第一篇:冶金论文
冶金工程概论课程论文
冶金固体废物处理与应用
学生 姓名 年级 学号
摘要:冶金固体废弃物主要指炼铁炉中产生的高炉渣、钢渣、有色金属冶炼产生的各种有色金属渣,如铜渣、铅渣、锌渣、镍渣等。目前,炼钢过程的排渣处理工艺大体可分为:冷弃法、热泼碎石工艺、钢渣水淬工艺、风淬法。我国的钢产量虽居世界第一位,但由于炼铁炼钢技术尚不够先进,因而各钢铁企业每年都会产生大量的、不同种类的冶金渣。针对我国冶金工业固体废弃物的现状,资源化处理与综合利用是相关企业和机构必须重视和加大力度进行研究突破的课题。本文就冶金固体废弃物资源化处理与综合利用进行了一些有益的探讨。
关键词:冶金固体残渣、残渣的处理、残渣的利用、节能环保
冶金污染主要是指冶金工业生产过程中产生的各种固体废弃物。主要指炼铁炉中产生的高炉渣;钢渣;有色金属冶炼产生的各种有色金属渣,如铜渣、铅渣、锌渣、镍渣等;从铝土矿提炼氧化铝排出的赤泥以及轧钢过程产生的少量氧化铁渣。每炼1t生铁排出0.3-0.9t钢渣,每炼1t钢排出0.1-0.3t钢渣,每炼1t氧化铝排出0.6-2t赤泥。国际上早在本世纪40年代就已感到解决冶金污染“渣害”的迫切性,经过努力,美国高炉渣在50年代已达到了产用平衡,钢渣在70年代也达到了产用平衡,主要用于制造各种建筑或工业用材。我国冶金污染利用起步较晚,目前高炉渣利用率在70-85%,钢渣利用率仅25%左右。冶金过程中出了固体残渣外还有许多气体排出,对大气也有严重的污染。
冶金工业是人类历史上最古老的工业之一。自18世纪产业革命后,由于钢铁工业迅速发展,造成严重的烟尘污染,有色冶炼工业又随之兴起,进而产生了重金属和二氧化硫的污染问题。近50年来,工业发达国家发生了几十起重大公害事件,有代表性、闻名于世界的八大公害事件中,就有四件其直接肇事者就是冶金工业,其中包括:英国伦敦烟雾事件(1952年12月)、比利时马斯河谷烟客事件(1930年12月初)、美国客诺拉烟雷事件(1948年10月)和日本富山事件(1968年查明),而前三件主要是钢铁工业含二氧化硫的重金属烟尘造成的大气污染事件。在炼铁及有色冶金等生产过程中,能产生焦油、铁及其氧化物颗粒、氧化镉、铬酸盐等致癌污染物,使冶金行业成为环境污染的严重危害者。
目前我国冶金工业固体废弃物年产生量约 4.3亿吨,综合利用率为18.03%。其中工业尾矿产生量为2.84亿吨,利用率1.5%;高炉渣产生量7557万吨,利用
冶金工程概论课程论文
率65%;钢渣产生量3819万吨,利用率10%;化铁炉渣60万吨,利用率65%;尘泥1765万吨,利用率98.5%;自备电厂粉煤灰和炉渣494万吨,利用率59%;铁合金渣 90万吨,利用率90%;工业垃圾436万吨,利用率45%。针对我国冶金工业固体废弃物的现状,资源化处理与综合利用是相关企业和机构必须重视和加大力度进行研究突破的课题。冶金渣的资源化处理和综合利用
目前我国钢铁年总产量已达到5亿吨,每年产生的冶金渣达1亿吨以上。在冶金渣中排量大的主要有高炉水淬矿渣、钢渣、高炉重矿渣等,其中高炉水淬矿渣和高炉重矿渣利用率较高,而钢渣利用率较低,仅有20%左右。未得到利用的冶金渣长期堆放未及时综合利用,一方面会造成冶金渣逐渐失去活性难以再利用,另一方面冶金渣的堆放要占用大量土地并会严重污染环境。2009年1月 1日,《循环经济促进法》颁布实施,如何大量利用冶金渣已成为各钢铁企业的当务之急。
1.1冶金渣资源化处理和综合利用的发展方向
目前,我国的钢产量稳居世界第一,但由于炼铁炼钢技术尚不够先进,因而各钢铁企业每年都会产生大量的、不同种类的冶金渣。根据我国的国情和目前的技术水平,要想大量利用冶金渣,只有走开发节能、利废、环保的建材产品这条路。冶金渣资源化处理和综合利用是指从冶金渣中磁选除铁并将尾料大量用于建材产品的生产。从冶金渣中磁选回收的废钢铁可返回钢铁厂冶炼再利用;磁选回收的尾料可用来生产水泥混合材、路基材、砌筑水泥、预拌砂浆、混凝土标砖、多孔砖、冶金渣蒸压加气砌块等建材产品。冶金渣的开发利用既要考虑资源的再利用,符合循环经济的产业政策;又要考虑到采用合理的生产工艺开发出节能、环保、符合市场需求、达到国家标准要求的建材产品。
1.2冶金渣资源化处理和综合利用与节能环保
利用冶金渣生产节能环保建材产品的方法是利用钢铁厂产生的冶金渣、高炉煤气、余热蒸汽等再生资源生产出节能、环保、可替代高能耗建材产品的新工艺。破碎磁选除铁后的钢渣含有较多的游离CaO等矿物质,这些矿物质具有水硬性。当钢渣与高炉水淬矿渣配合使用时,钢渣水化析出的Ca(OH)2能对矿渣起到碱性激发作用,而矿渣又可消除钢渣中游离CaO的不良影响,改善产品的体积安定性。破碎磁选除铁后的重矿渣具有质密、体积安定性好的特点,可取代碎石、黄砂用
冶金工程概论课程论文
作建材产品的粗细骨料。本文以钢渣混合材、钢渣矿渣混凝土砖和冶金渣蒸压加气砌块为例,分析了冶金渣综合利用与节能环保的关系。1.2.1钢渣混合材的节能环保分析
钢渣应用于水泥工业在我国已有30余年的历史,据不完全统计,国内目前每年可使用钢渣混合材1000万吨。用于生产水泥的钢渣混合材必须烘干,而目前普遍的烘干方法是用汽车将含水约12%的钢渣混合材运送至水泥厂,然后用煤燃烧产生热风进行烘干。该过程一方面增加了10%的汽车运输量,另一方面需要消耗煤炭资源。现在利用钢渣作为水泥混合材的经济方式是利用炼铁厂产生的副产品—高炉煤气就地进行烘干,这样可大幅节省汽车运输量和石油、煤炭等资源。采用炼铁厂产生的副产品—高炉煤气就地进行烘干,每吨钢渣初水分12%烘干至终水分2%需150立方米的高炉煤气(热值以3500千卡/立方米计),每年1000万吨钢渣混合材需15亿立方米的高炉煤气,折合标煤75万吨(标煤热值约7000千卡/千克计);每年1000万吨钢渣混合材(运距以30公里计)可节省汽车运输用油量45万升(重型载重汽车以每吨钢渣油耗以1.5升/100公里计)、煤炭用量75万吨。
1.2.2钢渣矿渣混凝土砖的节能环保分析
钢渣矿渣混凝土砖主要是以钢渣矿渣配制的砌筑水泥为胶凝材料,以钢渣、水淬矿渣和高炉重矿渣为骨料,再掺入一定量的添加剂,采用半干法压制成型、钢厂余热蒸汽养护的方法生产出来的一种冶金渣砖。该生产工艺于2006年在新余钢铁股份有限公司的建材生产线上已经实施。经过理论和实践证明该工艺生产出来的钢渣矿渣混凝土砖各项性能指标均优于国家标准要求,而且产品成本低,生产原料90%以上采用钢厂废弃的冶金渣,采用钢厂余热蒸汽养护,符合国家节能环保的产业政策。以新余钢铁股份有限公司年产30万立方米的钢渣矿渣混凝土砖生产线为例,每年可消耗钢渣约 11万吨、矿渣11万吨、重矿渣22万吨,可为钢厂利用大量的冶金渣并产生良好的经济效益。
