分析核电站全厂断电事故

时间:2019-05-14 08:47:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《分析核电站全厂断电事故》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《分析核电站全厂断电事故》。

第一篇:分析核电站全厂断电事故

第四章

分析核电站全厂断电事故

4.1.全厂断电事故过程中对反应堆各部件现象进行分析

全厂断电事故中,由于主泵失去轴封冷却水,主泵轴封处可能会出现泄漏。另一方面,根据相关研究分析,在事故进程的适当时刻对一回路实施减压措施可以有效推迟事故进程和缓解事故后果。在上文所述基本事故进展的基础上,就这两种因素对其的影响定性地分析了4种可能的工况:

1.堆冷却剂开始汽化时主泵轴密封处泄漏; 2.出现早期主泵轴封泄漏的全厂断电事故;

3.堆芯出口温度达650 ℃时稳压器卸压阀持续打开;

4.工况1基础上,堆芯出口温度达650 ℃时稳压器卸压阀持续打开。发生全厂断电事故时,由于辅助给水系统无法启动,二回路水逐渐被蒸干,随后一回路因热量无法带出而升温升压。当堆芯区域的冷却剂温度逐渐达到饱和温度,主泵轴封处出现泄漏。堆冷却剂通过主泵轴封破口和稳压器卸压阀从一回路系统喷出,引起堆芯冷却剂装量的减少。由于泄漏流量不大,因此堆芯压力仍会在稳压器卸压阀的设定压力变化范围维持一段时间。随后堆芯压力开始持续下降。冷却剂持续从主泵轴封破口流出,堆芯水位下降,堆芯逐渐裸露、升温,堆芯部件达到失效温度后会形成熔碴下落。堆芯压力逐渐降到安注箱开启压力,安注箱向堆芯注水,堆芯暂时得到冷却。但由于压力下降较慢,注水流量不大,而且有一部分通过主泵轴封破口直接流出,没有形成对堆芯的再淹没。随后压力壳内继续熔碴的形成和迁移的过程,逐渐熔穿压力容器下封头。下封头熔穿时,压力容器内压力值较低。

假设事故后10 m i n出现主泵轴封泄漏。之后由于此处的泄漏,冷却即自破口处流出,一回路压力持续下降,堆芯水位也迅速下降,很快堆芯就开始裸露。由于堆芯冷却状况的恶化,在衰变热的作用下堆芯部件的温度升高,达到失效温度后形成熔碴下落。主泵轴封处的泄漏也使压力容器内压力迅速降低,使安注箱能在事故进程中投入使用,和第一种工况一样,有一部分通过主泵轴封破口直接流出,没有形成对堆芯的再淹没,由于事故进程加快,最后下封头较其他工况最早熔穿。

全厂断电事故中,由于稳压器卸压阀不断的开启和关闭,一回路系统的冷却剂不断从卸压阀喷出,堆芯水位下降,堆芯逐渐开始裸露,裸露部分的堆芯仅依靠水蒸气冷却。但水蒸气不足以带出裸露部分堆芯的衰变热,这部分部件的温度持续升高,使流出堆芯的蒸汽温度升高。当流出堆芯的水蒸气温度达到650 ℃时,持续将稳压器卸压阀打开。之后,堆芯压力快速下降到安注箱注水压力,安注箱向堆芯注水。由于堆芯压力下降较快,安注箱注水速度很快,堆芯水位上升,形成了对堆芯的重新淹没。在这种情况下,能最大限度的延缓堆芯下封头的失效。

发生全厂断电后,主泵惰转,反应堆停堆,随后汽轮机脱扣,主给水关闭。由于反应堆停堆,稳压器压力在短时间内快速下降。然后由于主给水关闭,辅助给水完全失效,随着二次侧热阱的丧失,一回路压力也迅速上升到稳压器安全阀的开启整定值。整个事故进程中,由于高低压安注无法启动,导致通过稳压器安全阀排出的冷却剂无法得到补充,压力容器水位迅速下降。一段时间后,堆芯开始裸露,然后逐渐升温并开始熔化。压力容器下封头因受熔融物的加热发生蠕变失效。安全壳内的压力和温度大幅上升。

安注箱在压力容器失效后投人,对堆芯的冷却未起到作用。安注箱的水通过破损的压力容器下封头落入堆腔内,与高温熔融物接触后,产生大量的水蒸气;同时,高温熔融物与混凝土的相互作用后也会有氢气和一氧化碳等大量不凝结性气体产生。以上因素使安全壳内的压力不断上升(如下图所示),最终安全壳发生超压失效。在安全壳失效之前,安全壳内大量水蒸气的存在使安全壳环境惰性化,安全壳中氢气浓度始终处于远离爆燃或爆炸的区域,氢气风险较小。

