浅谈重载铁路线路的养护

时间:2019-05-15 12:46:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浅谈重载铁路线路的养护》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浅谈重载铁路线路的养护》。

第一篇:浅谈重载铁路线路的养护

浅谈重载铁路线路的养护

来源:互联网 作者:佚名 发布时间:2009-5-22 6:35:02点击:3790

铁路运输永恒的主题是安全生产,安全生产的关键就是确保设备和人身安全。线路轨道是铁路运输的基础,身为铁路工务部门的一名职工,如何搞好工务线路设备的维修养护工作,为铁路运输安全畅通夯实基础是我的职责,也对确保铁路运输的安全具有极为重要的意义。下面就结合这几年在朔黄铁路从事工务设备养护维修心得,谈一下对重载铁路养护维修的一些体会。

一、铁路线路、重载铁路的涵义及线路养护的作用和意义

铁路线路是由路基、轨道和桥隧建筑物组成。它是一个整体工程结构,共同发挥各自的功用,其任何组成部分的改变或损坏,都将影响整体功能。

重载铁路是指用于运载大宗散货的总重大、轴重大的列车、货车行驶或行车密度和运量特大的铁路。总重大可达1~2万吨,轴重大可达30吨,行车密度大可达1万吨千米/千米。根据重载铁路的定义标准,朔黄铁路已经达到了重载铁路的条件。铁路线路设备是铁路运输业的基础设备,它常年裸露在大自然中,经受着风雨冻融和列车荷载的作用,轨道几何尺寸不断变化,路基及道床不断产生变形,钢轨、联结零件及轨枕不断磨损,因而使线路设备的技术状态不断地发生变化。线路维修养护贯彻“预防为主,防治结合,修养并重”的原则,经常保持线路设备完整和质量均衡,是列车能以规定速度安全、平稳和不间断地运行,并尽量延长设备的使用寿命。因

此,合理养护线路,确保线路质量是保证工务部门安全生产的前提,也是保证铁路运输安全的基础,对企业经济效益的增长、人民生命财产的保障和国民生产总值的提高都有很重要的意义。

二、重载铁路线路设备现状的基本情况分析

重载铁路最主要的特点是运量大和轴重大。这两大特点必然使轨道结构承受较大的荷载,由此造成轨道结构及其部件的破坏速度较普通线路加快,线路变形也增加较大。

从而使线路维修养护工作量和维修成本都较普通线路加大。从过去几年的养护维修情况分析,重载铁路轨道结构破坏的主要形式有轨道部件破损(尤其是夹板裂纹,接头螺栓折断,弹条折断),钢轨表面的不平顺(波形磨耗等)及线路的严重下沉三种。轨道部件伤损和轨面不平顺产生的主要原因是接头部位的强大冲击力的反复作用,使得这些部位的部件产生疲劳伤损所致。线路严重下沉主要由两方面原因造成:一是道床的沉陷变形;二是路基病害造成的基床坍塌;三是桥涵两头路基的不均匀下沉。根据铁科院的研究资料,道床的破坏与通过总重成线形关系,而路基破坏则与通过总重的24成正比,所以这也同时说明重载列车对路基的破坏更加严重。由于路基的变形最终反映在轨道的变形上,因而这些破坏最终都导致了线路维修工作量的增加。所以我就从轨道结构加强与养护和路基设施养护两个方面做一些探讨。

三、重载铁路线路的病害产生原因及整治方法分析

A、轨道结构的养护维修

(一)重载铁路轨道受力的影响因素

与任何其他工程结构一样,列车荷载与轨道抗力的相互作用关系决定了轨道的破损程度和使用寿命。按照目前国际上普遍采用的连续弹性基础梁轨道强度理论,影响轨道结构受力的因素主要有荷载、轨枕、道床和钢轨四个方面。

荷载是造成轨道受力的根本源泉,轨道受力主要是来自荷载。荷载与轨道的受力与变形成线形关系,荷载增加的百分数与轨道结构受力与变形增加的百分数基本相同。2、轨枕的影响主要是轨枕间距(也即轨枕配置)的影响和轨枕支撑面积的影响。轨枕间距对轨枕上的饿压力和道床上的应力影响较大,而对轨道弹性下沉和钢轨弯曲应力影响较小。根据有关研究资料,每增减一个轨枕根数档次(按照我国1600根/km---1920根/km铺设标准,每增减80根/km为一个轨枕根数档次),枕上压力和道床应力变化3%-4%,而轨道弹性下沉和钢轨应力只变化1.2%左右。轨枕支撑面对轨道弹性下沉和道床应力都有明显影响,根据研究资料显示,Ⅲ型轨枕比

