第一篇:小编总结全方面了解Word的首行缩进2字符功能
小编总结:全方面了解Word的首行缩进2字符功能
对于在Word中设置首行缩进2字符的方法,常用Word的朋友们真的要好好了解一下,因为这是在每个文档中都有可能用到的一个功能,因此,系统之家也针对这个问题来详细的介绍一下:
在使用Word编写书籍或者文稿时,我们都会有个习惯将每个段落前面空两个字符,这样可以很好的方便读者阅读时分辨段落。有的人习惯用几个空格来代替,有的人习惯用空白字符V1来代替(像电脑软硬件应用网网站上的每篇教程就是用V1来标记段落的)。其实在Word中有项功能可以一次性将所有段落前面缩进2字符,这样就省去了我们人工输入空格的麻烦,这项功能叫“首行缩进”,下面就来详解在各种Word版本中首行缩进的使用方法!
Word2003首行缩进2字符方法:
①首先,选择要缩进的段落,或者直接选中全文;
②选择菜单栏的“格式”中的“段落”,在弹出的段落窗口的“缩进和间距”下面的“特殊格式”中选择“首行缩进”,然后在“度量值”里设置成“2字符”确定即可。
Word2007中首行缩进2字符方法:
①选中全文,然后进入“开始”选项卡,然后点击“段落”选项卡中的小按钮,如下图红色圈;
②然后在“段落”窗口中“特殊格式”中选择“首行缩进”,磅值设为“2字符”即可。
如此简单的方法,但却是省了不少的事,不用每次都按空格或进行操作了。所以常使用Word软件的用户应该要好好学习,不止是这一个功能而且对于Word的所有功能都应该有所了解,因为早晚会用到的。
第二篇:2016必备行测数量关系技巧全总结[范文模版]
数量关系随心笔记
第一部分:数列
1数字敏感性
质数数列:2.3.5.7.11.13.17.19.23.29.合数数列:4.6.8.9.10.12.14.15.16.18.20.21.22.24.25.26.27.28.30.平方数列:1.4.9.16.25.36.49.64.81.100.121.144.169.196.225.256.立方数列:1.8.27.64.125.216.343.512.729.此外还要注意:第一,奇偶性。具备奇偶性质的数列无外乎只有三种情况,全是奇数、全是偶数、奇偶交错。第二,增减性。第三,整除性。
解题首先要观察数列的增幅,增幅较小做差,较大做乘除,特大就可能是幂次了。接下来再观察1:长数列,项数在6项以上。基本解题思路是分组或隔项。2:摇摆数列,数值忽大忽小,呈摇摆状。基本解题思路是隔项。3:双括号。一定是隔项成规律!4:分式。(1):整数和分数混搭,提示做乘除。(2):全分数。解题思路为:能约分的先约分;能划一的先划一;突破口在于不宜变化的分数,称作基准数;分子或分母跟项数必有关系。5:正负交叠。基本思路是做商。6:根式。(1)数列中出现根数和整数混搭,基本思路是将整数化为根数,将根号外数字移进根号内。(2)根数的加减式,基本思路是运用平方差公式:a^2-b^2=(a+b)(a-b)。7:首一项或首两项较小且接近,第二项或第三项突然数值变大。基本思路是分组递推,用首一项或首两项进行五则运算(包括乘方)得到下一个数。8:纯小数数列,即数列各项都是小数。基本思路是将整数部分和小数部分分开考虑,或者各成单独的数列或者共同成规律。9:很像连续自然数列而又不连贯的数列,考虑质数或合数列。10:大自然数,数列中出现3位以上的自然数。因为数列题运算强度不大,不太可能用大自然数做运算,因而这类题目一般都是考察微观数字结构。
剩下的就是蒙的方法了:第一蒙:选项里有整数也有小数,小数多半是答案。第二蒙:数列中出现负数,选项中又出现负数,负数多半是答案。第三蒙:猜最接近值。有时候貌似找到点规律,算出来的答案却不在选项中,但又跟某一选项很接近,别再浪费时间另找规律了,直接猜那个最接近的项。第四蒙:利用选项之间的关系蒙。
一、数学运算
1.互补数法
如果两个数的和正好可以凑成整
十、整百、整千时,就可以认为这两个加数互为补数,其中一个加数叫做另一个加数的补数。2.凑整法
凑整法是简便运算中最常用的方法,即根据交换律、结合律把可以凑成10、20、30、50、100、1000„的数字放在一起先凑成整数,再进行运算,从而提高运算速度。例题:ii 3.尾数估算法
3.尾数估算法是简便运算中常用的一种排除备选项的方法。在四则运算中,如果几个数的数值较大,运算复杂,又没有发现运算规律时,可以先利用个位或小数 部分进行运算得到尾数,再与选项中的尾数部分进行对比,如果有唯一的对应项,就可立即找到答案。考生如果遇到备选答案的尾数都不相同的题目时,可以首先考 虑此种方法,快速找出答案。考生应该掌握的尾数变化的基本常识有∶
2n是以“4”为周期变化的,即尾数分别是2,4,8,6„ 3n 是以“4”为周期变化的,即尾数分别是3,9,7,1„ 4n是以“2”为周期变化的,即4,6„ 5n、6”尾数不变。