表1 SBO始发的严重事故的主要事故进程

Table 1 M ain process of SBO introduced severe accident

表2 事故主要结果

Table 2 M ain results of accident 在严重事故进程中,操纵员将采取各种措施缓解事故,来维持放射性屏障的有效性。即使压力容器破损,但随着时间的推移,恢复AC电源,启动安全壳喷淋系统有可能继续保持安全壳的完整性。,恢复AC电源后,安全壳内的压力和温度会迅速地降低,且安全壳内蒸汽浓度减少的同时,相应也增加了氢气的浓度,这样就增加了氢气的风险。因此,在安全壳中需要采取相应的氢气控制措施并谨慎地实施安全壳喷淋,以预防和缓解氢气燃烧可能带来的风险。

本文通过分析全厂断电事故下安全壳的响应,以及AC电源恢复后对安全壳响应的影响,得出以下结论:

1)发生SBO事故后在无缓解措施投入的情况下,安全壳内环境条件的恶化将影响到安全壳的完整性,事故后期会发生安全壳的超压失效。在安全壳失效之前,由于安全壳内大量水蒸气的存在使安全壳环境惰性化,使得氢气风险较小。

2)在压力容器失效前恢复AC电源,由于辅助给水的投入使一回路的温度及压力下降,触发安注系统投入,注入的冷却剂有效的淹没和冷却堆芯,使压力容器有可能继续保持完整性,从而防止堆芯熔融物与混凝的反应,减少了对安全壳完整性的威胁。

3)压力容器失效后,AC电源的恢复将启动安全壳喷淋等专设安全设施,使安全壳内蒸汽的含量大幅减少,从而相应增加了氢气的浓度。因此,安全壳中需采取相应的氢气缓解措施,并谨慎地实施安全壳喷淋,以预防和缓解氢气燃烧可能带来的风险。

4.2 全厂断电事故中出现主泵轴封泄漏同时实施减压措施

实施减压措施前,事故进程与第一种工况相同。堆芯出口蒸汽温度达到650 ℃时,将稳压器卸压阀持续打开。堆芯压力快速下降。当压力至安注箱压力之下时,安注箱投入,安注水注入并重新淹没堆芯。但由于大量的安注水从主泵轴封破口处流出,很快堆芯又重新裸露。堆芯继续升温,堆芯部件形成熔碴并向下迁移,随后压力壳下封头熔穿。

从以上讨论可以得出以下结论:

(1)泵轴封破口事故可能伴随全厂断电事故发生,对全厂断电事故后果的影响随轴封破口出现的时间有所不同。事故后较早发生的主泵轴封破口使堆芯熔化的时间提前,但出现较晚的破口,推迟了压力容器下封头熔穿的时间。

(2)在特定时刻将稳压器卸压阀打开,会使堆芯压力快速下降,安注箱能有效的投入使用,从而可以有效推迟事故进程、缓解事故后果,推迟下封头失效时间。

(3)主泵轴封失效和人为打开稳压器的卸压阀,均可使堆芯压力降低,避免了高压熔堆和安全壳直接加热的发生。4.3 应急措施及建议

1991年西屋公司W O G(Westinghouse Owner’s Group)发展了可以普遍适用于西屋公司核电站的严重事故管理导则(SAMG)。在该导则中提出了事故处理的6项基本措施:(1)向蒸汽发生器注水以保护S G传热管,在堆芯冷却恢复以后为R C S提供热阱,洗刷从一次侧泄漏的放射性产物;

(2)实施R C S降压以保护S G传热管,提高RCS安注可能性,并防止熔融物高压喷射;

(3)向R C S注水以冷却堆芯,不管堆芯熔融物的位置(即不管熔融物是在压力容器内还是在压力容器外,向RCS注水都是有效的);

(4)向安全壳注水以防止压力容器失效,冷却泄漏到压力容器外的堆芯碎片,并防止堆芯混凝土反应;

(5)实施安全壳减压,减少裂变产物泄漏并防止安全壳失效;(6)减少安全壳内氢气浓度以防止氢气燃烧。

根据该导则,为评估核电厂应对全厂断电事故的能力并且能在事故发生后缓解其后果,有以下几方面的工作需要开展:

4.3.1 应急压空和1E级蓄电池有效工作时间论证

全厂断电情况下,一些属于安全系统功能的气动阀的正常操作用气就是由应急压空供给。例如稳压器卸压阀。而诸如卸压阀控制电源和安全参数仪表电源等是由1E级蓄电池供应。为了不影响在需要的时候执行一回路卸压等缓解措施,有必要对应急压空和1E级蓄电池容量进行分析。

(1)应急压空供应时间:在应急事故时(包括全厂性断电、主压缩空气站及全厂仪表压缩空气管网发生事故等),01号厂房内的主安全阀、动力卸压阀和稳压器喷雾调节阀等共六只阀门,由二台容量各为2.5 m3的贮气罐供给应急压缩空气,能持续供气5.2 h。实际上,稳压器安全阀气动装置已拆除,故卸压阀的可动作时间应大于5.2 h。