我们目前使用的Ⅱ型轨枕在相同荷载作用下,受力与下沉减少11%左右。

3、道床刚性对道床应力和轨枕上压力影响较大,枕上压力和道床应力与道床钢度成同向变化,且幅度较大。而线路维修工作量与道床应力的3—4次成正比,所以道床刚性对维修工作量影响很大。

4、钢轨影响主要是断面尺寸(即钢轨类型)和钢轨状态的影响。

(二)铁路轨道病害整治养护方法探讨:

根据以上轨道结构受力的分析,对于工务部门能够改变的影响因素就是轨道结构零配件、道床的状态、轨枕间距及枕上弹性垫层和钢轨状态,所以日常维修以就要围绕这几个方面展开。

1、轨道的几何尺寸的整正是轨道养护维修的主要内容。根据不完全统计,工务部门60—70%的工作量都是进行轨道几何尺寸的整正。轨道的变形状态与列车荷载的相互影响的,列车的重复振动荷载使线路产生变形,而线路变形后产生的轨面不

平顺又会使列车对线路的冲击破坏加剧。特别是对于重载铁路,轨道承受的荷载较大,列车运行的密度也较大,这就会使这种相互作用的影响更大,也会使得轨道几何尺寸的变化频率加快。所以要进行轨道几何尺寸的整正,尽可能地减少重载列车对线路的冲击破坏。

2、轨道结构的各部联结零件要经常保持齐全有效和良好的技术状态,每年的春秋两季要对所有联结零件进行两次全面复紧,使所有零配件都达到规定的扭力矩,从整体上锁定线路。这样可以防止暑期钢轨热胀爬行产生胀轨跑道或绝缘顶坏,也可以防止冬季冷缩爬行产生轨缝拉大进而拉断接头螺栓。另外每年要对所有联结零配件进行一次涂油,防止联结零件锈蚀,因为运输中粉尘较大,螺栓锈蚀也较快,因此要通 过涂长效防锈油脂来缓减锈蚀的速度。

3、道床是均匀传布荷载、提供轨道纵横向阻力和弹性的重要组成部分,道床状态的好坏直接关系着线路技术状态的稳定和工务维修工作量的大小。使道床保持饱满、均

匀、清洁、密实和良好的弹性是进行道床整修的主要目的。道床在列车长时间振动荷载的反复作用下,主要会出现板结、弹性下降和切入路基造成缺少等病害。由于运输中粉尘较大,在道床内聚集了很多的尘土,遇有下雨时极易形成道碴囊,天气干燥时就出现板结。所以维修中很大一部分工作量与道床有关,对于道床一是要及时进行补充。特别是桥涵两头和路基下沉地段,极易出现石碴缺少病害,这时就要补充石碴。只有石碴补足了才能保持住。二是要根据道床的板结情况及时安排相应的清筛,恢复道床的弹性。以为轨道部分的良好弹性是保持轨道几何状态的关键。

4、轨枕及轨下弹性垫层的养护也是日常维修中的重要内容,轨枕部分主要是失效轨枕的更换和轨枕受力状态的改善。轨下弹性垫层是轨道弹性的重要组成部分,它对混凝土枕所受荷载有直接的缓冲和减振作用。根据北京铁路局的试验,铺设新的10mm厚橡胶垫板的道床其振动加速度比使用2年以后的橡胶垫板道床下降25%,换铺高弹性橡胶垫板则能下降40%。这说明改善轨下垫层的弹性不仅可以减小轨道下沉量,而且对于保持轨道的平顺性,减少养护维修工作量有很明显的效用。

5、钢轨是轨道结构的直接受力部分,是列车运行的“筋骨”,它将从车轮传来的冲击力传递给轨枕及以下轨道部分,它也是轨道结构中唯一直接与车轮接触的构件,钢轨状态的好坏直接关系着运营的安全。所以从检测上要高度重视钢轨伤损探测的质量,杜绝漏探漏检现象的发生。同时要加强钢轨的手工检查,充分发挥线路巡查人员的作用,进行钢轨伤损状态的跟踪检查,及时掌握伤损钢轨的技术状态。养护上及时对掉块、擦伤、轨面不平顺等能够焊补或打磨的小病害及时进行整治。因为在重载铁路高密度、大荷载列车的冲击作用下,钢轨的伤损发展的非常快,严重情况下可能一两天的时间一般轻伤轨就会发展为重伤轨。

