纳米氧化钛、氧化铬、氧化铁和氧化锌等具有半导体性质的粒子,加人到树脂中形成涂层,有很好的静电屏蔽性能;纳米结构的Fe/Cr,Fe/Cu,Co/Cu等多层膜系统具有巨磁阻效应,可望作为应用于高密度存储系统中的读出磁头、磁敏传感器、磁敏开关等。3.4纳米气敏薄膜
由于气敏纳米膜吸附了某种气体以后会产生物理参数的变化,因此可用于制作探测气体的传感器。目前研究最多的纳米气敏薄膜是SnO2 超微粒膜,该膜比表而积大,且表面含有大量配位不饱和键,非常容易吸附各种气体在其表面进行反应,是制备气敏传感器的极佳功能材料。3.5纳米滤膜
纳米滤膜是一种新型的分离膜,可分离仅在分子结构上有微小差别的多组分混合物,它常常被用来在溶液中截留某些有机分子,而让溶液中的无机盐离子自由通过。目前商业化的纳米滤膜的材质多为聚酰胺、聚乙烯醇、醋酸纤维素等,这些纳米滤膜除了具有微筛孔外,滤膜上各基团往往还带有电荷,因此,还可以对某些多价的离子进行截留,而让其他离子通过滤膜。现在,纳米滤膜已经在石化、生化、食品、纺织以及水处理等方面得到广泛应用。
4.纳米薄膜的发展前景
纳米薄膜材料的研究是纳米科学技术领域的重要内容,在许多领域内都有着广泛的应用前景。世界上的发达国家都把纳米薄膜材料的研究列入国家发展规划中。我国对纳米薄膜材料的研究也非常重视,利用新的物理化学性质、新原理、新方法设计纳米结构性器件和纳米复合传统材料改性正孕育新的突破。相信纳米薄膜材料将会在未来给人们带来更多的惊喜。
参 考 文 献
[1]张立德.纳米材料研究的新进展及在 21 世纪的战略 地位, 中国粉体技术[J].2000, 6(1):1~ 5 [2]高海永,庄惠照,薛成山,王书运,董志华,何建廷.竹叶状GaN纳米带的制备[J].电子元件与材料.2004(09)[3]Ji-Hyuk Choi,Moon-Ho Ham,Woong Lee,Jae-Min Myoung.Fabrication and characterization of GaN/amorphous Ga2O3 nanocables through thermal oxidation Solid.State.Commun.2007 [4]王非.GaN纳米线和薄膜的制备及其特性研究[D].太原理工大学 2007 [5]李鹏.纳米薄膜材料制备工艺研究[D].重庆大学 2004 [6]曹铖.聚苯乙烯纳米薄膜的制备与表征[D].天津大学 2010 [7]唐一科,许静,韦立凡.纳米材料制备方法的研究现状与发展趋势[J].重庆大学学报(自然科学版).2005(01)
第三篇:纳米金属材料—小论文
纳米孪晶金属材料
摘要:金属材料的高强度和良好的塑韧性是很多金属材料研究者追求的目标,本文总结了卢柯课题组金属材料中纳米孪晶对强度和塑韧性的影响,并阐明了孪晶界面的作用以及机械孪生对镁合金的影响。
关键词:强度 塑韧性 孪晶界面 机械孪生
1.引言
近一个多世纪以来,金属材料强度水平的不断提高推动着相关工业技术的进步,也不断改善了我们的生活。轻质高强度铝合金的出现推动了飞机的诞生和发展,钢缆强度的不断提升使斜拉桥的跨度成倍增加,汽车的减重和降耗很大程度上依赖于高比强金属的发展和应用,强化金属材料是材料研究者不懈努力追求的目标,强度是材料科学与技术发展的一个重要标志,然而,在大多数情况下,伴随着强度升高,金属的塑性和韧性会下降,强度一塑性(或韧性)呈倒置关系。材料的强度愈高这种倒置就愈显突出。随着现代工业技术的发展,越来越多的构件要求材料既有高的强度又具有良好的塑性和韧性,高强度金属的低塑性和低韧性在一定程度上削弱了其工业应用的潜力,成为金属材料科学发展的瓶颈问题之一。
过去,人们对材料强度一塑(韧)性关系及强韧化规律的研究大多围绕相对简单的结构体系展开,材料的组织、相、成分等在空间上分布均匀,特征结构单元尺度单一且在微米以上。随着人们对自然界中很多天然生物材料认识的不断深入,发现具有优异综合力学性能和强韧性配合的天然生物材料往往具有比较复杂的结构要素特征,如不均匀几何形态及空间分布、多尺度、多相、非均匀成分分布、多层次藕合结构等。这些多层次多尺度的组织(或相)构筑为我们发展高强、高韧、耐损伤金属材料提供了有借鉴价值的线索。近年来对纳米结构材料研究的长足进步和各类纳米技术的迅猛发展,使人们在纳米一微米一宏观等不同尺度上对金属材料的结构设计与制备调控逐步成为可能,为金属材料强韧化研究提供了一个全新的契机。
2.孪晶促进强度和塑性的同时提高