(2)1E级蓄电池容量:关于1E级蓄电池容量,《秦山核电厂最终安 全分析报告》这样描述:1)220 V蓄电池组的容量(2000A H)按在所指定的时间(1 h)内能承载的负载来选择(包括应急柴油机控制电源和事故照明等负载)。

2)2 4 V直流蓄电池的容量(200A H)按在所指定的时间(1 h)内能承受最大的负载来选择。

为了应付长期全厂失电(超过1 h),有必要对现有容量的蓄电池带载时间进行试验,以获取其真实的带载时间,为制定严重事故管理导则提供参考依据。如果验证结果时间太短(小于2h),就有必要增加蓄电池容量,以获取更长的带载时间,从而增强对全厂断电的应付能力。

4.3.2 评估应付全厂断电时限能力

在全厂断电事件发生后,为了实现核电厂纵深防御的设计要求,每个核电厂都必须具备一定的在没有交流电源的情况下依然能够排出余热和保持安全壳完整性的能力。通常核电厂的全厂断电应付能力来源于非能动的安全措施、自然循环的冷却、由蓄电池作为后备电源的动力设备等。这个时限能力是以小时数衡量的,具体数值取决于下列因素:厂内应急交流电源系统的冗余度;厂内应急交流电源的可靠度;预期的厂外电源的断电频度;恢复厂外电源需要的时间。通过专门的计算方法可以计算出我厂应付全厂断电的实际能力,如果其明显小于为了保证整体安全性目标而提出的最低时限,则需要采取变更改造等措施来加强我厂应付全厂断电的能力。

4.3.3 增设可替代交流(AAC)电源

AAC电源应该具有以下特点:(1)能够连接到厂内的交流电源系统,但正常运行情况下是保持断开的。这体现了替代交流电源的专一性,它是为全厂断电特别设置的。

(2)AAC电源与厂外交流电源或厂内应急电源发生共模故障的可能性应最小。这就要求在设计A A C电源时尽量保持与厂内应急交流电源最大多样性。

(3)全厂断电开始后A A C电源必须及时可用,并可按要求手动连接到所需的所有的安全母线上。

(4)AAC电源应有足够的容量,在使电厂进入和维持在安全停堆状态所要求的时间内,使应付全厂断电所必需的系统运行。显然增设A A C电源是增强核电厂应付全厂断电时限能力的行之有效的手段,也是提高其安全性和纵深防御能力的一个行之有效的措施。我们可以借鉴CNP1000项目中PSA分析结果,如下表所示。

表 AAC电源对电厂CDF的影响

Table The influence of AAC power supply on CDF

虽然对于不同电厂具体数据有所差异,但还是可以看出增设A A C电源对降低堆芯熔化概率的显著贡献。秦山核电厂现在已完成了建设A A C电源的可行性研究报告,等待批准实施。

4.3.4 安装非能动自催化氢气复合器 严重事故工况下,反应堆堆芯锆水反应和其他金属构件的氧化将会产生氢气。短时间内氢气的快速释放会造成安全壳内局部地区有很高的氢气浓度,在事故后期,若压力容器下封头失效,则熔融堆芯与混凝土底板的反应(M C C I)会在很长一段时间内连续不断地释放出氢气,这样安全壳内总的氢气浓度也会随之逐渐增长。安全壳内局部及整体氢气的积累可能会引发爆燃或爆炸现象,将会威胁到安全壳的完整性及设备的可用性。在S B O情况下,为了防止安全壳的失效,控制安全壳内的氢气体积浓度低于氢气爆燃的限值,有必要在安全壳内部合理布置相当数量非能动氢气复合器(PARs)。当然,使堆熔物快速冷却,减少堆熔物与冷却剂之间反应产生大量高温高压蒸汽,避免安全壳压力超过设计限值同样是非常重要的。

4.3.5 制定严重事故管理导则

根据法规要求,核电厂必须考虑严重事故管理,即防御性严重事故管理及缓解性严重事故管理。防御性严重事故管理措施(P A M)包括在我厂的应急操作规程(EOPs)里。需要指出,EOPs不仅包括应付设计基准事故,而且还包括应付超设计基准事故的早期阶段,即堆芯损伤发生之前的措施。堆芯损伤后EOPs不再合适,而需要与之分开的导则,就是严重事故管理导则(S A M G)。严重事故管理导则包括执行缓解性严重事故管理措施的所有指导。

我们知道,导致高压熔堆等严重事故的几大初因序列是:冷却剂丧失事故(L O C A),未紧急停堆的预期瞬态(A T W S)和全厂断电(S B O)。对这些主要事故进程及其缓解措施进行分析,是提高严重事故管理水平和制定严重事故管理导则的前提条件。秦山核电厂已基本完成运行工况1级P S A工作,已给出了引起堆芯损伤的主要事故及序列(包括全厂断电)其结果可以应用到后续的工作中,以便为安全设备的改造提供依据,提高运行可靠性。现阶段更实际的方法是完善相应的运行规程,做好应急柴油机等安全设备的定期维护和保养,预防全厂断电事件的发生,从而减少严重事故发生的概率。