钢渣矿渣混凝土砖生产使用的胶凝材料采用冶金渣自配的M22.5砌筑水泥,无需采用高能耗的PS32.5以上的成品水泥。钢渣矿渣混凝土砖的骨料就地采用钢厂的冶金渣,每年可减少36万吨砂石的开采开挖量和汽车运输量。钢渣矿渣混凝土砖的养护采用钢厂余热蒸汽养护,节省了煤炭资源。该条生产线集成了冶金渣、余热蒸汽、高炉煤气等再生资源的综合利用,每年可节省砂石运输(运距以30公
冶金工程概论课程论文
里计)用油量16.2万升(重型载重汽车每吨钢渣油耗以1.5升/100公里计);每年可节省成品水泥9万吨,折合标煤约1万吨(成品水泥煤耗以 110公斤/吨计);同时每年可减少2亿块粘土标砖的生产使用,折合标煤3万吨(粘土砖煤耗以100公斤/立方米计)。若全国100家大型钢铁厂平均每家建设一条30万立方米的钢渣矿渣混凝土砖生产线,每年可利用冶金渣共约4400万吨,节省汽车运输用油量1620万升、煤炭用量 400万吨。这样既大量利用了钢厂废弃的冶金渣又大量代替了粘土砖的市场,保护了耕地;同时由于钢渣矿渣混凝土是一种免烧砖,因而可以节能降耗。
1.2.3冶金渣蒸压加气砌块生产的节能环保分析
冶金渣蒸压加气砌块是将钢渣、矿渣加水磨成浆料,加入粉状复合添加剂,适量石膏和发气剂,经发气、预养、切割、蒸压等工序后制成的加气砌块制品。该工艺生产出来的冶金渣蒸压加气砌块性能良好,符合工业与民用建筑需要,而且能大量地消耗冶金渣。该工艺采用的原材料中90%以上为冶金渣,养护蒸汽是采用炼铁厂的副产品—高炉煤气作为燃料产生的,产品成本低。该生产线每年消耗约7500万立方米的高炉煤气(热值以3200千卡/立方米计),折合标煤约3.4万吨(标煤热值以7000千卡/公斤计)。以湘潭钢铁集团有限公司年产 30万立方米的冶金渣蒸压加气砌块生产线为例,每年可消耗钢渣约14万吨、矿渣14万吨,可利用大量的冶金渣并产生良好的经济效益。若全国100家大型钢厂平均每家建设一条30万立方米的冶金渣蒸压加气砌块生产线就可利用冶金渣共约3000万吨,每年节省煤炭用量340万吨。冶金尘泥的资源化处理与综合利用
2.1 技术分析
钢铁厂冶金尘泥主要包括:高炉瓦斯泥、转炉尘泥及除尘灰等。
炼钢过程中,加入到转炉内的原料有2%左右会转变为粉尘,转炉尘的发生量约
为20公斤/吨。炼钢粉尘主要由氧化铁组成,占70% ~95%,其他氧化物杂质(如 CaO、ZnO等)占5%~30%。转炉炼钢尘泥一般可用作烧结的原料,但锌在炼铁过程中属有害元素,因在高炉冶炼的过程中易形成炉瘤而影响炉料和气体的流动,因此转炉尘泥在回收过程中,可通过选矿法回收粉矿和富 C、Zn的尾泥。在烧结混合料中加入OG泥悬浮液有利于混合料制粒,随OG泥配量的增加,混合料中1mm粒级比率迅速降低,有利于改善混合料透气性、提高产量、降低成本及保护环境。
冶金工程概论课程论文
高炉瓦斯泥的组成主要是约20%的氧化铁、23%的碳、1%~5%的锌,还有较多的CaO、SiO2、Al2O3 等氧化物。高炉炉尘发生量约为25kg/t。高炉瓦斯泥颗粒较细,小于200目的占90%以上。高炉瓦斯泥的特征是含锌、铁、碳、水分含量高,颗粒细,锌主要存在于较小的颗粒中。对高炉瓦斯泥、瓦斯灰可采用水力分离选矿法提取富Zn、富C尾泥作为资源回收利用。
目前我国大型企业的冶金尘泥回收利用率可达 100%。转炉泥、除尘灰及瓦斯泥利用工艺和技术处于较先进水平,可为企业带来很好的经济效益。
2.2工艺分析
冶金尘泥综合利用工艺流程如下:
(1)转炉泥、除尘灰干法利用工艺
转炉泥、除尘灰→烧结返矿→混合料加工场。
(2)转炉泥湿法利用工艺
转炉泥→搅拌池→管道→烧结配料皮带→转炉泥烘干+氧化铁皮+化学粘结剂→搅拌混匀→加压成球→入炉干燥→球团矿。
(3)瓦斯泥利用工艺
瓦斯泥→重选→铁精粉→烧结厂→含锌泥→火法提锌。冶金固体废弃物资源化处理与综合利用的发展趋势
近年来,国内各钢铁企业以固体废弃物全利用、零排放为目标,取得了很大进步,专业化集中管理与多种管理体制相结合也初见成效。目前,各钢铁企业基本完成了工业固体废弃物中含铁资源的全量处理和回收利用,利用路径为:固废资源回收→烧结→高炉→炼钢→ 轧钢,即所谓大循环利用模式,但其利用仍处于低层次、低效率、低附加值、低梯级的利用,表现为经济效益和环保效益的非最优化,如氧化铁皮、转炉泥及瓦斯泥的利用等,故在固废深度开发和高价值利用方面还有待进一步研究与发展。
3.1加强钢渣熔剂渣配料对烧结矿品位与质量的研究
冶金工程概论课程论文
钢渣经破碎磁选后回收的熔剂渣一直以来为烧结厂利用,配比一般在115%左右。但熔剂渣的配入会影响烧结矿的品位和质量,主要是由于所配钢渣的加水润湿性能和造球性能较铁矿粉差,烧结厂用量有限甚至停止使用,使熔剂渣利用与外销压力增大。因此应加强烧结矿配加钢渣熔剂渣强化制粒的试验研究,探讨合适的钢渣熔剂渣配入量,保证烧结速度、烧结矿强度、成品率、利用系数、烧结矿还原性等指标符合要求。
3.2进一步开发钢渣在水泥生产中的应用
应进一步加强钢渣用于水泥厂的生产试验研究和生产性验证,探索钢渣水泥生产最佳工艺控制参数,提高钢渣掺入量。
3.3开发钢渣粉生产
利用水泥和混凝土中的钢渣粉是我国钢渣高价值资源化利用的最佳途径。细度在比表面积为400m2 /kg的钢渣可等量取代10%~30%的水泥,直接用于混凝土建筑工程,可提高混凝土后期强度,提高耐磨性、抗冻性、耐腐蚀性能,成本比水泥低30%,可降低工程造价,是高性能高耐久性混凝土的原料。目前,全国钢渣粉年产量已达300万吨,产品主要用于工程建设。在开发钢渣粉生产中要加强粉磨设备的选择和粉磨工艺的控制。
3.4钢渣作道路材料和建筑材料
关键是要解决钢渣的稳定性问题,需要对现有热泼法渣处理工艺进行改进,应加强钢渣热焖法处理工艺及装备等技术研究。湖南涟钢转炉钢渣热焖法处理及水硬性钢铁渣免烧承重砖的开发研究达到了较好效果。美国 Alfred大学的Agrwal G等人利用钢渣制造出比普通玻璃耐磨耐蚀的富CaO的微晶玻璃。
3.5加快瓦斯泥的梯级开发利用
瓦斯泥重选提铁后,其尾泥中碳含量高达35%,对瓦斯泥中碳元素加以回收代替高炉喷吹用无烟煤。使用回收新工艺可回收炭粉。
3.6
开发冶金尘泥生产炼钢用冷却剂、造渣剂
转炉泥、除尘灰、氧化铁皮等的综合利用过去一直采取“回收-加工-烧结利用”工艺路线,不是固废资源的深度开发高附价值的利用方式。利用转炉泥等冶金尘
冶金工程概论课程论文