如果两个相邻晶体(或同一晶体的两个部分)之间沿一个公共晶面形成镜面对称的位向关系,那么这两个晶体就互称为孪晶,公共晶面即为孪晶界面。一般说来,孪晶界面可以通过阻碍位错运动使材料得到一定程度的强化。但是,微米或亚微米尺度的孪晶,其强化效果并不显著,只有当孪晶片层细化至纳米量级时才开始表现出显著的强化效果和其他的特性。纳米孪晶结构能够显著提高材料的强度而不损失其塑性与韧性,在脉冲电解沉积制备的纳米孪晶铜中,随孪晶片层厚度减小,材料屈服强度的增加趋势与纳米晶体铜中强度随晶粒尺寸的变化趋势一致,均遵从Hall一Petch关系,当孪晶片层厚度减至15nm时,材料强度达到极大值,随后强度逐渐下降,并出现软化现象。然而,随孪晶厚度减小,纳米孪晶铜的拉伸塑性,断裂韧性和加工硬化能力均单调增加,且表现出超高加工硬化能力“这提供了一种使强度与塑性/韧性同步提高的新途径,而传统的强化机理通常表现为强度一塑性/韧性的倒置关系。
纳米孪晶材料的高强度、高塑性和高加工硬化能力均源于位错与高密度孪晶界面的有效交互作用,塑性变形时,随孪晶片层减小,孪晶内部可塞积位错数量减少,位错穿过孪晶界所需外力提高(强化材料),同时,位错与孪晶界反应在孪晶界上形成大量位错(可动或不可动)并在孪晶界上滑移、塞积、增殖,从而实现加工硬化,协调塑性变形(韧化材料),有效提高其综合力学性能。纳米孪晶铜中极值强度的出现是由于随孪晶片层减小,塑性变形机制从位错/孪晶界相互作用主导转变为由孪晶界处位错的形核和运动主导所致,这种纳米孪晶结构独特变形机理导致的综合力学性能提高,在本质上有异于晶界强化。
另外,常用的强化方式往往在提高材料强度的同时会造成其导电性能明显下降。然而,在纯铜中引人纳米尺度孪晶界后,其强度可提高一个数量级,但对导电性的影响却很小,这种高强度高导电性的结合源于孪晶界的电阻比普通晶界的电阻低近一个数量级,大量孪晶界的存在对电子的散射极小。同时,纳米孪晶结构还能降低电致原子迁移速率,导致的原子沿晶界输运降低了一个数量级。
孪晶是金属材料中的常见结构,但如何制备出高密度纳米尺度的孪晶结构却并非易事。目前纳米尺度孪晶结构可通过电解沉积、磁控溅射沉积、塑性变形或退火再结晶等制备技术在多种纯金属和合金中获得。如何发展纳米孪晶金属的制备方法和工艺,以及如何将纳米孪晶强化技术应用于更广泛的工程材料等方面依然面临挑战。
3.纳米孪晶促进强度和塑性的同时提高
梯度材料是指材料的组成结构和性能在厚度或长度方向连续或准连续变化,即材料的组成和结构从材料的某一方位以1维、2维或者3维向另一方位连续地变化,使材料的性能和功能也呈现出梯度变化的一种新型材料。结构梯度材料常常在自然界生物结构中看到,例如竹子、植物茎杆和动物骨骼,这些材料中最强的结构往往位于承受应力最大的地方。材料科学家从自然界这些材料的结构特点获得启发,开始有目的地设计梯度结构金属材料。
与均匀结构相比,梯度结构材料能够更有效地抵御材料的失效。利用纳米材料强度高,在金属材料表层形成纳米尺度晶粒,并随距表面距离的增加,晶粒尺寸梯度增加,形成所谓的梯度纳米结构(Gradientnano一grained,GNG)金属材料,将明显提高整体材料的摩擦磨损、疲劳和腐蚀等性能,从而延长材料的使用寿命或满足特殊环境的使用要求。
该重大项目通过自主发展的表面机械碾压处理(SMGT)技术,在多种纯金属及工程材料中成功制备出梯度纳米结构,自表及里晶粒尺寸由十几纳米梯度增大至微米尺度,材料芯部的晶粒尺寸为几十微米的粗晶结构,这种梯度纳米结构的厚度可达数百微米。SMGT技术制备的梯度材料纳米晶与粗晶基体结构梯度的过渡,有效避免了纳米材料与基体剥离的问题,从而为研究纳米材料拉伸实验本征力学性能提供了理想材料。研究结果表明梯度纳米结构铜及不锈钢拉伸屈服强度都有大幅度提高,而拉伸延伸率并无明显下降。纳米梯度铜室温拉伸实验显示,具有梯度纳米结构的表层在拉伸真应变高达100%时仍保持完整,未出现裂纹,表明其拉伸塑性变形能力优于粗晶铜。这种优异的塑性变形能力源于梯度纳米结构独特的变形机制。微观结构研究表明,梯度纳米结构铜在拉伸过程中,其主导变形机制为机械驱动的晶界迁移,从而导致伴随的晶粒长大。梯度纳米结构铜及不锈钢表层硬度明显增加,使材料摩擦磨损性能显著提高,并可抑制裂纹的萌生。
梯度纳米材料不但推动了纳米金属材料本征力学性能的研究和认识,也为纳米金属材料的工业应用开辟了一条新途径。
4.孪生界面具有优良的疲劳抗力
据统计,机械设备的各种断裂事故中,大约80%是属于疲劳破坏,而这些疲劳破坏主要起源于材料在交变载荷下,内部萌生裂纹和随后的扩展过程。大量研究表明,晶界是强化金属多晶体材料的重要界面,而它又是容易萌生疲劳裂纹的有利位置。因而,如何通过设计和控制金属材料的界面,进而提高材料的强度乃至疲劳强度是材料科学家一直以来的研究重点。近年来,一种特殊的晶界—“孪晶界面”以其对材料强度和塑性的双重贡献进人了人们的视野。鉴于这种孪晶界面的特殊性,金属研究所卢柯院士曾提出了共格孪晶界面对金属材料的强韧化机制。然而,对孪晶界面在疲劳载荷下裂纹萌生机制的认识尚不清楚。选择具有不同层错能的纯铜与铜合金作为研究对象,揭示了金属材料层错能大小和孪晶界面两侧晶体取向关系对孪晶界面疲劳裂纹萌生的影响。研究结果发现:孪晶界面相对于普通晶界更难于萌生疲劳裂纹,而其萌生裂纹的难易程度主要受晶体取向(施密特因子差)、层错能和滑移方式的影响。由于孪晶界面对位错既具有阻碍作用,也可允许部分位错穿过,因此,随施密特因子差减小、层错能升高以及滑移方式的转变,孪晶界面会允许更多的位错穿过,从而明显提高疲劳裂纹萌生的阻力。通过进一步比较几种不同晶界的疲劳开裂机制,进而确定了萌生裂纹的难易顺序为:小角晶界>孪晶界面>大角晶界,这表明孪晶界面不但可以提高金属材料的强度和塑性,同时也具有较高的抗疲劳裂纹萌生阻力,这为金属材料的抗疲劳设计提供了新的可能,即通过对金属材料合金化与孪晶界面设计,可以获得最佳的强韧性与使役性能的匹配。