第二篇:切尔诺贝利核电站爆炸事故分析

切尔诺贝利核电站爆炸事故分析

所属频道: 核电

关键词: 切尔诺贝利 核电站 爆炸事故分析

事故经过

1986年4月26日,切尔诺贝利核电站的4号反应堆发生爆炸,死16.7万人,损失120亿美元,是世界上最严重的核电站事故。

切尔诺贝利核电站建于基辅市以北130千米,4台机组,总装机400万千瓦,是原苏联最大核电站。1970年切尔诺贝利开始修建第一座核反应堆,但总工程师只有建设火电站的经验,整个设计由乌拉尔电力公司设计院进行。后来由莫斯科Zukh水电设计院接手该项目的设计,该设计院主要是水电设计。因为物质缺乏,几乎不太可能找到设计人员设计的某些特殊部件,因此设计者真好将就使用他们自己制造的部件。

1977年第一座反应堆投入运行,与原定计划推迟了两年。管理人员和操作工并不知道1 975年在列宁格勒与此相同的反应堆发生了熔化事故。对有关规定也进行了修改,因为它们对实际情况不适合,特别是经常移出比规定多的控制棒。操作工还发现当输出功率很低时反应堆极不稳定。

20世纪80年代初,另外两个反应堆投入运行。1982年第三座核反应堆活性区发生爆炸并将放射性物质释放到核电站区域,因为对这次事故保密,其他反应堆的操作人员并不知道此次事故的发生。这期间在整个前苏联的ЯBMK型反应堆还发生了几起类似的事故。1980年在Kursk发生的事故引起了原子能委员会的注意:因为停电导致无动力驱动控制棒和水泵,40秒后才启动备用电源,在此次事故中因:为冷却水的自然循环量较大才避免了严重破坏。

1983年末,估计切尔诺贝利4号反应堆关闭后透平机还能为反应堆水泵提供一定时间的应急电源,曾建议对该系统进行测试,但因为装置到1983年底前未获授权,因此对该系统的测试延期进行。在负责ЯBMK型反应堆的部长处还有其他的事故记录——设计的控制棒因为有裂纹当插入反应堆时引起输出功率剧烈波动,但在操作工的操作记录上没有记录。1984年3月27日,4号反应堆正式投入商业运行。

1985年报纸上出现了对核电站的批评,能源部命令总工程师替换易燃的遮蔽材料和电缆。但是因为无不易燃的材料供应,这项计划被搁置。高层管理人员的注意力集中在应付商业压力,而让总工程师负责装置的操作。

1986年4月,4号反应堆停车检修,并且安排了一系列的测试计划,包括应急电源延迟测试。但仍然不知道当透平的动量下降后是否能产生足够的电能驱动水泵达40秒。测试由装置的制造者进行,他们的测试计划与3号和4号反应堆的总工程师讨论了15分钟后即获同意,并没有征求安全检查员的意见,负责反应堆的总工程师也没有到场,正式的批准文件也没有征求核专家的意见。

13时反应堆的输出功率减为一半,两台发电机一台停车。14时对另一台发电机的测试准备就绪。为了避免被联锁,紧急反应堆活性区冷却系统断开。开始准备测试时,Kiev的电力调度员请求供电到23时。23时重新开始根据拟定的计划对透平机的作用进行测试。控制棒的自动控制系统被断开,输出功率降低,下降到30MW。到这一步就没有按照测试的标准规程进行(按标准规程应该放弃试验>,工程师就下一步如何进行没有形成统一的意见。继续移出控制棒,4月26日1时输出功率稳定在200MW,但这仍然低于推荐的最小功率水平,但是被认为可以继续进行测试。

1时过后,另一台冷却泵很快加入该系统,这就需要移出更多的控制棒。大量的水进入反应堆引起蒸汽压力降低。为了避免因为蒸汽压力低导致反应堆关闭,操作人员切断了联锁信号。1时22分,实验刚刚开始,计算机打印结果表明反应性只有最小保留值的一半。1时23分透平发电机的紧急调节阀门关闭,透平机无蒸汽,计算机显示反应器功率急剧上升,副控手按下紧急停车按钮试图将所有控制棒放入反应堆活性区,此时控制棒无法全部下降。爆炸发生了,爆炸掀翻了1000t反应堆外壳,反应堆直接向大气敞开。

工程师没有意识到反应堆已发生了爆炸,还试图用大量的水来控制反应堆,但是所有的泵都无法工作。发电机房着火,消防队也赶来,关键人物也来到现场。核电厂厂长被告知反应堆未破坏,只是需要他对产生的放射程度进行分析调查,但据说莫斯科官方拒绝授权。