泥生产符合炼钢要求的冷却剂、造渣剂,使冶金尘泥的利用工艺从过去的“废料-烧-铁-钢”大循环利用向“废料-钢”小循环利用转变,使系统能耗更少、污染更小、成本更低、效益更好。
总之,近几年国家鼓励发展循环经济,号召节能降耗。冶金固体废弃物资源化处理与综合利用是最具代表性的资源循环利用、节能、环保措施之一,也是钢铁工业实现健康、可持续发展的一个重要保障。利用冶金渣生产建材产品既大量利用了工业废渣及余热蒸汽、高炉煤气等再生资源,又能生产出满足市场需要的绿色建材产品,这样的项目具有良好的环境效益、经济效益和社会效益。因此应继续加大研究并推广冶金固体废弃物资源化处理与综合利用技术,为我国钢铁企业的健康、可持续发展做出贡献。
如今的钢铁冶金必将推行清洁生产,新技术、新工艺、新流程的开发利用使冶金生产过程更合理、资源环境更优化、产品质量更完美。除此外,提高生产管理及员工的思想意识也是实施清洁生产的必要措施。总之,未来的钢铁冶金生产必将向低能源消耗、低资源消耗和对环境更加友好的方向发展。只有真正的落实这些才能让冶金对环境污染降到最低直至为零,也只有这样才能实现循环经济以及节能降耗的目标。这不光是我们国家的问题也是全球正面临的问题,全世界都在考虑这方面的问题,高效的利用冶金残渣不仅能提高利益,同时还能减少环境问题。
第二篇:冶金论文
重庆科技学院 冶金工程概论课程论文
计算机技术在冶金企业中的应用于发展趋势
摘要:主要介绍了仿真技术,三维空间计算机辅助技术,计算机辅助工程(CAE)等概况及应用。
关键词:计算机仿真 三维空间 计算机辅助工程
1仿真技术
1.1仿真技术的概述
仿真技术亦称为模拟技术。仿真技术是以相似原理、信息技术、系统技术及其应用领域有关的专业技术为基础,以计算机和各种物理效应设备为工具,利用系统模型对实际的或设想的系统进行试验研究的一门综合性技术。仿真技术集成了当代科学技术中多种现代化顶尖手段,极大地扩展了人类的视野和时限能力,在科学技术领域产生着日益重要的作用。
随着计算机软硬件的高速发展,使得计算机模拟仿真技术也得到了长足的发展,目前计算机模拟仿真技术已经在国内外广泛应用。计算机模拟与仿真技术在冶炼、精炼、连铸、轧制过程的流场、温度场、应力场以及金属组织性能的预测与控制,钢铁制造过程的成分与板形精确控制、工艺技术优化、新产品开发的预先模拟试验,都需要模拟与仿真。它不但可以节约新产品、工艺开发时间和费用,提高试验成功率,而且,容易形成企业自主知识产权的工艺与产品,从国内外钢铁企业的发展来看,企业的核心技术部分来自于计算机模拟与仿真技术以及数据积累而形成的精确控制模型。
1.2仿真技术的应用
我国在这一领域起步较晚,但是随着科学技术的发展,以及市场竞争的日益激烈,很多企业都在工艺方面加强力度,目前很多研究机构及高校利用有限元分析对于冶炼过程和轧制过程进行了相关研究。国内各大钢铁公司利用模拟仿真技术,针对型钢的轧制过程进行了相关理论研究工作,在新规格、新产品的开发方面取得突破,同时对汽车用钢进行了模拟分析,直接对其客户进行仿真分析及模具设计的理论支持。有限元软件中的Multiphysics模块主要用于结构和温度场分析,属于多物理耦合场分析模块:LS-DYNA模块主要用于大变形分析,例如轧制、冲压等;CFX模块主要用于流场分析,例如在冶金界的高炉、转炉、电炉、大包、中间包、结晶器等方面的流场分析:DYNAFORM模块主要用于冲压成形,例如汽车板的冲压。
2三维空间计算机辅助技术
2.1三维空间计算机辅助设计技术的概述
三维空间计算机辅助设计技术的最大特点是:所见即所得。就是说设计人员通过各种三维空间软件在计算机上进行建立模型操作,通过软件的渲染,功能就能真实表现出实际需要的各种实体模型。而且三维空间软件都有巡视功能,操作者可以通过移动鼠标调整视线的不同位置来观察,甚至把自己置身一个炼钢厂房中查看整个冶金工艺流线的各种设备和管道的布置。
2.2三维空间计算机辅助技术的应用
根据工艺专业所提设计资料通过CAD软件(CAD、3D CAD、PKP Mcad等平面及三维设计软件)作图绘制。而后进行确认,同时进行实体模型的建立和渲染。大型冶金工业设计牵扯工艺、设备、建筑、结构、通风、给排水等多个专业,各专业之间需要协调工作才能完成设计任务。随着计算机网络技术的日臻成熟,现已可以实现不同专业、多工作站共同工作的网络平台三维空间计算机辅助设计技术的应用。各专业设计工作通过网络平台的三维空间计算机辅助设计技术互相对设计方案进行调整,直至符合要求。
三维空间技术的载体是计算机系统。系统组成分硬件和软件。硬件主要有性能优良的计算机,大屏幕显示器,彩色喷墨打印机;软件主要有Windows操作系统,CAD、3DCAD、PKPMcad等平面及三维设计软件。大型冶金企业设计牵扯工艺、设备、建筑、结构、通风、给排水等多个专业,各专业之间需要协调工作才能完成设计任务。随着计算机网络技术的快速发展,现已实现不同专业、多工作站共同工作的网络平台三维空间计算机辅助设计技术的应用。
3计算机辅助工程
3.1计算机辅助工程的概述
计算机辅助工程(CAE),包括工程和制造业信息化的所有方面,但是传统的CAE主要指用计算机对工程和产品的功能、性能与安全可靠性进行计算和优化设计,对未来的工作状态和运行行为进行模拟仿真,及早发现设计缺损,改进和优化设计方案, 证实未来工程或产品的可用性和可靠性。
CAE技术主要体现在有限元分析、虚拟仿真技术和优化设计三个方面。有限元分析的主要对象是零件级,包括结构刚度、强度分析、非线性和热场计算等内容;虚拟仿真技术的主要对象是分系统或系统,包括虚拟样机、流场计算和电磁场计算等内容;优化设计的主要对象是结构设计参数。
从运用有限元法对已设计工程或产品的性能进行简单校核,逐步发展到对工程或产品性能的准确预测,再到对工程或产品工作过程的精确模拟仿真,有限元法和仿真技术发挥了重要作用,提高了工程或产品的性能、质量。而最优化技术的采用又降低了工程或产品的成本,缩短了开发周期,减轻了人的劳动,并大大增
强了产品的竞争力。
在工程中应用CAE技术,需要一个载体,而 CAE技术的载体就是CAE软件。CAE软件是结合计算力学、计算数学、相关的工程科学、工程管理学和现代计算技术,而形成的综合性、知识密集型信息产品,是实现工程或产品的计算分析、模拟仿真与优化设计的工程软件,是支持工程科学家进行创新研究和工程师进行创新设计最重要的工具和手段。
常规的通用CAE软件一般均由前处理、有限元分析、后处理三部分组成,每部分的组成及功能如表 1所示。
表1 通用CAE软件的组成及功能
名称 组成及功能