7n是以“4”为周期变化的,即7,9,3,1„ 8n 是以“4”为周期变化的,即8,4,2,6„ 9n是以“2”为周期变化的,即9,1„ 例题:iii 4.基4.基准数法 当有两个以上的数相加且这些数相互接近时,可以取一个中间数作为基准数,然后用基准数乘以项数,再加上每个加数与基准数的差,从而求得它们的和。5.弃九法
二、大小判断
这种类型的题目一般不需要进行具体的数字计算,只要能找到某个判断标准就可以进行判断了。比较数大小的方法很多,在解题时,要根据所给试越的特点,选择合适的比较方法。一般来说,有下列几种判断方法∶
(1)对于任意两个数,如果a-6>0,则a>6;如果a-6<0,则a<6;如果a-b=0,则a=b。(2)对于任意两个数,如果不是很方便比较大小时,常选取中间值C,然后口、b分别与c比较,进而比较口、b的大小。(3)当a、6为任意两个正数时,如果a/b>1,则a>6;如果b/2<1,则a<6;如果a/b=1,则a=6。当 a、6为任意两个负数时,如果a/b>1,则a<6;如果a/b<1,则a>6;如果a/b=1,则a=b。
(4)当a、b为任意两个正数时,如果a2-b2>0,则a>b。
(5)当a、b为任当a、b为任意两个正数时,如果1/a>1/b,则a
三、工程问题
工程问题指的大都是两个人以上合作完成某一项工作,有时还将内容延伸到向水池注水等。解答工程问题时,一般都是把总工作量看作单位“1”,用单位“1”除以工作时间作为工作效率,也就是说,工作效率就是工作时间的倒数。一般情况下,工程问题是公务员考试的必考题型之一。一般常用的数量关系式是 工作总量=工作效率×工作时间;
工作时间=工作总量÷工作效率;
工作时间=工作总量÷工作效率;
工作总量=各分工作量之和。
四、路程问题
路程问题是数量关系题中常见的典型问题,涉及距离、速度和时间三者之间的关系。其中,距离(s)=速度(v)×时间(t)。这种问题主要有三种基本类型∶相遇问题、追及问题和流水问题。1.相遇问题
“相遇问题”(或相背问题)是两个物体以不同的速度从两地同时出发(或从一地同时相背而行),经过若干小时相遇(或相离)。若把两物体速度之和称之 为“速度和”,从同时出发到相遇(或相距)时止,这段时间叫“相遇时间”;两物体同时走的这段路程叫“相遇路程”,那么,它们的关系式是∶ 相遇路程=速度 和×相遇时间; 相遇时间=相遇路程÷速度和; 速度和一相遇路程÷相遇时间。例题:viii 2.追及问题
追及问题是两物体以不同速度向同一方向运动,核心是“速度差”的问题。两物体同时运动,一个在前,一个在后,前后相隔的路程可以称之为“追及的路程”,那么,在后的追上在前的时间叫“追及时间”。公式为∶追及时间一追及的路程÷速度差。例题:ix 3.流水问题 船速是船在静水中航行的速度;水速是水流动的速度;顺水速度,即船顺水航行的实际速度,等于船速加水速;同理,逆水速度等于船速减水速。流水问题具有行程问题的一般性质,即速度、时间、路程,可参照行程问题解法。例题:x
五、比例分配问题
比例分配问题是公务员考试的必考题型,最基本的比例问题是求比或求比值,即从已知一些比或者其他数量关系求出新的比。其关键和核心是弄清楚相互变化的关系。
六、植树和方阵问题
1.植树问题
一般的出题模式是给一段路,在路的一旁或两边种树(或其他一些事物),原理其实和小学数学中在线段中标点一样,在做题时也可以画一个线段,然后数一下自己所标的点的数量就可以了。
关于植树问题,主要的关系有∶
(1)如果题目中要求在植树的路线两端都植树,则棵数比段数多1,等于全长除以株距再加上1。
(2)如果题目中要求在路线的一端植树,则棵数与段数相等,等于全长除以株距。(3)如果植树路线的两端都不植树,则棵数=段数-1。例题:xii 2.方阵问题
士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,正好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。
(4)空心方阵的总人(或物)数=[最外层每边人(或物)数-空心方阵的层数]×空心方阵的层数×4。
七、日历和年龄问题
1.日历问题
计算月日要记住以下三条法则∶
(1)每年的1、3、5、7、8、10、12这七个月是31天;(2)每年的4、6、9、11这四个月是30天;
(3)普通年能被4整除不能被100整除则为闰年,则该年的2月是29天(如2008年),如果该年的年份不能被4整除,则是28天(如2007年).(4)世纪年能被400整除的才是闰年。例题:xiv 2.年龄问题
解答年龄问题,一般要抓住以下三条规律∶
(1)在任何情况下,两个人的年龄差总是确定不变的;
(2)随着时间向前(过去)或向后(将来)推移,两个人或两个以上人的年龄一定减少或增加相等的数量;
(3)随着时间的变化,两个人年龄之间的倍数关系一定会改变。例题:xv
八、牛吃草问题
“牛吃草问题”。牛每天吃草,草每天在不断均匀地生长。这种类型题目的解题环节主要有四步∶(1)求出每天长草量;(2)求出牧场原有草量;