4月26日下午,有足够的证据表明反应堆发生了爆炸,其他的反应堆也已关闭。成千上万吨含有硼、铅等的沙石飞向建筑物。对相邻城镇Pripyat的调查于4月27日展开。

事故根本原因分析

表7-3和表7-4是事故发生的详细过程和根本原因。

事故后果

事故发生后,反应堆熔化燃烧,引起爆炸,冲破保护壳,厂房起火,放射性物质源源泄出。用水和化学剂灭火,瞬间即被蒸发,消防员的靴子陷没在熔化的沥青中。1、2、3号机组暂停运转,电站周围30公里宣布为危险区,撤走居民。事故发生时当场死2人,遭辐射受伤204人。5月8日,反应堆停止燃烧,温度仍达300℃。当地辐射强度最高为每小时15毫伦琴,基辅市为o.2毫伦琴,而正常值允许量是o.01毫伦琴。瑞典检测到放射性尘埃,超过正常数的100倍。西方各国赶忙从基辅地区撤出各自的侨民和游客,拒绝接受白俄罗斯和乌克兰的进口食品。原苏联官方4个月后公布,共死亡31人,主要是抢险人员,其中包括一名少将;得放射病的203人;从危险区撤出13.5万人。1996年乌克兰官方公布,10年来已有16.7万人死于本事故的核污染,320万人受到辐射伤害。

灾后两年之中,26万人参加了事故处理,为4号核反应堆浇了一层层混凝土,当为“棺材”埋葬起来。清洗了2100万平方米的受污染设备,消除600个村庄的污染物,掩埋50万立方米“脏土”,为核电站职工另建了斯拉乌捷奇新城,为撤离的居民另建2.1万幢住宅。这一切,包括发电减少的损失,共达80亿卢布(约合120亿美元)。乌克兰政府已作出永远关闭该电站的决定。白俄罗斯共和国损失了20%的农业用地,220万人居住的土地遭到污染,成百个村镇人去屋空。乌克兰被遗弃的禁区成了盗贼的乐园和野马的天堂,所有珍贵物品均被盗走,因此将污染扩散到区外。近核电站7千米内的松树、云杉凋萎,1000公顷森林逐渐死亡。30千米以外的“安全区”也不安全,癌症患者、儿童甲状腺患者和畸形家畜急剧增加;即使80千米外的集体农庄,20%的小猪生下来也发现眼睛不正常。上述怪症都被称为“切尔诺贝利综合症”。

国际原子能机构专家称,要消除事故造成的污染,至少需100年。

第三篇:炼钢厂北区泵站断电事故分析

炼钢厂北区泵站高压配电室断电事故分析报告

2011年九月三日13点15分,11万站送至炼钢厂北区二期泵站的516出口断电,致使北区二期泵站、一期泵站、污环泵站、二次除尘、斜板及压泥所有设备全部断电,结晶器缺水和二冷水断水,一期连铸和二期连铸断浇,结晶器烧坏;氧枪水、设备水、污环水断水,转炉冶炼中断,氧枪缺水紧急提枪,给生产和设备造成很大损失。经我厂技术人员检查,发现由北区二期泵高压配电室送至水洗磨一路10KV电缆被车辆撞坏,短路跳闸,导致本次断电事故。

到目前为止此线路事故断电累计四次,分别是一月份

一次,由于去水洗磨电缆挖坏,三月份一次水洗磨事故,六月五日17点30分车辆将电缆撞坏,电缆短路,九月三日13点15分车辆将电缆撞坏,电缆短路。

公司11万站516和528出线跳闸断电原因,主要是由二期泵期高压配电室送至水洗磨一路10KV出线发生事故,引发11万站事故跳闸,建议公司领导考虑把水洗磨供电和大机修供电单独由11万站供给,以避免类似事故发生,减少对炼钢厂的影响,妥否请领导批示。

炼钢厂机动科

2011-9-3

第四篇:核电站事故知识

核电站事故知识

核电站氢爆炸危险有多大?

根据中国国家原子能机构网站等权威机构公布的资料,氢爆炸不等于核燃料泄漏。核燃料从里到外分别由金属外壳、压力容器和安全壳保护,其中金属外壳由锆合金或不锈钢等制成,它将具有放射性的核燃料与外界隔绝。

此外,氢爆炸与核弹爆炸有本质区别。即使最坏的情况发生,核反应堆内的核燃料棒熔毁爆炸,它也不会变成核弹,因为核电站使用的核燃料浓度非常低,其有效成分铀-235含量约为3%,而核弹中铀-235含量高达90%,这么低的含量不足以引发核弹那样的剧烈爆炸。正如啤酒和白酒都含酒精,白酒因酒精含量高可以点燃,而啤酒因酒精含量低不能点燃一样。

但不能因此说氢爆炸不危险,主要的担心是它可能炸毁保护核燃料的护罩,导致放射性物质泄漏。

哪些放射性物质被泄漏?