前处理 三维实体建模与参数化建模,构建的布尔运算,有限元剖分与节点编号,节点参
数生成,载荷与材料数据输入,节点载荷生成,有限元模型信息的生成等
有限元
分析 有限单元库,材料库及相关算法库,约束处理算法,静力、动力、振动、线性与非线性解法库及相应的有限元系统组装模块库等
后处理 有限元分析结果的数据平滑,各种物理量的加工与显示,根据设计要求对产品按
工程规范进行设计数据检验,优化设计,绘制设计图等
3.2 计算机辅助工程的应用
钢铁工业是世界工业化过程中最具成长性的产业之一,长期成为各个工业化国家的重要产业。在我国,虽然整个现代化建设以传统原材料为基础的状况已在发生改变,但钢铁仍是基本的结构材料和产量最大的功能材料。钢铁工业具有很强的产业关联性,上游影响交通运输、采矿、耐火材料等产业,下游影响建筑、汽车、造船、金属制品、机械电子等行业。钢铁工业依然是工业化国家最重要的产业部门之一,其发展状况也是衡量其工业水平和综合国力的重要指标。世界范围内钢铁工业正面临着新技术蓬勃发展、结构变革的局面。用高新技术改造传统钢铁工业,加速结构优化,提高市场竞争力,是发展钢铁工业的主流趋势。计算机辅助工程(CAE)技术以其高效率、低成本的优势在钢铁工业中得到了广泛的应用。通过CAE技术,可以对钢铁工业中从冶炼到加工的各个工艺过程进行计算机过程模拟、系统优化、自动控制,采用计算机对生产过程、工艺参数及生产结果进行模拟和对整个系统进行优化,以实现生产的超前规划和设计。
冶金设备作为冶金技术的载体,本身具有大型、重载、高速、连续、自动化、精密化等特点,而且往往工作在高温、重载、高粉尘、大冲击等恶劣条件下,许多性能无法采用实物试验的方法获得。近年来,国内外冶金生产中,不断出现重大设备事故,也都涉及到设备的力学行为。同时,冶金工业的发展对机械设备的性能和
使用条件提出了许多新的要求。如近年出现的短流程技术及连铸连轧技术,这些关键技术集中表现为要解决的关键结构设计及力学问题,包括强度问题、运动学及动力学问题和传热及热应力问题,也对冶金机械设计研究和开发提出了更高的要求。因此CAE技术在冶金设备的设计研究上也得到了广泛的应用。
目前CAE技术在炼铁生产中取得的主要成果有:采用有限元法建立高炉复杂料面及中心装焦条件下的煤气流场和压力场解析模型、高炉固态炉料流场和势函数解析模型,分析高炉中心装焦条件下的高炉状况。利用CAE技术计算分析高炉冷却水的稳定性、流速、冷却水管与冷却壁本体的间隙及冷却的高度对长寿高效高炉冷却壁寿命的影响。采用有限元法对高炉炉体结构进行应力分析等。在炼铁机械设计优化方面,CAE主要发挥作用在于针对上料系统、烧结机、球团造球机、回转窑等一系列相关设备的力学分析和优化设计,提高了机械设备的效率和寿命,降低了机械的制造成本,在改善噪音和震动方面也发挥了重要作用。
结束语:随着计算机技术的快速发展,冶金企业中许多以前无法解决的复杂计算和过程控制,如今借助计算机技术都可实现或者有望解决。现代冶金企业领域将越来越多地使用和依靠计算机技术来处理难以用常规手段解决的问题。仿真技术在冶金企业中冶炼、精炼、连铸、轧制过程的流场、温度场、应力场以及金属组织性能的预测与控制,钢铁制造过程的成分与板形精确控制、工艺技术优化、新产品开发的预先模拟试验,都得到了快速发展,且不可缺少的技术手段。三维空间计算机辅助设计技术的在冶金设计中的应用极大的提高了设计效率和设计质量。在冶金工业设计和施工中再也不会出现设备、管道、主体结构打架的情况了。三维空间计算机辅助设计技术的发展将会在国家实现技术现代化的复兴中起到关键性的作用。CAE技术已成为钢铁工业中新工艺和新产品的开发研制、生产工艺优化、设备能力考察和优化设计过程中不可缺少的重要手段,其应用前景也越来越广。
参考文献
孙会朝 刘超,莱钢模拟仿真新技术应用,莱钢科技,第5期
朱苗勇 樊俊飞,计算机模拟仿真在过程冶金中的地位和应用,宝钢技术,1997,4
李瑜 张雪驰,三维空间计算机辅助设计技术在冶金设计中的应用,河南冶金,2009,8于宏林 方庆館,计算机辅助工程在钢铁工业中的应用,现代冶金,2009,2
第三篇:冶金论文
钢铁冶金企业防火对策
摘要:针对于钢铁冶金企业规模扩大的同时,我们有必要考虑到在钢铁冶金生产中的消防安全问题,以保证安全生产和在生产过程中生产人员以及生产设备的安全。从而以保证钢铁生产对国民经济的促进和保证,使钢铁冶金生产达到稳定,不会因消防安全问题带来巨大的损失。
关键词:钢铁冶金 ;消防安全 ;防火措施
引言:随着科技进步和经济发展, 钢铁冶金企业规模越来越大, 钢铁产量逐年提高, 对国民经济起到了重要的影响作用。但钢铁冶金企业的消防安全形势却不容乐观,近十年来发生了多起重特大火灾, 损失巨大。
1.钢铁联合企业的生产
1.1铁矿石的开采要求
铁矿石开采技术要求:一般来说,必须有工业价值的矿床,然后才能考虑开采问题。
因为我国富铁矿石不多,品味越高,质量越好,我国的工业品味定在大于45%,含磷越低,铁矿石的冶炼和分选的成本越低,是冶炼厂青睐的,价格越较高。
1.2开采设备
开采设备分两种:
1.露天开采:成本低,利润高,主要是利用挖掘机,装载机,汽车,风钻机,炸药等。
露天开采的采矿工艺,长期采用全境推进,宽台阶缓帮作业的采剥工艺,现在已开始转向陡帮开采,横向推进新工艺。在爆破器材和技术方面也有所发展,陆续采用了岩石炸药,铵油炸药,硝铵炸药乳化油炸药等等,在生产中应用了大区多排孔微差爆破技术。
2.地下开采:成本较高,还需要坑道支架和通风设备,铺设矿山轨道,利用专门设备小火车运到地表。
目前,地下采矿的开采方法主要是无底柱采矿法,大约占72%,其次是浅孔流矿法,占9%,房柱式和壁式采矿法占8%,空场法占7%,有底柱分段崩落采矿法占3%,充填法占1%,地下开采的矿山巷道支护由50年代的木支护发展到了现在木支护,混凝土支护和喷锚支护三种方法并存的局面,凿岩装运也逐步向机械化方向发展,现在已普遍采用凿岩台车凿岩,装运机铲装,电机车运输。由于采矿方法,技术装备,支护方法等方面的不断改进,地下矿山的全员劳动生产率有了很大提高。
如果是向冶炼厂提供矿石,联系到火车车皮就行,如果是提供半成品,还需要一套设备,把矿石磨细,进行初步分选然后提供给冶炼厂。
1.3选矿
在矿山要对铁矿石和煤炭进行采选,将精选炼焦煤和品位达到要求的铁矿石,通过陆路运送到钢铁企业的原料厂进行配煤和配矿、混匀,在分别在焦化厂和烧结厂炼
焦和烧结,获得符合高炉炼铁质量要求的焦炭和烧结矿。
1.4冶炼