(三)积极引进与推广“四新”技术,采取科学有效的方式进行线路的养护维修。这几年我们在木枕道岔进行了“五花大绑”加强、小半径曲线进行了“七桩定位”加强和接头垫砂垫板整治等多种行之有效的方法,效果非常明显。对于重载铁路的养护维修

在提高设备整体稳定性上下工夫,是很重要的思路。由于重载铁路的冲击破坏较大,如果设备的整体稳定性提高了,这种冲击破坏就会减少,进而维修工作量也会跟着减少。今后还需在提高设备整体稳定性方面进行积极的探索。

(四)、重载标准轨铁路的接头养护是工务部门养护维修工作的一项重点和难点。工务部门养护维修工作量的60%-70%都用在了接头养护上。对于接头养护必须根据每一个接头的实际情况,采取综合整治措施才能取得成效。根据这几年的实践经验,对于接头的养护主要从以下几方面展开:

1、根据当地的气温变化情况,及时调整不良轨缝,保持适合的轨缝;2、保持接头螺栓和扣件的扭力,使接头的部分连接保持稳定状态;

3、接头部分道床在捣固时要保证良好的捣固质量;

4、对于低扣接头要进行平轨处理;

5、对于出现下弯的夹板要更换为上弯夹板或减振夹板;

6、要重视对轨面的修理,对于出现的轨端不均匀磨耗、掉块、擦伤等缺陷和病害要采取焊补、打磨等多种方式进行修理;

7、改善接头部位道床的弹性,主要是清筛板结和翻浆道床,更换磨圆的石碴;8、改善轨下弹性垫层,保持轨下垫层的良好弹性,可以采取更换高弹胶垫或TD型复合胶垫的方式来改善。

重视路基设施的养护

路基是铁路线路的基本组成部分,也是造成线路经常变化的一个重要因素。路基的变化会直接引起轨道结构的变化。重载铁路的路基下沉是主要路基病害,所以在日常的养护维修中要高度重视对路基及其附属设施的养护。按照目前上级提出的“立体养护”的标准,对路基的各类排水设施、浆砌护坡、浆砌骨架、浆砌护肩、路基边坡及路基边坡植被等要进行经常性的检查保养。要对路基边坡植被缺少地段及时进行种草或栽种紫穗槐,通过对路基及其附属设施的养护,来保持路基的稳定状态。

四、逐级负责,责任到人,严格执行标准化作业和落实精细化管理

为了进行有效的维修工作组织,要在基层内部实施以定人员、定设备、定质量、定安全、定指标、定职责为内容的“六定”管理。具体是按照基层的人员情况和设备情况,在养路基层内部建立几个作业组,给每个作业组定人员、定设备数量、定质量指标、定成本指标、定安全责任、定管理职责。养路基层每月对各作业组的设备保养情况、任务完成情况和安全生产情况进行检查考核,根据考核结果兑现职工的奖励工

资。通过这种定职化管理,一方面可以使养路基层生产任务和安全职责层层落实,最终落实到了每个职工头上,从而使职工的生产和安全责任明确,责任心强。另一方面也使得养路基层的每一项工作都能落实到具体的一个人身上,能够保证养路基层各项生产和安全指标的顺利完成。

现场作业要积极推行“全项目作业法”和标准化有效结合,所谓全项目作业法就是在进行日常的维修作业时要把维修项目尽可能地做全,杜绝作业项目单一现象。比如在某一段线路进行方向整修,那就不能只进行拨道作业,还要同时检查高低、水平、接头、钢轨、标志标记、路基等,如果发现这些项目存在问题要同时进行整治,不能只是去拨道而不去管别的项目。推行全项目作业目的旨在提高生产效率,避免在某一段今天改道、明天起道、后天拨道这种简单重复作业的发生。而标准化作业就是任何维修养护作业,不论作业量大小,都要认真按照《工务维修标准》来完成,严格遵守作业纪律,杜绝人身伤亡,作业中不能因为任何原因来简化作业程序,避免返工现象,延长设备病害发生周期,有效提高作业效率。

通过这种逐级负责,责任到人的精细化管理来合理的安排作业计划,有效的提高作业质量,平稳的保持线路均衡,超额的完成运输计划。

总之,重载铁路由于荷载大和列车密度大,对的养护维修提出了新的更高的要求。所以必须本着创新的思想,立足重载铁路的具体特点,积极探索重载铁路的养护维修方法,提高养护维修的科技含量,迈出重载铁路工务维修的创新之路!