5.机械孪生促进高性能镁合金的开发
镁合金具有密度小、比强度和比刚度高、阻尼减振降噪性好、导热和导电性好、抗动态冲击载荷能力强、资源丰富等优点,是目前工程应用中最轻的金属结构材料,被誉为“用之不竭的轻质材料”“绿色的工程材料”,与钢、铝及工程塑料等结构材料互补,为交通工具、电子通信、航空航天和国防军工等领域的材料应用提供了重要选择。
然而与钢、铝等立方结构金属相比,密排六方结构镁合金室温变形能力较差,这是限制其大规模使用的瓶颈问题。为了协调材料的宏观塑性变形,从微观上讲金属通常需要启动一定数量的位错滑移系,然而镁合金在室温下能启动的滑移系主要只有基面滑移,其他滑移系(如柱面、c十a滑移)由于临界分切应力较大常温下不易启动。除了位错滑移外,机械孪生是镁合金的另外一种重要的变形机制。镁合金中拉伸孪生由于其临界启动的剪切应力低,是镁合金常温下主要塑性变形模式之一。拉伸孪生可以倾转晶体取向,进一步影响位错滑移,可以分割晶粒,对组织进行细化,从而起到阻碍位错滑移,提高材料加工硬化的效果。镁合金在塑性加工过程中易形成轴平行于受力方向的基面织构,导致材料呈现强烈的各向异性,会显著降低板材沿厚度方向的变形能力,大量研究表明,弱化基面织构可以显著提高镁合金塑性变形能力,常用的方法有添加稀土合金元素、等通道角挤压加工和异步轧制等。稀土镁合金成本较高,难以大规模应用,等通道角挤压加工弱化织构效果较好,但其加工效率低,加工成本高,异步轧制对基面织构弱化效果有限,不能显著改善板材的加工变形能力。由于拉伸孪生对镁合金变形行为有显著影响,因此可以利用预变形诱导拉伸孪生来调控镁合金的织构和组织,进而改变其力学行为和性能。镁合金在不同变形条件下(初始取向、温度、应变速及变形模式)的机械孪生行为与形成机理,重点探索了拉伸孪生对镁合金力学性能的影响规律。研究发现通过引人拉伸孪晶细化晶粒可以同时提高镁合金的强度和塑性,降低了镁合金的拉压不对称性,并且首次提出通过侧轧诱导拉伸孪生调控板材织构,从而大幅度提高镁合金板材的单道次轧制能力。采用商业AZ31镁合金板材进行中试,发现采用侧轧新工艺的板材单道次轧制量可以提高一倍以上,大大提高了加工效率和成材率,有望在镁合金工业得到广泛应用。
6.原子尺度下机械孪生的模拟
强度和韧性是材料重要的力学特性,而传统的强化方法都以损失材料的韧性为代价。因此,如何在不损失材料韧性的前提下,尽可能地提高材料的强度,成为了人们关心的问题。纳米孪晶界是一种共格的晶体面缺陷”一方面,它们与一般的大角度晶界一样,可以有效地阻挡位错运动,在纳米孪晶界密度较高的情况下,可以大幅度提高材料的强度。另一方面,由于纳米孪晶界的对称性,使得位错可以沿着它运动,产生台阶。位错也可以在与纳米孪晶界反应后,穿越进人相邻的晶粒。所以说纳米孪晶界具有很强的容纳位错的能力,这样就可以提高材料塑性变形的能力,也就改善了材料的韧性。
利用分子动力学方法,从纳米尺度上研究了纳米孪晶界对纳米金属的断裂韧性的影响。结果表明,纳米孪晶界密度越高,材料的断裂韧性越强。在主裂纹扩展过程中,裂尖前方的纳米孪晶界吸收了大量的位错,使得裂尖不断钝化。另外,在离主裂纹不远处还观察到子裂纹沿着孪晶界的扩展这一纳米尺度上的二级缺陷增韧机制。这种机制有效地缓解了主裂纹尖端(一级缺陷)附近的应力集中,使得裂纹扩展得以抑制。在纳米孪晶界密度较高的多晶试样中,观察到了裂纹偏折的现象,裂纹扩展的路径不同于没有纳米孪晶界的多晶试样。具体地说,由于纳米孪晶界具有多余的自由能,因此在纳米孪晶材料中,裂纹倾向于沿着或者切割纳米孪晶界在晶粒内部进行扩展,这样的扩展方式使得裂纹的路径呈现一种“之”字形的形状,这种扩展方式可以有效地提高材料的断裂韧性。此外,还考虑了纳米孪晶界的取向对材料断裂韧性的影响。当纳米孪晶界取向倾斜于裂纹方向时,断裂韧性的提高较垂直和平行的取向大。这种更高的韧化效果可以归因于两种韧化机制的共同作用,即主裂纹尖端区域容纳了更多数量的不全位错,和更容易发生裂纹偏折。最后,在文章中的模拟还首次观察到了纳米孪晶界的弯曲,发现在弯曲的纳米孪晶界上,存在着一系列几何必须位错和晶界台阶。这说明,弯曲纳米孪晶界的出现对应着大量的塑性变形,同时滑移面的弯曲和晶界台阶的存在使得位错沿纳米孪晶界滑移的阻力增大,因此弯曲的纳米孪晶界同时具有韧化和强化的作用。通过原子尺度的计算模拟,研究了纳米孪晶界对纳米金属晶体断裂韧性的影响,并由此提出了4种韧化机制:(l)纳米孪晶界容纳位错的韧化机制;(2)纳米孪晶界使得主裂纹发生偏转的韧化机制;(3)二级缺陷增韧机制;(4)弯曲孪晶界增韧机制。在这4种韧化机制的共同作用下,纳米结构材料的断裂韧性得到大幅度的提高。这也为今后设计和制备具有高强度高韧性的纳米结构功能材料提供了思路和方法。