高炉是炼铁的主要设备,使用的原料有铁矿石、焦炭和少量溶剂,产品为铁水、高炉煤气和高炉渣。铁水送炼钢厂炼钢;高炉煤气主要用来烧热风炉,同时供炼钢厂和轧钢厂使用;高炉渣经水淬后送水泥厂生产水泥。炼钢主要有转炉炼钢和电炉炼钢流程。通常将“高炉—铁水预处理—转炉—精炼—连铸”称为长流程,而将“废钢—电炉—精炼—连铸”称为短流程。目前,大多数短流程钢铁生产企业也开始建高炉和相应的铁前系统,电炉采用废钢+铁水热装技术吹氧熔炼钢水,降低了电耗,缩短了冶炼周期,提高了钢水质量,扩大了品种,降低了生产成本。
2.冶金与消防的联系
2.1火灾案例的统计与分析
钢铁冶金企业规模庞大、工艺复杂、流程性强, 在冶炼和热加工过程中需要耗用大量的煤、焦炭、燃油和电能, 钢铁冶炼的生产过程属于高温、高压的生产过程。虽然生产钢铁的原料和其成品本身都是不燃烧物,但是在生产和加工过程中需要大量使用燃料和易燃、易爆气体, 如纯氧、氢气、乙炔等, 而且, 钢铁冶炼过程中要产生大量易燃易爆气体, 如高炉煤气、转炉煤气等。正是由于钢铁冶金企业的这些行业特点决定了钢铁冶金企业火灾事故具有多发性和高损失的特点。
表1 是对近十年来钢铁冶金企业在生产过程中发生的74起火灾实例及其起火部位和火灾类型的统计和分析。虽然有限的火灾次数统计不能完全代表钢铁冶金企业的实际情况, 但还是可以看出火灾易发部位和重点防火区域。
2.2火灾危险性分析
2.2.1火灾重点防火区域
钢铁冶金企业的重点防火区域可分为以下8 类:
(1)电缆夹层、电气地下室、电缆隧道、电缆竖井等电缆火灾危险场所;(2)液压站、润滑油站(库)、储油间、油管廊等以中、高闪点油类为主的可燃液体火灾危险场所;(3)变压器、电气控制室等电气火灾危险场所;(4)生产、储存、使用可燃气体或其它粉料的爆炸性火灾危险场所;(5)苯、涂料等低闪点可燃液体火灾危险场所;(6)煤、炭等物料运输皮带系统火灾危险场所;(7)不锈钢冷轧机、修磨机及热轧机等生产设施;(8)办公楼、化验楼等中、轻危险等级场所。
仅针对钢铁冶金企业中火灾发生次数最多的电缆火灾危险场所及电气火灾危险场所进行分析。
2.2.2火灾危险性分析
2.2.2.1电缆火灾危险场所
钢铁冶金企业存在着大量的电缆隧道、电缆夹层、电气地下室及电缆沟等, 在这些区域内, 电缆布置密集, 数量巨大, 环境恶劣, 相互贯通, 遇到电缆本身故障和外界火源, 很容易引起电缆着火, 造成巨大损失。电缆火灾事故不论是由外界火源引起的, 还是由于电缆本身故障引起, 在着火后, 都具有下列特点: 一是火势凶猛, 蔓延迅速。电缆本身是可燃的物质, 尤其是聚氯乙炔等塑料电缆和充油电缆, 更易着火蔓延, 而且电缆隧道内的电缆为大量密集交叉或架空敷设, 一旦着火, 会沿着电缆群束迅速延燃扩大。试验研究表明, 电缆着火后最快传播速度可达20 m öm in。而多起重大火灾案例分析也表明, 约10~ 20 m in 后, 大火便顺着电缆延燃到主控制室、继电室等场所烧毁控制盘、继电盘、仪表盘等, 损失十分严重。二是扑救困难, 易引发二次危害。电缆隧道一般都纵深距离长, 宽度窄, 火灾时极易堵塞;同时由于电缆隧道中散热困难, 热烟无法顺利排出。试验表明, 起火隧道的温度可由400 ℃很快上升到800~ 900 ℃, 易较快发生轰燃。同时, 由于隧道处于地下, 扑救时无法观察火灾状况和具体位置,选择火灾扑救路线困难, 只能通过隧道出入口进入, 且地下照明条件差, 不易迅速接近起火位置。地下建筑物结构对于通信设备的干扰等等因素都造成了火灾扑救的困难。三是火灾损伤严重, 修复时间长。电缆火灾事故造成损伤严重, 不仅直接烧毁大量的电缆和其他设备, 同时还有其他特殊危害, 如控制回路失灵等而造成事故扩大。据统计, 1960~ 1984 年电力行业的62 次电缆火灾, 修复超过1 个月的占有35 次, 占总数的56% , 达半年以上的有16 次, 占总数的16% , 间接损失巨大。
电缆火灾事故发生原因归纳起来有两个, 一是由于电缆过热、短路、绝缘老化或绝缘性变坏等内因引起的火灾事故;二是由于外界火源等可燃物着火波及下的外因引起的火灾事故。据本次调查的统计, 在26 例各种原因、不同区域电缆火灾中, 因电缆本身故障引发的火灾占16 起, 占到了总数的62% , 外因导致的火灾事故共10起, 约占38%。
2.2.2.2电气火灾危险场所
钢铁企业存在着大量的、繁简不一的电气室、控制室、操作室、仪表室、计算机室等, 其内部存有大量的电缆和用电设备, 在设备故障或线路短路时极易发生火灾, 而且一旦发生火灾, 将会影响全局, 造成大面积的停产, 损失巨大。
2.3防火对策
钢铁冶金企业防火设计应充分考虑钢铁冶金企业各系统的特点和火灾危险性, 并从防火目标的提出、工艺生产系统的特点、明确钢铁冶金企业的重点防火区域以及如何采取确实有效的防火措施等方面, 制定一套完整有效的消防安全管理体系化标准, 以确保真正的生产安全。
2.3.1防火设计目标
对于钢铁冶金企业中的重要防火区域, 应从“防止发生火灾;快速探测并扑灭已发生的火灾;防止尚未扑灭的火灾蔓延而减轻火灾”的角度来形成设计目标。“防止发生火灾”, 是要求将钢铁冶金企业运行中发生火灾的概率降至最低, 需要将防火设计结合工艺和生产管理统一考虑。“快速探测并扑灭已发生的火灾”, 是要求采用自动、半自动等主动的消防技术, 实现火灾的早期探测和早期扑灭, 从而减少火灾的损害。“防止尚未扑灭的火灾蔓延而减轻火灾”, 是要求采用被动防火分隔, 延缓或阻止火灾的发展, 赢得救援时间。
2.3.2防火设计要素
一是建筑防火部分。要紧密结合钢铁冶金企业的实际情况, 对各建(构)筑物及工艺设施的火灾危险性进行全面、详尽而科学的分类, 从安全疏散、建筑构造等方面
加以考虑。二是工艺系统的防火设计, 这是工业消防中应重点关注的问题。首先, 确定工艺系统中的重点防火区域和区域内的主要建(构)筑物及设施, 根据火灾危险性分类, 采取相应的防火保护措施, 避免引发火灾, 降低燃烧几率, 控制火灾的蔓延燃烧。其次, 确定在发生火灾的情况下, 人员施救的必备措施和设施, 确保消防人员可以进入场所进行扑救。最后, 便是确定在发生火灾的情况下, 是否启动自动灭火系统的工艺要求。自动灭火系统应结合工艺安全因素, 确定合适的启动、退出时机。三是火灾报警、防排烟、消防电气等系统部分。从主动防火、消防系统工作保障等方面予以考虑。
2.3.3统一规划
钢铁冶金企业由于企业内部发展的需要, 每年都有大量的新建、改建及扩建项目, 这些项目由于建造时间不一, 所遵循的建造标准也不统一, 导致各工艺系统的防火安全保证能力不一致。而钢铁冶金企业由于其流程性生产性质的要求, 生产工艺中每一环节的不安全都可能导致其它系统不能正常生产, 因此, 不论从技术层面、资源共享、维护管理、可持续发展等方面都应统一进行消防规划。