第二篇:重载铁路线路的维修和养护工作初探范文

千 里 之 行,始 于 足 下

—我国现行重载铁路线路的维修和养护工作初探

铁路运输,对于国民经济健康稳定的发展,具有极其重要的作用,这一点是众所周知的。我国铁路的发展速度之快,令世人瞩目。然而,就算是我国铁路如此迅猛的发展,也仍然不能满足客货运输的需求。这样的结果就是:中国铁路以有限的资源承载着世界上最大的铁路运输量!超载运输,超员运输已经成为中国铁路正常健康运营的一大瓶颈和亟待解决的突出问题!

铁路运输工作中,一个永恒的主题就是——安全运输或者说是安全生产!而安全生产的关键就是确保设备和人身安全。线路轨道是铁路运输的基础,身为铁路工务部门的一名职工,如何搞好工务线路及设备的维修养护工作,为铁路运输安全畅通夯实基础,这不仅仅是我的职责,同时也对确保铁路运输的安全具有极为重要的意义。笔者作为一名工作在中国铁路第一线的一名工人,结合近年来本人从事工务设备养护和维修的经验和体会,初步探讨一下在现有条件下重载铁路线路的维修和养护问题。

一、铁路线路、重载铁路的涵义概述以及重载铁路线路维修及养护工作的重大作用和意义

铁路线路是由路基、轨道和桥隧建筑物及其他附属系统如信号系统等组成。它是一个整体结构工程,所有系统设备共同发挥各自的功用,其任何组成部分的改变或损坏,都将影响铁路的整体功能。

重载铁路是指用于运载大宗散货的总重大、轴重大的列车、货车行驶或行车密度和运量特大的铁路。总重大可达1~2万吨,轴重大可达30吨,行车密度大可达1万吨千米/千米。其维修和养护任务,为重中之重!

表面上看来,铁路线路设备好像是没有什么变化的,但其实它无时无刻不在变化,这种变化是一个动态的过程!铁路线路设备是铁路运输业的基础设备,它常年裸露在大自然中,经受着风雨侵蚀和列车荷载的作用,轨道几何尺寸不断变化,路基及道床不断产生变形,钢轨、联结零件及轨枕不断磨损,因而使线路设备的技术状态和各项技术参数都在不断地发生着或细微或明显的变化。基于此种情况,线路维修养护工作必须贯彻“预防为主,防治结合,修养并重”的基本原则,经常保持线路设备完整和质量均衡,从而使列车能以规定速度安全、平稳和不间断地运行;并通过养护工作,尽量延长设备的使用寿命。因此,从这个意义上来说,科学合理的养护线路,确保线路运行质量是保证工务部门安全生产的重要前提,也是保证铁路运输安全的工作基础;不仅如此,这些工作的开展,对于促进企业经济效益的增长、确保人民群众生命财产的安全和国民生产总值的提高都有着直接重要的意义。

二、现实情况下重载铁路线路设备状况的基本情况概述

重载铁路最主要最突出的特点就是运量大和轴重大。这两大特点必然使轨道结构承受较大的荷载,由此所造成的轨道结构及其部件的破坏速度及变形速度,较之普通线路更快,也更严重。这样的现实状况,从而使线路的维修养护工作量和维修成本,也都较之普通线路更高更大。从过去几年的养护维修实际情况来分析,重载铁路轨道结构破坏的主要形式有轨道部件破损(尤其是夹板裂纹,接头螺栓折断,弹条折断),钢轨表面的不平顺(波形磨耗等)及线路的严重下沉三种。

轨道部件伤损和轨面不平顺产生的主要原因是接头部位的强大冲击力的反复作用,使得这些部位的部件产生疲劳伤损所致。线路严重下沉主要由两方面原因造成:一是道床的沉陷变形;二是路基病害造成的基床坍塌;三是桥涵两头路基的不均匀下沉。根据铁科院的研究资料,道床的破坏与通过总重成线形关系,而路基破坏则与通过总重的24成正比,所以这也同时说明重载列车对路基的破坏更加严重。由于路基的变形最终反映在轨道的变形上,因而这些破坏最终都导致了线路维修工作量的增加及维修的困难加大。所以,本人就结合自己的工作体会和实践经验,从轨道结构加强与养护和路基设施养护这两个方面入手做一些初步的探讨。