参考文献:
[1] Zhang Y, Tao N R, Lu K.Acta Mater, 2011;58: 6048
第四篇:纳米论文
浅谈纳米尺寸效应及其应用
纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。小尺寸效应。现在从尺寸效应探讨其特性和应用。
随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。量子尺寸效应指当金属或半导体从三维减小至零维时,载流子在各个方向上均受限,随着粒子尺寸下降到接近或小于某一值(激子玻尔半径)时,费米能级附近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。金属或半导体纳米微粒的电子态由体相材料的连续能带过渡到分立结构的能级,表现在光学吸收谱上从没有结构的宽吸收过渡到具有结构的特征吸收。量子尺寸效应带来的能级改变、能隙变宽,使微粒的发射能量增加,光学吸收向短波长方向移动(蓝移),直观上表现为样品颜色的变化,如CdS微粒由黄色逐渐变为浅黄色,金的微粒失去金属光泽而变为黑色等。同时,纳米微粒也由于能级改变而产生大的光学三阶非线性响应,还原及氧化能力增强,从而具有更优异的光电催化活性[5,6]。
第页 纳米材料与技术是在20世纪80年代末才逐步发展起来的前沿交叉性新兴学科领域,它与住处技术和生物技术一起并称为21世纪三大前沿高新技术,并可能引导下一场工业革命。
纳米技术是严谨的高新交叉技术,人类刚刚迈进门槛,就显现出其强大的生命力。有些纳米材料(如纳米金刚石)经过表面改性和分散,可以均匀分布到聚合物的熔融体中,经过喷丝、冷却形成具有特殊功能的纳米纤维,添加比列很低,但每根短纤维上有成千上万个纳米颗粒。可以作成高抗磨、自清洁、防雨、防紫外线、防静电、杀菌、红外隐形等功能布料,很有发展前景。
将人类带入新的微观世界。人类可以从新的纳米技术领域获得很大好处。利用这项技术的目的是在纳米尺寸上操纵物质,以创造出具有全新分子组织形式的结构。这有可能改变未来材料和装置的生产方式,并且给人类带来巨大的经济益处。
比如,利用精确控制形状和成分的纳米“砖块”,人类有可能合成出自然界没有的材料。然后可以把这些材料组装成更轻更硬的较大结构,而且这种结构还具有课设计性。例如,美国国家科学技术委员会曾经发布的一份研究报告就描述了这些设想的特种新奇材料的特性。这些材料具有多种功能,并能够感知环境变化而且作出相应的反应。比如,预计会出现一种强度是钢铁10倍的材料,具有超导弹性,透明材料和具有更高熔点的材料。吧纳米技术用于储存器,那么可以是整个图书馆的信息放入只有糖块一样大的小装置中。也就是说,纳米技术不只是向小型化迈进了一步,而且是迈入了一个崭新的微观世
第页 界。
传统的解释材料性质的理论,只是用于大于临界长度100纳米的物质。如果一个结构的某个维度小于临界长度,那么物质的性质就常常无法用传统的理论去解释。而科学家正试图在大哥分子或原子尺度到十万个分子的尺度之内发现新奇的现象。
美国国纳米技术计划初期研究的重点是,在分子尺度上具有新奇的特性并且系统、物理和化学性能有明显提高的材料。比如,在纳米尺度上,电子和原子的交互作用受到变化因素的影响。这样,在纳米尺寸上组织物质的结构就有可能使科学家在不改变材料化学成分的前提下,控制物质的基本特性,比如磁性、蓄电能力和催化能力等。又如在纳米尺度,生物系统具有一套成系统的组织,这使科学家能够把人造组件和装配系统放入细胞中,以制造出结构经过组织后的新材料,有可能使人类模拟自然的自行装配。还有,纳米组件有很大的表面积,这能够使它们成为理想的催化剂和吸收剂等,并且在放电能和向人体细胞施药方面派上用场。利用纳米技术制造的材料与一般材料相比,在成分不变的情况下体积会大大缩小而且强度和韧性将得到提高。
美国西北大学开发的一种比色传感器,已经成功探测出结核杆菌。科学家把探测对象的DNA附加在纳米大小的黄金微粒上。当互补的微粒在溶液中存在时,黄金微粒会紧紧地结合在一起,改变悬浮液的颜色。
随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由