根据世界卫生组织网站等公布的资料,对一个受损的核电站来说,会释放两类放射性物质,一类相对来说危害不大,另一类则要危险得多。

对人类危害较小的一类放射性物质是氮-16和氚等。一般核电站都会产生这些物质,它们在经过衰变达到允许标准后将由高空烟囱排到大气中。当然,人们无须为此担忧,因为氮-16会快速衰变,时间仅数秒,最终变为氮这种空气中最常见的惰性气体;而氚这种氢同位素无法在空气中远距离传播,也无法穿透人体,只有大量吸入才对人体有害。

比较令人担忧的是碘-131和铯-137,它们是随着反应堆释放的蒸汽泄漏出来的。

碘-131需要数月时间才会完全消失,它将通过受污染食品,特别是受污染奶制品,进入人体在甲状腺内聚集,引发甲状腺疾病甚至甲状腺癌。日本政府将向核电站附近居民发放碘片,以防止碘-131可能造成的危害。

铯-137会损害造血系统和神经系统,并增加患癌几率。铯137的半衰期为30年,不太容易消除。苏联切尔诺贝利核电站1986年发生事故,核电站周围地区的土壤中至今依然存在这种放射性物质。

第五篇:日本福岛核电站事故分析看法

福岛核电站事故分析及看法

福岛核电站简介及事故发生过程

福岛核电站简介

福岛核电站是目前世界上最大的核电站,由福岛一站、福岛二站组成,共10台机组(一站6台,二站4台),均为沸水堆。福岛一站1号机组于1971年3月投入商业运行,二站1号机组于1982年4月投入商业运行。福岛核电站的核反应堆都是单循环沸水堆,只有一条冷却回路,蒸汽直接从堆芯中产生,推动汽轮机。福岛核电站一号机组已经服役40年,已经出现许多老化的迹象,包括原子炉压力容器的中性子脆化,压力抑制室出现腐蚀,热交换区气体废弃物处理系统出现腐蚀。这一机组原本计划延寿20年,正式退役需要到2031年。

2011年东京电力计划为第一核电站增建两座反应堆受东日本大地震影响,福岛第一核电站损毁极为严重,大量放射性物质泄漏到外部,日本内阁官房长官枝野幸男宣布第一核电站的1至6号机组将全部永久废弃。联合国核监督机构国际原子能机构(IAEA)干事长天野之弥表示日本福岛核电厂的情势发展“非常严重”。法国法核安全局先前已将日本福岛核泄漏列为六级。2011年4月12日,日本原子能安全保安院根据国际核事件分级表将福岛核事故定为最高级7级。

福岛核电站事故发生过程

2011年3月,里氏9.0级地震导致福岛县两座核电站反应堆发生故障,其中第一核电站中一座反应堆震后发生异常导致核蒸汽泄漏。于3月12日发生小规模爆炸,或因氢气爆炸所致。有业内人士表示,福岛核电站是一个技术上现在已经没人用的单层循环沸水堆,冷却水直接引入海水,安全性本来就没有太大指望。沸水产生的蒸性物质。对于日本这一个地震频繁的地区,使用这样的结构非常不合理。

3月14日地震后发生爆炸。在爆炸后,辐射性物质进入风中,通过风传播到中国大陆,台湾,俄罗斯等一些地区。

东京电力公司16日上午说,福岛第一核电站当天上午再次遭遇火灾。公司方面同时证实,两名核电站工作人员下落不明,东京电力公司16日上午召开紧急新闻发布会,称核电站4号反应堆於东京时间16日5点45分(北京时间4点45分)再次发生火灾。东京电力公司发言人说,该公司员工已经证实了火灾的发生,目前已经紧急通知了福岛县政府和消防部门。

日本官方于东京时间16日上午8点15分称,火势已得到控制。然而,4号反应堆的具体情况目前无从得知。有报导称,此次火灾与15日发生的火灾相类似。国际原子能机构总干事天野之弥15日说,该机构尚未接到日本政府有关核电站4号反应堆15日火灾后情况的说明。

东京电力公司同时证实,两名核电站工作人员下落不明。但公司辩解称:这两名工作人员是在11日的大地震后即告失踪,而不是15日核电站爆炸后失踪」。日本常驻维也纳国际机构代表中根猛15日向共同社透露,日本政府已请求IAEA最快数日内派出专家小组帮助应对日本大地震引发的核电站事故。中根表示,由於核电站附近已经非常难接近,最初预计只能派遣小规模的专家小组。

日本首相菅直人15日已就福岛第一核电站的问题向日本民众发表了讲话。他要求核电站方圆20公里以内的所有居民撤离,方圆20至30公里以内的居民在室内躲避。有报导称,菅直人痛斥东京电力公司“欺上瞒下”。目前核电厂附近检测到铯和碘的放射性同位素,专家认为有氮和氩的放射性同位素泄出也是很自然的,钚泄漏也已经出现,情况非常令人担忧。