2.3.4消防安全评估
钢铁冶金企业的消防安全是一个比较宽泛的概念,涉及的方面较多, 最重要的便是生产工艺与火灾的发生息息相关。一方面火灾会造成工业企业重要物项或工艺过程的损害和直、间接损失;另一方面工艺安全的因素也会造成火灾, 而进一步致损。因此, 消防安全和生产安全是不可分割的, 需要结合工艺生产安全因素进行综合的消防安全评估。
参考文献:
[1] 郭军英.浅析火灾自动报警系统设备运行状况及对策[J].价值工程,(05):109-110
[2] 吴学华.特殊的军礼[J].新安全 东方消防, 2009,(02):42-43
[3] 开封指导漯河[J].工友, 2009,(04):36
[4] 吴学华.马元江“寻亲”[J].新安全 东方消防, 2009,(01):40-41 2009,
第四篇:冶金论文
浅谈炼铜技术与进展
姓名:明伟 班级:化学2010级2班 学号:2010442124 摘要:炼铜技术是冶金工程中的一个重要部分。从大方面讲炼铜有两种方法即火法炼铜和湿法炼铜。但火法炼铜有其致命弱点:产生二氧化硫等污染性气体,加之废气处理技术的不成熟,成本高;而湿法炼铜可以解决二氧化硫对环境的污染、低品位矿石的开发和复杂矿石及二次资源的综合利用问题。70年代以来,湿法炼铜技术发展迅速,目前产量已占矿产铜的20%。所以文章着重简述了湿法炼铜的历史、发展、现状和展望。关键词:火法炼铜
湿法炼铜
技术
进展 概 述
从大方面讲炼铜有两种方法即火法炼铜和湿法炼铜。火法炼铜,顾名思义,就是使用高温熔融的铜矿石冶金出铜,它是一个氧化还原过程,氧化就是向融矿中通入氧气以除去铁,硫等杂质,由此设计出多种熔炼炉和熔炼技术如浸没顶吹熔炼法;还原就是通过一些方法来降低金属熔体中的氧,进而得到一定纯度的铜纵。湿法炼铜就是对铜矿处理变成溶液进行各种处理得到铜的过程即浸出———萃取———电积技术。
纵观历史,火法冶金是先于湿法冶金发展的,我国古代制造的青铜器等就是火法冶金配合其他技术的结果。经过几千年的发展,火法冶金技术较成熟,通过区域熔炼,涡旋熔炼得到纯铜。我国是世界上最早采用湿法冶金提取铜的国家。写于纪元前六、七世纪的《山海经》就有记载。唐朝已有官办的湿法炼铜场。宋代则技术更为成熟,产量更为可观。但湿法炼铜发展很慢,欧洲18世纪在西班牙南部的胡尔瓦建立了从矿石浸出,浸出液用铁屑置换法生产金属铜的工厂。1912年在智利开始采用电积法从浸出液中生产电解铜。以后在美国出现了多家氧化矿酸浸———电积法回收铜的工厂。1957年在美国亚利桑那州湖岸建成了世界上第一个硫化铜精矿沸腾焙烧———浸出———电积的工厂。随着化学工业的发展出现了有机萃取剂,可以有效地从贫铜溶液中萃取铜。1968年美国亚利桑那州兰鸟矿建成了世界上第一个工业规模的浸出———萃取———电积工厂,经过30多年此法不断发展和完善,目前全世界采用此工艺生产的铜量年产已超过200万吨,占全球矿产铜量的20%。1997年智利建成世界上最大的浸出———萃取———电积(简称L-SX-EW)法炼铜工厂,其生产能力为年产22.5万吨,产品达到伦敦金属交易所(LME)A级铜标准[1]。1999年,位于北纬50°13′,东经125°49′的黑龙江多宝山矿L-SX-EW工厂建成投产,标志着我国已具有高纬度寒冷地区的堆浸技术。北京矿冶研究总院和云南东川矿务局合作研究开发了处理高碱性脉石难选氧化矿的氨浸———萃取———电积工艺,建成年产500吨电铜的试验工厂[2]。2000年,在福建紫金山铜矿建成处理次生硫化铜矿,年产300吨阴极铜的细菌浸出试验工厂[3]。云南铜业集团大红山铜矿正在进行低品位硫化铜矿井下细菌堆浸研究[4]。这些都标志着湿法炼铜已具有相当水平,并具有相当大的生产规模,已成为铜工业中的一种重要的技术倾向,特别是在回收低品位矿石或采铜废石及就地浸出方面将发挥更大的作用。我国的湿法炼铜技术已具有一定水平。浸出———萃取———电积工艺
该工艺包括四个主要步骤:硫酸介质中溶解铜———浸出;采用一种萃取剂把铜萃入有机相———萃取;用硫酸溶液把铜反萃入水相———反萃;反萃液即电解液用电积法沉积铜———电积。
2.1 浸 出
浸出是该工艺的基础,有效地使铜从矿石中转入溶液中,是该工艺的前提。2.1.1 浸出方式
浸出有槽浸、搅拌浸出、堆浸和就地浸出等多种形式。槽浸适合处理高品位的氧化矿,浸出周期较短,浸出液含铜高时,可直接送电积。但是,目前应用不广。搅拌浸出要求矿石品位较高,或经过预先富集,对于硫化矿可采用细菌浸出或预先进行氧化焙烧。堆浸和就地溶浸等技术的发展更具多样性,故本文着重讨论。
(1)堆浸[5~7] 堆浸常用于低铜表外矿、铜废石的浸出。浸出场地多选在不透水的山坡处,将开采出的废矿石破碎到一定粒度筑堆;在矿堆表面喷洒浸出剂,浸出剂渗过矿堆时铜被浸出,浸出液返流到集液池以回收。堆浸的特点是浸出设备投资少,运行费用低。氧化矿的堆浸已进行了多年,技术较为成熟。堆浸厂已遍及各个地区,不受地理位置和气候条件限制。堆浸的主要方式:堆浸场按使用情况分为永久堆场和多次重复使用的堆场。按处理的物料,堆浸又可分为: 废石堆浸;尾矿堆浸;矿石堆浸
新发展的堆浸方式有:
①硫酸熟化薄层堆浸法 该法是堆浸的改型。它主要包括两个步骤:一是用浓硫酸熟化细碎的氧化铜矿或氧化———硫化混合矿;二是用稀硫酸溶液进行薄层堆浸。
②制粒浸出 针对含泥铜矿堆浸时,矿堆渗透性差的问题,发展了制粒堆浸技术。制粒堆浸是将含泥铜矿加入适当的粘结剂,在制粒设备中通过滚动作用形成团粒,粒矿筑堆后,经堆放固化,使其具有一定湿强度,再用浸矿剂喷淋浸矿的方法。该法通过制粒提高矿石和矿堆的渗透性,在制粒过程中预加浸出溶剂使之与矿石提前接触,并预先反应,加快了浸出速度;同时采用薄层堆浸可保证布液均匀,并有充足的氧气。(2)就地浸出[
8、9]就地浸出又称为地下浸出或化学采矿,可用于处理矿山的残留矿石或未开采的氧化铜矿和贫铜矿。地下浸出是将溶浸剂通过钻孔注入天然埋藏条件下的矿体中,有选择性地浸出有用成分(铜);并将含铜的溶液,通过抽液钻孔抽到地面后输送到萃取电积厂处理的方法。2.1.2 矿石的浸出(1)氧化铜矿的浸出
氧化铜矿的矿物有100多种,其中主要有赤铜矿、黑铜矿、孔雀石、硅孔雀石及兰铜矿等,当用硫酸浸出时,均可浸出来。然而,在铜的矿物浸出的同时,一些碱性脉石也会被酸浸出。所以,当矿石中钙、镁含量高时,因其大量浸出使酸耗大大增加而失去经济性。对此类矿可采用氨浸。(2)硫化铜矿的浸出