第页 于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微粒而言,尺寸变小,同时其比表面积也显著增加,从而产生如下的新奇的性质:特殊的光学性质、热学性质、磁学性质和力学性质。具体的光学性质是当黄金被分割到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,尺寸越小,颜色愈是黑。由此可见,金属超微颗粒对反光的反射率很低。热学性质具有高矫顽力的特征,已经作为高储存密度的磁记录磁粉,大量应用于磁带。利用磁性,人们已经将磁性超微粒制成用途广泛的磁性液体。力学性质是具有良好的任性。因为纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很容易迁移,因此变现出很好的韧性和延展性,使陶瓷材料具有新奇的力学性质。美国学者报道氟化钙纳米材料在室温下可以大幅度弯曲而不断裂。研究表明,人的牙齿之所以具有很高的强度,是因为它是有磷酸钙等纳米材料构成的。呈纳米晶粒的金属比传统的粗晶粒金属硬3到5倍。
一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。
我们对纳米材料的认识还远远不够,还需要不断的探索和研究。相信通过不断的深入,一定会使纳米在更多的领域里发挥作用,服务于生产和生活。
第页
参考文献:
张力德、牟季美《纳米材料和纳米结构》科学出版社,2002 陈敬忠、刘剑洪《纳米材料科学导论》高等教育出版社,2006 黄昆原著,韩汝琦改编,《固体物理学》高等教育出版社,1988
第页
第五篇:纳米论文
纳米复合材料论文
——纳米陶瓷复合材料
摘要:本论文主要介绍了纳米复合材料的的设计(包括结构设计和功能设计),讨论了纳米陶瓷复合材料的制备方法以及对所制备的金属基纳米复合材料的性能进行了分析,最后对纳米陶瓷纳米复合材料的发展进行了展望。关键词:纳米陶瓷材料
纳米复合材料
制备
性能
展望
致远化学班
F1324005 陈昊 5132409039
目 录
前 言 „„„„„„„„„„„„„„„„„„„„„„„„„1 第1章纳米陶瓷材料概述 „„„„„„„„„„„„„„„„„2 第2章纳米陶瓷材料的生产工艺………………………………………4 第3章纳米陶瓷材料应用……………………………………………5 结束语…………………………………………………………………7 参考文献 „„„„„„„„„„„„„„„„„„„„„„„„7
前言
陶瓷材料在日常生活、工业生产及国防领域中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了很大限制。随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服传统陶瓷的脆性,使其具有像金属一样的柔韧性和可加工性。与传统陶瓷相比。纳米陶瓷的原子在外力变形条件下自己容易迁移,因此表现出较好的韧性与一定的延展性,因而从根本上解决了陶瓷材料的脆性问题。英国著名材料科学家卡恩在Nature杂志上撰文道:“纳米陶瓷是解决陶瓷脆性的战略途径。”
所谓纳米陶瓷,是指陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都限于100nm以下,是上世纪80年代中期发展起来的新型陶瓷材料。由于纳米陶瓷晶粒的细化,品界数量大幅度增加,可使材料的韧性和塑性大为提高并对材料的电学、热学、磁学、光学等性能产生重要的影响,从而呈现出与传统陶瓷不同的独特性能,成为当今材料科学研究的热点。
一、纳米陶瓷材料的性能
纳米陶瓷材料的结构与常规材料相比发生了很大变化,颗粒组元细小到纳米数量级,界面组元大幅度增加,可使材料的强度、韧性和超塑性等力学性能大为提高,并对材料的热学、光学、磁学、电学等性能产生重要的影响。1.力学性能
硬度和断裂韧度:对纳米晶TiO2进行研究,发现在室温压缩时,纳米颗粒已有很好的结合,高于500℃很快致密化,而晶粒大小只有稍许的增加,所得的硬度和断裂韧度值与单晶TiO2或粗颗粒压缩体的相应值比,性能相当或更好。纳米晶TiO2其硬度和断裂韧度随烧结温度的增加(即空隙度的降低)而增加,在800~900℃温度范围烧结,与经优化烧结的块状陶瓷相比,两者的硬度和断裂韧度值相符。低温烧结后,纳米晶TiO2就能获得好的力学性能。通常硬化处理材料变脆,造成断裂韧度的降低,而就纳米晶而言,硬化和韧化由空隙的消除来形成,这样就增加了材料的整体强度。纳米晶TiO2经800℃烧结后,维氏硬度H=630,断裂韧度Kic(Mpam1/2)为2.8,空隙度为10%;而1000℃烧结后,H=925,Kic=2.8,空隙度为5%。2.热学性能
(1)比热,纳米材料的界面结构中原子分布比较混乱,与常规材料相比,界面体积分数较大,因而纳米材料熵对比热的贡献比常规材料大得多。如对应粒径为80nmAl2O3的比热,比常规粗晶Al2O3高8%。