三、对我国现行重载铁路线路的病害产生的基本原因的初步分析及整治方法研究

第一.重载铁路线路轨道结构的科学养护和维修

(一)我国重载铁路轨道受力的影响因素初探

1.道床刚性对道床应力和轨枕上压力影响较大,枕上压力和道床应力与道床钢度成同向变化,且幅度较大。而线路维修工作量与道床应力的3—4次成正比,所以道床与任何其他工程结构一样,列车荷载与轨道抗力的相互作用关系决定了轨道的破损程度和使用寿命。按照目前国际上普遍采用的连续弹性基础梁轨道强度理论来分析,影响轨道结构受力的因素主要有荷载、轨枕、道床和钢轨四个方面原因。

荷载是造成轨道受力的根本源泉,轨道受力主要是来自荷载。荷载与轨道的受力与变形成线形关系,荷载增加的百分数与轨道结构受力与变形增加的百分数基本相同。这是造成轨道变形的重要原因之一。

2、轨枕的影响。轨枕的影响主要是体现在轨枕间距(也即轨枕配置)的影响和轨枕支撑面积的影响。轨枕间距对轨枕上的饿压力和道床上的应力影响较大,而对轨道弹性下沉和钢轨弯曲应力影响较小。根据有关研究资料,每增减一个轨枕根数档次(按照我国1600根/km---1920根/km铺设标准,每增减80根/km为一个轨枕根数档次),枕上压力和道床应力变化3%-4%,而轨道弹性下沉和钢轨应力只变化1.2%左右。轨枕支撑面对轨道弹性下沉和道床应力都有明显影响,根据研究资料显示,Ⅲ型轨枕比我们目前使用的Ⅱ型轨枕在相同荷载作用下,受力与下沉减少11%左右。刚性对维修工作量影响很大。

3、钢轨影响主要是断面尺寸(即钢轨类型)和钢轨状态的影响。

(二)铁路轨道病害整治养护方法探讨:

根据以上轨道结构受力的分析,对于工务部门能够改变的影响因素就是轨道结构零配件、道床的状态、轨枕间距及枕上弹性垫层和钢轨状态,所以日常维修以就要围绕这几个方面展开。

1、轨道的几何尺寸的整正是轨道养护维修的主要内容。根据不完全统计,工务部门60—70%的工作量都是进行轨道几何尺寸的整正。轨道的变形状态与列车荷载的相互影响的,列车的重复振动荷载使线路产生变形,而线路变形后产生的轨面不平顺又会使列车对线路的冲击破坏加剧。特别是对于重载铁路,轨道承受的荷载较大,列车运行的密度也较大,这就会使这种相互作用的影响更大,也会使得轨道几何尺寸的变化频率加快。所以要进行轨道几何尺寸的整正,尽可能地减少重载列车对线路的冲击破坏。

2、轨道结构的各部联结零件要经常保持齐全有效和良好的技术状态,每年的春秋两季要对所有联结零件进行两次全面复紧,使所有零配件都达到规定的扭力矩,从整体上锁定线路。这样可以防止暑期钢轨热胀爬行产生胀轨跑道或绝缘顶坏,也可以防止冬季冷缩爬行产生轨缝拉大进而拉断接头螺栓。另外每年要对所有联结零配件进行一次涂油,防止联结零件锈蚀,因为运输中粉尘较大,螺栓锈蚀也较快,因此要通过涂长效防锈油脂来缓减锈蚀的速度。

3、道床是均匀传布荷载、提供轨道纵横向阻力和弹性的重要组成部分,道床状态的好坏直接关系着线路技术状态的稳定和工务维修工作量的大小。使道床保持饱满、均匀、清洁、密实和良好的弹性是进行道床整修的主要目的。道床在列车长时间振动荷载的反复作用下,主要会出现板结、弹性下降和切入路基造成缺少等病害。由于运输中粉尘较大,在道床内聚集了很多的尘土,遇有下雨时极易形成道碴囊,天气干燥时就出现板结。所以维修中很大一部分工作量与道床有关,对于道床一是要及时进行补充。特别是桥涵两头和路基下沉地段,极易出现石碴缺少病害,这时就要补充石碴。只有石碴补足了才能保持住。二是要根据道床的板结情况及时安排相应的清筛,恢复道床的弹性。以为轨道部分的良好弹性是保持轨道几何状态的关键。