硫化铜矿又分原生硫化矿和次生硫化矿,它们都不能被硫酸浸出。次生硫化矿主要是辉铜矿、铜蓝等矿物,易被硫酸加氧、硫酸高铁溶液和细菌浸出。原生
硫化矿主要是黄铜矿,较难为上述溶液浸出。而单一的氧化铜矿较少,一般矿床上部为氧化矿,下部为硫化矿,中部为混合矿。故采用一般的酸浸处理混合矿,因硫化铜矿物浸不出来,而使浸出率不高。对硫化铜矿酸浸更无能为力。目前,如何提高硫化铜矿的浸出率是冶金工作者的一个研究热点。硫化铜矿的浸出主要有下列方法:细菌浸出法;加压氧化浸出法;焙烧———浸出———电积法
2.2 萃 取
萃取是L-SX-EW法成功的关键。经过30多年的不断进步,目前常用的萃取剂可从含铜~1 g/l的溶液经二级萃取,一级反萃使溶液含铜达到40~50 g/l,能满足电积的要求。典型的改性醛肟类有汉高公司的LIX622、LIX622N、LIX64N和AVE-CIA公司的M5640、PT5050。醛肟———酮肟类如汉高公司的LIX984、LIX984N、LIX973N。可以从氨性溶液萃取铜的LIX54—100[23]。国内如北京矿冶研究总院研究的萃取及中国科学院上海有机化学研究所和昆明冶金研究院研究铜的萃取剂—N901,性能与国外萃取剂基本相同,成本大大低于国外[10]。用于萃取的主要设备有三种:混合———澄清萃取器、萃取塔、离心萃取器。铜的萃取工厂绝大多数采用混合———沉清萃取器。目前,澳大利亚南部奥林匹克埃的WMC公司3 m直径的萃取塔已代替了混合———澄清萃取器[11]。2、3 电 积
在L-SX-EW工艺中,由于电解液经过萃取,杂质较少纯度较高,所以可以生产高纯阴极铜。甚至生产99.999%的高纯铜。电积技术也在不断进步。(1)采用永久不锈钢阴极法(ISA)该法是澳大利亚铜业有限公司开发的技术,1978年在澳大利亚汤士威尔冶炼厂问世。该法有许多优点:阴极垂直,短路较少;产品质量好,可达高纯阴极铜标准;流程简化,省去了始极片制作系统,使电解槽内积压的铜量减少;能耗和成本较传统电解法低,故受到世界各国关注。采用ISA电解工艺(电解精炼加电积)产出的阴极铜已超过390万吨,约占世界阴极铜产量的35%[12]。(2)有机物的控制
反萃的富铜溶液会夹带少量有机相,有机相进入电积过程会影响电铜质量,并使阴极铜粘板,而且这部分有机相在电积过程中降解而增加了有机相的消耗。所以要将富铜液中的有机相尽量除去。传统的沉淀法效率不高,砂滤法有效,但需反复洗涤设备。
(3)电解液中积铁的控制
每一个SX-EW工厂的铜电解液中铁含量都会逐渐积累,致使Fe2+和Fe3+在阳极和阴极间反复耗电,而降低电流效率。传统的方法是定期抽部分废电解液开路。而现在发展了离子交换法和膜技术法。展望
湿法炼铜特别是L-SX-EW技术,由于具有流程短,仅三、四道工序,取消了花钱最多的选矿和火法熔炼,可称为是一次技术革命:原材料消耗低,主要消耗为硫酸,萃取剂和稀释剂的消耗大体与选矿药剂消耗相当;扩大了铜原料选择的范围,含铜0.04%~0.07%就可利用,经济上合算的资源均可提取,扩大了资源范围,降低了能耗,节约了大量燃料、电力和耐火材料等;对环境的污染小,不产生污染环境的SO2,流程自成回路,基本没有废水,只有浸出废渣要做处理,环保治理费用低;成本较火法流程低,故湿法炼铜发展迅速。湿法炼铜的技术也不断发展,一是,L-SX-EW技术不断发展、完善。如,浸出液采用滴浸器代替喷淋;浸出液输送泵站,采用浮船泵站,既可节约建设投资,也有利于生产管理;等等。二是,新的湿法炼铜技术不断出现。
我国的湿法炼铜技术取得了许多进展,然而与国外相比还有不少差距,应加强研究,加快发展。我国的铜矿资源相对匮乏,而且贫矿多富矿少,发展湿法炼铜,可扩大资源范围。
(1)我国大量氧化铜矿资源的开发利用我国氧化铜矿储量约800万吨金属量,分布在云南、四川、西藏、新疆和黑龙江等省[1],可采用L-SX-EW技术提取铜。目前已有一些小的L-SX-EW工厂,但规模太小。应针对这些资源的特点,加强研究,形成我国特有的L-SX-EW技术。
(2)原有矿山的低品位铜矿资源的开发利用我国原有铜矿山露天开采剥离的铜矿废石,据估计已有3.3亿吨,若平均品位0.1%,则含铜33万吨。每年矿山还有相当数量的铜矿废石排放。应学习国外采用废石堆浸———萃取———电积技术,从铜矿废石中回收铜。此外,原有矿山采空区的残矿,如采用地下溶浸技术,加以利用也是相当可观的。
(3)西部丰富的铜矿资源的开发利用我国的西部矿产资源丰富,新疆、西藏、云南等地有一些尚未开发的铜矿资源,为了保护生态环境不受破坏,可考虑采用地下溶浸技术。
(4)培养我国特有的高温菌种
总结:相信随着技术的不断突破,火法冶金和湿法冶金将扬长避短,实现相互补充,打造铜冶金工业的新局面。参考文献:
期刊,[1]史有高摘译.世界最大的堆浸———溶剂萃取———电积铜生产厂在智利建成投产〔J〕.有色冶炼, 1997,(1): 1-2 会议论文集,[2]马继伦.发展湿法炼铜技术,提高我国铜资源利用率 铜镍湿法冶金技术交流及应用推广会议文集〔C〕.厦门, 2001.会议论文集,[3]刘大星.中国铜湿法冶金技术的进展.铜镍湿法冶金技术交流及应用推广会议文集〔C〕.厦门, 2001.技术标准,[4]易门矿务局,昆明冶金研究院.低品位硫化铜矿井下细菌堆浸回收工艺技术中试研究〔R〕.2001.期刊,[5]曹异生.世界铜浸出、萃取、电积技术进展及在我国推广应用前景展望〔J〕.云南冶金, 1996,(5): 1-9.期刊,[6]方金谓,等.浸出———溶剂萃取———电积提铜技术的发展概况及应用前景〔J〕.有色冶炼, 1999, 2.30-32.会议论文集,[7]王 卉.开发制粒堆浸技术处理含泥铜矿的进展〔R〕.铜镍湿法冶金技术交流及应用推广会议交流.厦门, 2001.会议论文集,[8]杨佼庸.全国重冶新技术新工艺成果交流大会文集〔C〕.1998,(11): 342-344.期刊,[9]王 卉.铜原地溶浸采矿技术专集〔J〕.湿法冶金, 1999,增刊.会议论文集,[10]李超忠,等.高效铜萃取剂的研制〔C〕.铜镍湿法冶金技术交流及应用推广会议文集,厦门, 2001,(5): 129-131.会议论文集,[11]科莱恩,等.溶剂萃取在铜湿法冶金中的发展和应用〔C〕.铜镍湿法冶金技术交流及应用推广会议文集.厦门, 2001,(5): 85-110.著作,[12]姚素平,等.ISA电解技术在中国的应用前景 有色金属科技进步与展望〔M〕.北京:冶金工业出版社, 1999.