(2)热膨胀,纳米非晶氮化硅热膨胀系数比常规晶态Si3N4高1~26倍。其原因是纳米非晶氮化硅的结构与常规晶态Si3N4有很大差别,前者是由短程有序的非晶态小颗粒构成的,它们之间的界面占很大比例,界面原子的排列较之非晶颗粒内部更为混乱。在相同条件下,原子和键的非线性热振动比常规晶态显著得多,因此对热膨胀的贡献也必然很大。
(3)导热或超绝热,绝热材料目前在我国尚处于实验研究与工业实验的中间阶段。由于气孔尺寸小到纳米级,主要产生如下纳米效应:当轻质材料中的气孔尺寸小于50nm时,气孔中的空气分子就失去了自由流动的能力,因此相当于抽了真空,称为“零对流效应”。由于材料的体积密度较小,气孔尺寸很小,这时气孔壁的数目趋于“无穷多”。对于每一个气孔壁来说都具有遮热板的作用,因而产生近于“无穷多遮热板”的效应,从而使辐射传热下降到最小的极限。由于近于无穷多纳米孔的存在.热流在固体中传递时就只能沿着气孔壁传递,近于无穷多的气孔壁构成了近于“无穷多路径”效应,使固体热传导的能力下降到接近最低极限。
将硅酸钙复合纳米孔超级绝热材料用于钢结构防火可使防火时间从目前一般厚质防火涂料的2h左右延长到15h,给灭火赢得充足的时间。将该材料用于太阳能热水器,可使其集热效率提高一倍以上,而散热损失下降到现在的30%。3.光学性能
材料的光学性能与其内部的微观结构,特别是电子态、缺陷态和能级态结构有关。纳米材料在结构上与常规材料有很大差别,突出表现在小尺寸颗粒和庞大体积分数的界面,界面原子排列和键的组态的无规则性较大,使纳米材料的光学性能出现一些与常规材料不同的新现象。
(1)红外吸收:对纳米材料红外吸收的研究表明,红外吸收谱中出现蓝移和宽化。纳米相Al2O3,红外吸收谱在400~1000cm-1波数范围内有一个宽广的吸收带,与A12O3单晶相比,红外吸收峰有明显的宽化,其中对应单晶的637cm-1和442cm-1的吸收峰,在纳米相中蓝移到639.7cm-1和442.5cm-1。(2)荧光现象:用紫外光激发掺Cr和Fe的纳米相A12O3时,在可见光范围观察到新的荧光现象。
(3)光致发光:退火温度低于673K时,纳米非晶氮化硅块体在紫外光到可见光范围的发光现象与常规非晶氮化硅不同,出现6个分立的发光带,而常规非晶氮化硅在紫外光到可见光很宽的波长范围的发光呈现一个很宽的发光带。4.电磁学性能
纳米材料与常规材料在结构上,特别是在磁结构上有很大差别,因此在磁性方面会有其独特的性能。除磁结构和磁化特点不同外,纳米晶材料颗粒组元小到纳米级,具有高的矫顽力,低的居里温度,颗粒尺寸小于某一临界值时,具有超顺磁性等。同时,纳米材料的界面组元与粗晶材料有很大差别,使界面组元本身磁性具有独特性能。例如界面的磁各向异性小于晶内,居里温度低于常规材料等。
由于纳米材料中存在庞大体积分数的界面,使平移周期在一定范围内遭到严重破坏,颗粒愈小,电子平均自由程愈短,偏离理想周期场愈严重。因此,纳米材料的电学性能(如电导、介电性、压电性等)与常规材料存在明显的差别。
(1)电阻和电导,晶界原子排列愈混乱,晶界厚度愈大,对电子散射能力就愈强。界面这种高能垒是使电阻升高的主要原因。当晶粒尺寸小于电子平均自由程时,晶界组元对电子的散射起主导作用,这时电阻与温度的关系以及电阻温度系数的变化都明显偏离粗晶情况,甚至出现反常现象。纳米非晶氮化硅(粒径大约15nm)的电导比常规非晶氮化硅高。
(2)介电特性。纳米材料在结构上与常规材料存在很大差别,其特点主要表现在介电常数和介电损耗对颗粒尺寸有很强的依赖关系,电场频率对介电行为有极强的影响。纳米材料的介电常数随电场频率的降低而升高,并显示出比常规粗晶材料高的介电性。纳米材料随着电场频率的下降,介质的多种极化都能跟上外加电场的变化,介电常数增大。(3)压电效应,经研究表明,未经退火和烧结的纳米非晶氮化硅块体具有强的压电效应,而常规非晶氮化硅不具有压电效应。
二、纳米陶瓷材料制备工艺与方法 蒸发凝聚法(PVD法)蒸发凝聚法是制备纳米粉体的一种早期的物理方法,蒸发法所得产品颗粒粒度一般在5~100纳米之间。蒸发法是将金属或化合物颗粒的原料加热、蒸发,使之成为原子或分子,再使许多原子或分子凝聚,生成极微细的纳米粉体。目前已发展出多种蒸发凝聚技术手段制备纳米陶瓷粉体,这些方法大体上可分为:真空蒸发法、气体蒸发法等。而按原料加热蒸发技术手段不同,又可将蒸发法分为:太阳炉加热蒸发法、电子束加热蒸发法、等离子体加热蒸发法及激光束加热蒸法等。
蒸发冷凝法也是一种蒸发凝聚法,在真空蒸发室内充人低压惰性气体,加热金属或化合物蒸发源,蒸气将凝聚成纳米尺寸的团簇,并在液氮冷却棒上聚集得到纳米粉体。蒸发冷凝法的优点是可在体系中加置原位压实装置直接得到纳米陶瓷材料。