(3)求出每天实际消耗原有草量(牛吃的草量一生长的草量一消耗原有草量);(4)最后求出可吃天数。
九、鸡兔问题
鸡兔问题是我国古代著名数学问题之一,也叫“鸡兔同笼”问题。解答鸡兔同笼问题,一般采用假设法,假设全部是鸡,算出脚数,与题中给出的脚数相比 较,看差多少,每差2(4-2)只脚,就说明有1只兔,将所差的脚数除以(4-2),就可求出兔的只数。同理,假设全部是兔,可求出鸡的只数。
十、和、差问题和倍数问题 1.和、差问题
和、差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。解答这一类问题一般用假设的方法。和、差应用题的解题要点是∶(和+差)÷2=较大数 较大数-差=较小数; 或(和-差)÷2=较小数,较小数+差=较大数。2.倍数问题
倍数应用题的解题要点是∶
和÷(倍数+1)=小数(较小的数,即1倍数); 小数×倍数=大数(较大的数,即几倍数); 或和-小数=大数。例题:xix
十一、盈亏问题
数字盈亏问题是指在一定范围内的多组数字间存在一定的数量关系,其中一组数字如发生变化,就必然会引起另一组数字的变化。这种题型的解题关键是∶找出这几组数字间的关系,然后假设其中一组达到最大值,最后根据它们之间的关系和所得的结果,来推算出其他组的数字。
十二、几何问题
1.周长问题
周长问题关键是要学会“转化”。转化也就是把题中的某个图形转变成我们平时标准的长方形、正方形、圆形或其他规则图形,以方便计算它们的周长。2.面积问题
要解决面积问题,关键是要会正确地“割、补”。通常使用的方法就是添加辅助线,即通过引入新的辅助线将图形分割或者补全成我们熟悉的规则图形,从而快速求得面积。3.体积问题
求解体积问题,除了使用体积公式外,有时还可利用补形、分割、转化等特殊方法。
十三、十三 排列、组合问题
1.初等排列、组合
初等排列、组合指的是加法原理和乘法原理。
(1)加法原理∶完成一件事有n类方式∶A1,A2,„,An,每一类方式A中有Mi种方法,任何两类方式都互不相同,方法中任何一种都能单独完成任务,则总的方法数为∶N=Mi+M2+„+Mn。
(2)乘法原理∶完成一件事分n个步骤∶B1,B2,„,Bn,每一步骤Bi有Mi种方法,则总的方法数为∶N=Mi×M2ׄ×Mn。例题:xxi 2.复杂排列、组合 从挖个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号P表示。
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C表示。例题:xxii
十四、其他问题
1.统筹与优化问题
统筹与优化问题是在尽可能节省人力、物力和时间的前提下,努力争取获得在允许范围内的最佳效益问题。统筹与优化问题具体有以下内容∶
(1)完成一件事情,怎样规划安排才能用时最少、用费最省、路线最近等;(2)任务固定,设计如何使用最少的人力、物力去完成;
(3)人力、物力固定,设计调配方案,获取最快速度和最佳效果。例题:xxiii 2.容斥问题
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是∶先不考虑重叠的情况,把包含于某内容中的所有对象的数 目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
这是2004年、2005年中央、国家机关公务员考试的一个难点。这种题型的解题要点是两个公式,即∶
(1)如果被计数的事物有A、B两类,那么,A+B=A+A∩B。
(2)如果被计数的事物有A、B、C三类,那么,A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C。3.跳井问题
井深M米,蜗牛爬行n米,几日爬行到井口的问题 4.对分问题
对分问题是数学运算中的典型问题。可设原始长度为S的一个东西,每次分a部分,取其中之一,如果分了n次,那么还剩下S.(1/2)n。5.计算预支问题
对预支问题进行分析,可以发现此类问题与比例问题是相通的。按照比例问题的解法解预支问题同样实用。6.利润问题
利润问题是近几年来公务员考试的新题型。商店出售商品,目的是要获得利润。这样就涉及进货价(成本)、售出价(定价)、利润以及打折、储运等经济问题,这样的问题都可以称为经济利润问题。其基本公式有∶(1)利润=销售价-成本;
(2)利润率=利润÷成本=(销售价一成本)÷成本=销售价÷成本-1;(3)销售价=成本×(1+利润率)或者成本=销售价÷(1+利润率)。7.浓度问题
溶质与溶液质量的比值叫做溶液的浓度(通常用百分数表示),这三者的关系如下∶
溶液的质量=溶质的质量+溶剂的质量; 溶液的浓度=溶质的质量÷溶液的质量; 溶液的质量=溶质的质量÷溶液的浓度; 溶质的质量=溶液的质量×溶液的浓度。