第五篇:冶金论文
《冶金工程概论》小论文
论冶金与绿色营销
姓名:罗永恒
专业班级:市场营销01班 学号:2011443610
2012.11.30
论冶金与绿色营销
作者:罗永恒
作者单位:重庆科技学院
摘要:文章主要包括两个方面:一方面对钢铁与冶金联合企业的主要生产环节,每一个生产环节的主要过程,主要设备,生产方法及特点进行概括论述,另一方面是对冶金专业与营销专业的联系进行介绍。目的在于总结一学期的冶金学习,正确认识冶金专业与营销专业的关系。通过搜集书籍资料,综合研究,整理思考得出了冶金的生产流程和其主要工艺,及冶金与营销相互依赖,共同发展的结论。
关键字:生产;冶金;钢铁;营销;绿色营销
一.钢铁冶金联合企业主要生产环节 <一> 冶金原料——铁矿石 1.铁矿石的开采
钢铁冶炼中的铁元素主要来自铁矿石,而铁矿石的开采方式主要包括露天开采、地下开采和液体开采三种开采方式。2.铁矿石的富选
高炉冶炼用的铁矿石有天然富矿和人造富矿两大类。对于那些含铁量在50%以上的天然富矿和贫铁矿一般都要经过适应的富选后在直接用于高炉冶炼,即铁矿石的富选过程包括破碎、磨碎、筛分和分级和选别作业。3。铁矿粉造块
富选得到的精矿粉,不能直接用于高炉中冶炼,必须用烧结或制团的方法将它们重新造块,制成烧结矿,球团矿或预还原炉料入炉。铁矿粉造块的方法主要分为烧结法和球团法。<二> 高炉炼铁
1.高炉炼铁的过程
炉顶装入铁矿石、焦炭、造渣用熔剂(如石灰石等)。从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中不还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。2.高炉炼铁特点
(1)高炉冶炼是在炉料与煤气流逆向运动过程中完成各种错综复杂的化学反应 和物理变化的,炉内主要是还原性气氛。
(2)高炉是密闭的容器,除装料、出铁、出渣及煤气外,操作人员无法直接观察到反应过程的状况,只能凭借仪器仪表间接观察炉内状况。
(3)高炉是连续的、大规模的高温生产过程,机械化和自动化水平较高。<三> 生产方法 1. 转炉、转炉炼钢法主要包括底吹酸性转炉炼钢法、碱性转炉炼钢法、侧面吹风的酸性侧吹转炉炼钢法、氧气底吹转炉炼钢法及顶底复合吹转炉炼钢法、氧气顶吹转炉炼钢法(LD法)LD法优点
a)吹炼速度快,生产率高; b)品种多,质量好;
c)原材料消耗少,热效率高、成本低; d)基建投资省,建设速度快; e)容易与连续铸钢相匹配。转炉炼钢法基本原理
在于他不借助外加能源,仅靠吹入熔池的空气或氧气与生铁水中各种元素的放热氧化反应完成脱碳和脱除杂质的任务,并将钢液加热到出钢(1600℃或更高)温度。
平炉炼钢平炉炼钢特点
从外部供给热量 因平炉炉体庞大,冶炼时间长,炉墙散热损失和高温废气带走的热量大,除钢铁原料中各元素氧化产生热量外,必须从外部供给燃料和使用预热空气燃烧燃料,方能保持炼钢时需要的热量。平炉炼钢的原材料
①钢铁料如生铁或铁水、废钢;
②氧化剂如铁矿石、工业纯氧、人造富矿; ③造渣剂如石灰(或石灰石)、萤石、铁矾土等; ④脱氧剂和合金添加剂。平炉炼钢的步骤
平炉炼钢的过程通常分为补炉、装料(铁矿石、石灰和废钢)、加热、兑铁水、熔化、精炼、脱氧和出钢等几个步骤。平炉炼钢的优点
①可大量使用废钢,而且生铁和废钢配比灵活;
②对铁水成分的要求不像转炉那样严格,可使用转炉不能用的普通生铁; ③能炼的钢种比转炉多,质量较好。2.氧气转炉炼钢法 用纯氧从转炉吹炼铁水成钢的转炉炼钢方法。自50年代初投入工业生产以来,在世界范围内得到迅速推广,逐步取代空气转炉法和平炉炼钢法,成为现代炼钢的主要方法。3.电炉冶炼
电炉冶炼的优点
(a)热效率高,达65%以上(b)温度易于控制和调整
(c)炉内气氛可控,利于脱磷、脱硫、脱氧(d)钢中夹杂物相对较低(e)合金收得率高
(f)可全废钢冶炼,也可配装部分铁水(g)设备简单,占地少,投资省,建厂快
但是,我国目前废钢保有量少,价格较高,而且电弧离解作用是钢中氮氢含量较转炉高。
2.冶金与绿色营销
冶金对营销的支持,营销对冶金的促进
冶金和营销就向一对手足,彼此相互依存,不可缺少。冶金对营销有着支持,营销对冶金业有着促进
冶金对营销的支持。冶金现在起着非常重要的作用,我们营销专业以后的就业问题的靠冶金专业来带动,在这个问题上,冶金专业给我们营销专业带来了就业的前景。冶金是我国工业的基础产业,国家越发展,越离不开钢铁,且很多的钢厂每年都有技术新项目,资金投入大,建设周期长,配置设施多,我们公司作为称重系统的配置厂商和生产企业,产品使用频度高,范围广,因而对我们来说,冶金行业是个“钱途无量的大市场”。国内大部分的冶金企业是国营企业,而类开始使用钢铁的历史源远流长,在人们的生活中无处不在,占领着十分重要的地位。比如建筑业,交通,汽车,机械,轻工等基础行业,都是钢铁消耗大户,然后我国又是世界上的钢铁大国,而冶金作为我国的重要行业,因而存在很大的潜在需求,不得不承认冶金行业是我们营销最好的驰骋场。这是我们营销发展金市场的客观依据。
营销对冶金的促进。无论是原材料的采购,还是产成品销售环节,都对营销有这巨大的依赖性。(1)我国相关企业如鞍钢,宝钢等大的钢铁企业,生产所需的大量矿石需要从澳大利亚,巴西等国进口,这些活动都需要我们营销人员及参加,这也是大规模的营销活动,涉及到营销的策划,谈判等众多的领域。营销活动的成功,是企业正常工作的第一步。(2)我国目前的钢铁产量位居世界前列,许多的产品远销海外,更不用说国内各地。这又需要营销来发发挥他的作用,来规划他是公司的销售业绩达到最好。总之,营销对于钢铁冶金行业的正常运转有着 重要作用,与此同时,时代的进步,营销也对冶金行业提出了绿色营销冶金的要求。
冶金与绿色营销
经济的高速发展和人类社会的不断进步,使人们的生活水平不断提高,各种基础设施不断完善,但面对日趋恶化的环境、日趋短缺的资源,我们不得不对过去的经济发展过程进行反思,彻底改变长期沿用的大量消耗资源和能源的粗放式发展模式,才能实现可持续发展.钢铁冶金企业是高能耗、高污染的企业,实现环境保护和可持续发展是他未来的必由之路.在众多改善的措施中,绿色营销的兴起和应用是实现这种目的关键因素和有效途径.近年来,许多国家围绕着绿色营销不断地开发出了许多绿色新技术和绿色新工艺,带来的结果是能源结构的调整、工艺的优化革新和废弃物的综合利用,收到了可观的经济效益、社会效益和环境效益.
绿色营销是指以促进可持续发展为目标,为实现经济利益,消费者需求和环境利益的统一,市场主体根据科学性和规范性的原则,通过有目的,有计划的开发及同其他市场主体交换产品价值来满足市场需求的一种管理过程。
绿色营销要求企业注重以社会效益为中心,以全社会的长远利益为重点,要求企业在营销中不仅要考虑到消费者的欲望和需求的满足,而且要符合消费者和全社会的最大长远利益,变“以消费者为中心”为“以社会为中心”。企业一方面要搞好市场研究,不仅要调查了解市场的现实需求和潜在需求,而且要了解市场需求的满足情况,以避免重复引进,重复生产带来的社会资源的浪费,放弃那些高消耗,高污染,有害人民身心健康的业务,为促进社会的发展做出贡献。冶金是一项涉及到自然资源,交通,动力,社会经济等多发面,众多因素的行业。冶金要求它本身存在自身的生态经济规律,必须遵循规律,维护生态环境,才能可持续的,不危害社会的正常的生产,走上绿色工业的道路。绿色营销要求冶金的工业布局要与区域经济,社会,生态协调发展。
绿色营销要求冶金在保护资源的基础上合理的可持续的开发利用资源。绿色营销要求冶金使用有利于环保的原材料。绿色营销要求冶金对生产工艺进行绿色改进。绿色营销要求冶金对生产方式进行绿色该进。3.结论
综上,营销与冶金相互依赖,共同发展,二者休戚与共。冶金是一个复杂的生产工艺,而且冶金与营销密不可分。冶金的长足发展即依赖于自身的生产方法的提高,也有赖于营销也的服务支持。【参考文献】
[1] 朱苗勇,《现代冶金学》,冶金工业出版社,2008 [2] 薛正良,《钢铁冶金概论》,冶金工业出版社
2008 [3] 万后芬,《绿色营销》,高等教育出版社 2001