蒸发凝聚法的缺点是装备庞大,设备投资昂贵,且不能制备高熔点的氧化物和碳化物粉体,所得粉体一般粒径分布范围较宽。2化学气相反应法(CVD法)化学气相沉积(Chemical Vapor DePosition CVD)法是在高热卞反应产物蒸气形成很高的过饱和蒸气压而使其自动凝聚形成大量的晶核。这些晶核在加热区不断长大、聚集成颗粒,且随着气流进人低温区使颗粒生长、聚集和晶化过程停止,最终在收集室内收集得到纳米陶瓷粉体。CVD法可通过选择适当的反应物浓度、流速、温度和组成配比等工艺条件,实现对粉体组成、形貌、尺寸、晶相等控制。3激光诱导化学气相法(LICVD法)激光诱导化学气相沉积(Laser Indueed Chemical Vapor DePosition LICVD)法是利用反应气体分子对特定波长激光束的吸收而产生热解或化学反应,经成核生长形成超细粉末。UCVD法通常采用高能CO2激光器。4等离子体气相合成法(PCVD法)等离子化学气相沉积伊(Plasma Chemical Vapor Deposition PCVD)法是纳米陶瓷粉体制备的常用方法之一,它具有反应温度高、升温和冷却速率快等特点。等离子体是物质存在的第四种状态,由电离的导电气体组成,其中包括:电子、正离子、负离子、激发态的原子和分子、基态原子和分子及光子。采用等离子气相化学法制备陶瓷纳米粉体材料具有许多优点:a、等离子体中具有较高的电离度,可以得到多种活性组分,有利于各类反应的进行;b、等离子体反应空间大,可以使相应物质化学反应完全;c、与激光诱导气相沉积法相比,等离子气相化学法更容易工业化。5溶胶-凝胶(SOL-GEL)法
溶胶-凝胶法是指在水溶液中加入有机配体与金属离子形成配合物,通过控制pH值、反应温度等条件让其水解、聚合,经溶胶)凝胶途径形成一种空间骨架结构,然后脱水焙烧得到目的产物的一种方法。此法在制备复合氧化物纳米陶瓷材料时具有很大的优越性。
三、纳米陶瓷材料的应用领域
1、硬性防护和软性保护材料
普通陶瓷在用作防护材料时,由于其韧性差,受到弹丸撞击后容易在撞击区出现显微破坏、跨晶、界面破坏、裂纹扩展等一系列破坏过程,从而降低了陶瓷材料的抗弹性能。纳米陶瓷具有高韧性的性能,提高了陶瓷材料的抗冲击性能,可有效提高主战坦克复合装甲的抗弹能力,增强速射武器陶瓷衬管的抗腐蚀性和抗冲击性;由防弹陶瓷外层和碳纳米管复合材料作衬底,可制成坚硬如钢的防弹背心。在未来的战争中,若能把纳米陶瓷用于车辆装甲防护,会具有更好的抗弹、抗爆震、抗击穿能力,提供更为有力的保护。纳米Y2O3和ZrO2在较低温度烧结的陶瓷具有很高的韧性和强度,被用于轴承和刀具等耐磨器件。
另一方面起着软性保护的纳米涂料也在防护领域起着重要的作用,目前纳米陶瓷用于腐蚀条件恶劣环境中的防腐纳米陶瓷涂料,能有效保护航标灯座、船舶、石油化工设施和各类贮罐、桥梁、桥墩、铁路涵洞、钻井设备、海上油田等设施以及强酸、强碱等生产设备的外表面,在较长时间内防止强酸碱、盐雾、冻融、霉菌等的浸渍。
另外以纳米陶瓷粉体为基体,利用其致密速度快、烧结温度低和良好的界面延展性,在烧结过程中控制颗粒尺寸在200—500nm的的最佳范围,可以获得具有良好超塑性的纳米陶瓷材料。如纳米陶瓷电极板灯就是基于这样的基础,灯的电极使用了纳米级的陶瓷粉烧接,起到了保护灯管的作用。
2、耐高温材料
纳米陶瓷粉末涂料在高温环境下具有优异的隔热保温效果,不脱落、不燃烧,耐水、防潮,无毒、对环境无污染,对提高航空发动机的涡轮前温度,进而提高发动机的推重比和降低燃料消耗具有重要作用,适用于冶金、化工工业、电厂的热力锅炉及焦化煤气等热力设备和热力管网等高温设备的防腐、炉外降温,并有望成为舰艇、军用涡轮发动机高温部件的理想材料,以提高发动机效率,可靠性与工作寿命。在汽车工业也有着广阔前景,如用纳米陶瓷作为气缸内衬材料,因耐高温可提高燃料燃烧温度,使燃料的热效率提高;涂覆于汽车玻璃表面可起到防污和防雾、隔热作用。
3、生物材料、临床应用材料
随着纳米材料研究的深入,纳米生物陶瓷材料的优势将逐步显现,其强度、韧性、硬度以及生物相容性都有显著提高。例如当羟基磷灰石粉末中添加10%~70%的ZrO2粉末时,材料经1300~1350℃热压烧结,其强度和韧性随烧结温度的提高而增加。纳米SiCn增强羟基磷灰石复合材料比纯羟
基磷灰石陶瓷的抗弯强度提高1.6倍、断裂韧性提高2倍、抗压强度提高1.4倍,与生物硬组织的性能相当。从表1可看出纳米陶瓷材料的力学性能。
Erbe等用纳米技术制备出纳米磷酸钙,它不仅可以作为骨髓细胞的细胞骨架,还可以加速细胞的形成。生物功能陶瓷能够模仿人体某些特殊生理行为,可以用来构成牙齿和骨骼等某些人体部位,甚至可望部分或整体地修复或替换人体的某种组织器官。传统的陶瓷材料晶粒,气孔较大,因此其脆性及弹性模量也较大,给人工牙齿的质量带来影响。Hlateng等正在研究一种纳米陶瓷材料,该材料不仅强度、柔韧、可塑性好。而且弹性模量接近天然骨,极大地改善了材料的力学相容性和生物相容性,为临床制作人工关节、人工牙齿及牙种植体开辟了新途径。利用纳米微粒可在体内方便传输的特点,科学家开发出放射疗法用的羟基磷灰石复合陶瓷微粒。把可放射β射线的化学元素掺入纳米微粒内,制成β射线源材料,把它植入人体肿瘤附近,就可直接照射癌细胞又不损伤周围正常组织。目前,一种生物陶瓷材料硅酸铝钇(YAS)就可以满足这些要求。初步临床表明,采用这种材料治疗可以大大延长病人的寿命。