事故原因

3月11日地震发生时,福岛一站的1~3号机组正在运行,4~6号机组处于停堆检修状态。地震和海啸发生后,1~3号机组立即自动停堆。但电站的外电网全部瘫痪,同时备用柴油发电机由于被海啸摧毁未能正常工作,致使反应堆停堆余热排除系统完全失效,这次福岛核电站出的几次事故,主要是因为反应堆停堆以后,反应堆里面的剩余射热没有被及时排除。实际上,反应堆被排除以后,剩余射热没有排除,应该先让它冷却下来,这是最关键的,包括发电的燃料也需要冷却。所以反应堆停了以后,它还有相当可观的剩余射热。如果是百万千瓦的核电机组,发电是100万千瓦,他们反应堆的热功率需要产生的热将是330万千瓦。停堆以后,开始的一分钟以内有相当的剩余热,大约有5%、6%。330万千瓦的反应堆,假如是1%的热功率,就是3.3万千瓦。或者理解成1%的剩余热就是3万3千个1000万电流在发热。要把剩余热带出来,就需要冷却。如果冷却不充分,使堆内的温度不能带走,温度升高以后,燃料棒里面包着核燃料,它受不了就容易破,需要释放。另外,在堆高温以后产生水汽反应,有一个高水反应,放出大量的氢气,同时还释放热量。这是放热反应。锆和水会起锆水反应,放出蒸汽的时候,能够生成氧化锆、氢气。氢气没有地方跑,就往外释放。到了反应堆厂房以后,由于氢气浓度太高,氢气就和空气当中的氧气发生了氢爆,空气中氢气浓度超过一定浓度,会和氧气发生氢爆。这也就应该是福岛核电站的重要原因。

日本福岛核电站事故引起全球关注,除地震、海啸等客观因素外,日本以及国际上的部分专家和媒体认为,灾前和灾后忽视安全隐患和疏于管理是造成此次事故并导致事故扩大的重要原因,以色列资深核能专家乌齐·埃文近日接受以当地媒体采访时说,福岛第一核电站反应堆持续使用时间最长的已有约40年,反应堆老化情况严重,导致其在紧急状况下失控。震后连续数天、多套方案都未能使“高烧”的反应堆明显降温就说明了这一点。

此外,日本当局在事故最初对事故的严重程度没有足够认识,一名日本官员在事故刚发生时甚至说,核电站泄漏的放射线剂量仅相当于人们在医院利用医学器械进行放射线身体检查时承受的剂量。“这根本就是荒谬。日本当局如果能在事故发生之初公开更翔实的事故信息,他们或许能更迅速地得到各方面的国际援助,整个核电站事故也就不会加剧到如今这个地步。事故结果及对世界核事业的影响

日本福岛核电站不断发生的氢气爆炸与燃料棒露出水面的情况给世界各国带来了巨大冲击,其事故等及最终确事实上为7级,与俄的切尔诺贝里事故为同级,也是日本历史上最为严重的核电事故,事故不仅造成了巨大的人员伤亡,而且致使人们对清洁能源核电是否安全再次提出了质疑,同时也导致了各国公众大规模的反核游行,这使得人们不行不对核电的安全性进行重新的审视。

许多印度人认为此次事件会影响日印核能合作协议的谈判。新德里的能源资源研究所首席研究员达蒂奇认为“印度公众很可能会对日本核电站技术出现严重质疑”。印度总理辛格14日命令重新抽查国内20个核电站的安全対策。

韩国总统府由任太熙总统办公室主任召开了紧急会议,讨论放射性物质对周边国家的影响。韩国联合新闻14日称,关于重新启动大田市2月曾经发生放射性物质泄漏事故的用于研究用途的反应堆一事,相关机构认为需要再次确认其安全性。

日本地震引发核电厂爆炸以及輻射外泻,泰国《民族報》、《曼谷郵報》近日都大篇幅报道日本核能危机最新狀況,泰國政府也表示要检讨核能发展计划。《曼谷郵報》援引能源部消息称,泰国总理阿披实反对兴建核能发电厂,但他已決定解散国会,准备重新大选,所以現任政府不会考虑任何核能发电计划。

据《工贸报》网站3月17日报道,越南原子能研究院院长王友晋3月16日称,越南正在制定和实施相关核电开发计划,在核电项目选址问题上应从日本核事故中吸取教训,充分评估安全因素。

德国联邦环境部长吕特根13日宣布,鉴于日本面临的核灾难威胁,决定对德国的核能政策重新进行审议,以期加快完成向可再生能源的过渡。德国总理默克尔将于15日与各州州长就德国核设施的安全问题举行会晤。她表示,加速进入可再生能源时代十分必要,但立即关闭德国所有的核反应堆并不现实。据悉,在野党和环保人士要求德国完全放弃核能。德国原计划到2020年关闭境内全部核电站,但以默克尔为首的执政联盟去年9月通过的新能源法规定,德国现有的17座核电站运营期限平均延长12年。

中国:国务院要求全面审查在建核电站,暂停核电项目审批。务院总理温家宝16日主持召开国务院常务会议,听取应对日本福岛核电站核泄漏有关情况的汇报,会议要求:

(一)立即组织对我国核设施进行全面安全检查。

(二)切实加强正在运行核设施的安全管理。

(三)全面审查在建核电站。

(四)严格审批新上核电项目。

美国:奥巴马称将按计划建设核电站,但议员呼吁美国核电发展应减速.俄罗斯:普京15日下令,要求对俄核工业的发展进行检查评估.总体来讲,日本福岛核电站的事故放缓了世界各国的核电事业。日本福岛核电站事故应带给我们的经验教训

一、加强对自然灾害的预测力度,自人类历史以来,人类无时无刻不在向着生活更好更安定的方面努力,但灾害无情,且人类在自然灾害面前仍显得那么的渺小,因些做好自然灾害的预测,及时采取有效的措施不仅对于核电,对于其它行业一样有重要的意义,二、加强对核电安全的管理。日本福岛核电站的严重事故不仅仅是客观的环境因素造成的,在灾前和灾后对核电站忽视安全隐患和疏于管理也是造成这次重大事故的重要原因。一切核电的有用运行经验都是从第一次事故中总结出来,它是我们的核电工作人员以血的代价换来的,我们应当珍惜它,并让它发挥重要的作用。以防患与未然。

三、努力发展改进核电技术,以提高其安全性。每一项技术的突破都可以用秋造成福人类,在提高安全管理的基础上努力开发新的核电技术。从而不断提高核电站的安全性,以减少核电对公众环境的危害。

四、对正在运行的核电站,要定期检查其安全性。每一次事故的发生之前总会有所征兆,在安全栓查的过程中发现这些征兆并采取有效的措施,以避免事件的扩大或事故的发生。

五、在核电周围建立核电安全监测站,以检测确定核电对公众的影响在国家标准的允许范围之内,同时监测核电站工作是否正常。

六、对于历史上的高发核电事故,应分析其原因,总结其经验,并把它们化为操作的规程,组织全站工作人员进行学习讨论。以强化认识,形成安全生产的理念。

七、对核是站的状况、地理位置,事故历史进行分析,预测未来可能发生的事故,在员工培训的过程中加强对这些事故的演练,以确保万一事故发生后能尽快的采取有效措施,使事故的损失降到最低。

八、在应对突了事故的过程中就尊重事实,保证事故的透明度,以集所有力量,群策群力,共度难关。

另外,无论从技术、自然环境,还是从核电运行的历史来看,中国的核电技术都是安全的。并且核电作为相对清洁能源对各国的发展都有着举足轻重的作用。著名科学有,两弹无勋邓稼先曾经说过“如果有来生,我还会选择中国,还会选择核事业”。老一代的这种奉献精神值得我们去学习,既然选择了核电事业,就要爱我所选择。努力去证明自己的选择是对的。

下载分析核电站全厂断电事故word格式文档
下载分析核电站全厂断电事故.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    全厂停电事故应急预案

    洛阳豫港龙泉高精度铝板带有限公司 全厂停电事故应急预案 1 总则 为贯彻“安全第一,预防为主”的电力生产方针方针,坚持防御和救援相结合的原则,以危急事件的预测预防为基础,以......

    XX全厂停电事故报告

    关于XXX发电公司 “10.25”全厂停电事故的情况通报 2005年10月25日13时52分,XXX发电公司发生一起因外委的XX电建项目部设备维护人员在消除缺陷时,误将交流电接入机组保护直流......

    全厂停电事故应急预案

    全厂停电事故应急预案 1 厂用电中断造成单台机组跳闸的处理措施。 1)立即启动柴油发电机组,维持保安段及直流电压,如直流电压不能维持时,适当调整事故负荷,保证润滑油泵、UPS直流......

    核电站事故概率的错误认识

    每座核电站在设计运行期事故发生概率为百万分之一堆年。有人就说,一台电站寿期50年,那么核电站建造多了,比如全世界建2万座核电站,事故率就成1/50了。也就是五十年肯定有一次事......

    核电站事故及其原因(大全)

    核电站事故及其原因 姓名:栾传英 班级:光115 学号:201157505119 内容摘要:主要讲述三里岛核电站、切尔诺贝利核电站、福岛核电站事故的发生时间、地点、原因以及造成的危害损失......

    美国三哩岛核电站事故分析与对策

    美国三哩岛核电站事故分析与对策 39055207 马喆 前言 美国三哩岛核泄漏事故是核能史上第一起堆芯熔化事故,也是压水堆型核电站发生的一次最大事故。1979年3月28日,位于美国宾......

    福岛核电站事故总结(五篇)

    福岛核电站事故之浅见 中广核台山核电2011届准员工 葛智伟 一、福岛核电站简介 a)、核电站介绍 福岛核电站位于北纬37度25分14秒,东京141读2分,地处日本福岛工业区。它是目前......

    分行29、9.30机房断电事故调查报告

    分行9.29/9.30中心机房断电事故 调查报告 省分行信息技术管理部: 2011年9月29日12点50分及2011年9月30日8点10分,分行中心机房(以下简称机房)接连发生两次断电事故,造成郴州分行......