4、以陶瓷粉末为吸收剂的吸收材料
传统的汽车尾气净化催化材料是在陶瓷载体表面涂一层Al2O3粉体材料作为分散层,再在分散层表面涂一层催化剂材料作为活性层。将分散层和活性层的材料制备技术开发成纳米表面材料技术,可明显改善汽车尾气催化剂的性能,提高了汽车尾气净化器的寿命。
5、压电材料
压电陶瓷广泛用于电子技术、激光技术、通汛、生物、医学、导航、自动控制、精密加工、传感技术、计量检测、超声和水声、引燃引爆等军用、商用及民用领域。纳米陶瓷晶体结构上没有对称中心,具有压电效应。通过精选材料组成体系和添加物改性,可以获得高能和低温烧结兼备的压电纳米陶瓷材料。通过控制纳米晶粒的生长可获得量子限域效应,以及性能奇异的铁电体,以提高压电热解材料机电转换和热释性能。即卡金说的压电材料就具有这样的变化特征。研究发现当它们的厚度介于20~23nm时,其压电效率提高了100%。近年迅速发展的各类压电变压器、压电驱动器、大功率超声焊接技术、压电式振动给料器、超声CVD新工艺和核电站相配套的大功率超声工程都是纳米陶瓷在压电方面的应用。
6、信息材料
电子陶瓷的应用范围日趋广泛,包括基板、传感器。这些之所以广泛地采用电子陶瓷来制作。原因在于随着追求降低半导体元件的工作电压和增加多层陶瓷电容单位体积效率,多层陶瓷电容器内层厚度降低,总层数增加。当陶瓷中的晶粒尺寸减小一个数量级,晶粒的表面积及晶界的体积亦以相应的倍数增加。纳米功能陶瓷除了可降低产品的成本,满足电子元件小型化的需要外,还可减少连接的距离,将会提高对环境的稳定性,减少噪音并降低产品对噪音的敏感性瑚,大大提高产品的质量。
7、清洁材料
“纳米易洁陶瓷”系采用特殊的涂覆技术。将纳米液态聚合硅均布于陶瓷表面,经高温处理后得到具有纳米量级膜层的陶瓷。聚合硅成膜后能大大降低陶瓷的表面张力,使液体在陶瓷表面呈半球状,不易挂沾,易于清洁。纳米陶瓷具有明显的易洁特性,在使用中便于清洗节水,也会减少因使用化学清洁剂而造成的环境污染。同时纳米陶瓷材料还具有一定的抗菌性。所以其在墙地砖及卫生洁具的应用有着十分广阔的前景和重要的环保意义。
结束语
纳米陶瓷作为一种新型的高性能陶瓷,将越来越受到世界各国科学家的关注。纳米陶瓷材料的发展是现代物理和先进技术结合的产物, 是近年来发展起来的一门全新的科学技术,它将成为新世纪最重要的高新技术之一。纳米陶瓷的研究与发展,必将引起陶瓷工业的发展与变革,引起陶瓷学理论上的发展乃至新的理论体系的建立,以适应纳米尺度的研究需要,从而使纳米陶瓷材料具有更佳的性能,使其在工程领域乃至日常生活中得到更广泛的应用。未来纳米陶瓷发展的方向主要有以下几个方面:(1)纳米陶瓷粉体新的制备方法和工艺条件的研究与开发;开发高效率、低成本的制备技术;(2)纳米粉体形成纳米陶瓷的反应机理研究;(3)智能化敏感陶瓷元件计算机用光纤陶瓷材料、计算机硬盘和高稳定性陶瓷电容器;(4)研究纳米粉体对环境的污染机理,做好应用过程中的环境保护;(5)加速纳米粉体的工业化生产和应用进程。在21世纪,纳米陶瓷粉体将飞速发展,在各领域的应用将全面展开,并将产生一批新技术、新产品;在电子、通信等高技术领域的广泛应用,将成为经济发展的新的增长点。
参考文献
[l] 张中太,林元华,唐子龙,等.纳米材料及其技术的应用前景[J].材料工程,2000,3:42
[2] 陈煌,林新华,曾毅,等.热喷涂纳米陶瓷涂层研究进展[J].硅酸盐学报,2002,30(2):235 [3] 朱教群,梅炳初,陈艳林.纳米陶瓷材料的制备和力学性能[J].佛山陶瓷,2002,58(1):l [4] 施锦行.纳米陶瓷的制备及其特性.中国陶瓷,1997,33(3):36~38 [5] 王世敏.纳米材料制备技术.化学工业出版社,2002 [6] 江炎兰,梁小蕊.纳米陶瓷材料的性能及其应用.兵器材料科学与工程,2008.31(5):91~94 [7] 赵雪.我国新纳米陶瓷涂料又创新品种.科技日报.2007-01-12 [8] 田明原,施尔畏,郭竟坤.纳米陶瓷与纳米陶瓷粉末[J].无机材料学报,1998,13(2):129 [9] Fujishima,et al.Electrochemical photocatalysis of wat at a semiconductor electrode.Nature.1972,37(1):238~242 [10] Veitch LCetal An assessment of the DARPA ffoordable Polymer matrix composite program.In 29th niernational SAMPE Technical Conference,1997 :220