4、轨枕及轨下弹性垫层的养护也是日常维修中的重要内容,轨枕部分主要是失效轨枕的更换和轨枕受力状态的改善。轨下弹性垫层是轨道弹性的重要组成部分,它对混凝土枕所受荷载有直接的缓冲和减振作用。根据北京铁路局的试验,铺设新的10mm厚橡胶垫板的道床其振动加速度比使用2年以后的橡胶垫板道床下降25%,换铺高弹性橡胶垫板则能下降40%。这说明改善轨下垫层的弹性不仅可以减小轨道下沉量,而且对于保持轨道的平顺性,减少养护维修工作量有很明显的效用。

5、钢轨是轨道结构的直接受力部分,是列车运行的“筋骨”,它将从车轮传来的冲击力传递给轨枕及以下轨道部分,它也是轨道结构中唯一直接与车轮接触的构件,钢轨状态的好坏直接关系着运营的安全。所以从检测上要高度重视钢轨伤损探测的质量,杜绝漏探漏检现象的发生。同时要加强钢轨的手工检查,充分发挥线路巡查人员的作用,进行钢轨伤损状态的跟踪检查,及时掌握伤损钢轨的技术状态。养护上及时对掉块、擦伤、轨面不平顺等能够焊补或打磨的小病害及时进行整治。因为在重载铁路高密度、大荷载列车的冲击作用下,钢轨的伤损发展的非常快,严重情况下,可能一两天的时间,一般轻伤轨就会发展为重伤轨。

(三)积极引进与推广“四新”技术,采取科学有效的方式进行线路的养护维修。这几年我们在木枕道岔进行了“五花大绑”加强、小半径曲线进行了“七桩定位”加强和接头垫砂垫板整治等多种行之有效的方法,效果非常明显。对于重载铁路的养护维修在提高设备整体稳定性上下工夫,是很重要的思路。由于重载铁路的冲击破坏较大,如果设备的整体稳定性提高了,这种冲击破坏就会减少,进而维修工作量也会跟着减少。今后还需在提高设备整体稳定性方面进行积极的探索。

(四)、重载标准轨铁路的接头养护是工务部门养护维修工作的一项重点和难点。工务部门养护维修工作量的60%-70%都用在了接头养护上。对于接头养护必须根据每一个接头的实际情况,采取综合整治措施才能取得成效。根据这几年的实践经验,对于接头的养护主要从以下几方面展开:

1、根据当地的气温变化情况,及时调整不良轨缝,保持适合的轨缝;

2、保持接头螺栓和扣件的扭力,使接头的部分连接保持稳定状态;

3、接头部分道床在捣固时要保证良好的捣固质量;

4、对于低扣接头要进行平轨处理;

5、对于出现下弯的夹板要更换为上弯夹板或减振夹板;

6、要重视对轨面的修理,对于出现的轨端不均匀磨耗、掉块、擦伤等缺陷和病害要采取焊补、打磨等多种方式进行修理;

7、改善接头部位道床的弹性,主要是清筛板结和翻浆道床,更换磨圆的石碴;

8、改善轨下弹性垫层,保持轨下垫层的良好弹性,可以采取更换高弹胶垫或TD型复合胶垫的方式来改善。

第二.重视路基设施的养护

路基是铁路线路的基本组成部分,也是造成线路经常变化的一个重要因素。路基的变化会直接引起轨道结构的变化。重载铁路的路基下沉是主要路基病害,所以在日常的养护维修中要高度重视对路基及其附属设施的养护。按照目前上级提出的“立体养护”的标准,对路基的各类排水设施、浆砌护坡、浆砌骨架、浆砌护肩、路基边坡及路基边坡植被等要进行经常性的检查保养。要对路基边坡植被缺少地段及时进行种草或栽种紫穗槐,通过对路基及其附属设施的养护,来保持路基的稳定状态。

四、逐级负责,责任到人,严格执行标准化作业和落实精细化管理

为了进行有效的维修工作组织,要在基层内部实施以定人员、定设备、定质量、定安全、定指标、定职责为内容的“六定”管理。具体是按照基层的人员情况和设备情况,在养路基层内部建立几个作业组,给每个作业组定人员、定设备数量、定质量指标、定成本指标、定安全责任、定管理职责。养路基层每月对各作业组的设备保养情况、任务完成情况和安全生产情况进行检查考核,根据考核结果兑现职工的奖励工

资。通过这种定职化管理,一方面可以使养路基层生产任务和安全职责层层落实,最终落实到了每个职工头上,从而使职工的生产和安全责任明确,责任心强。另一方面也使得养路基层的每一项工作都能落实到具体的一个人身上,能够保证养路基层各项生产和安全指标的顺利完成。

通过这种逐级负责,责任到人的精细化管理来合理的安排作业计划,有效的提高作业质量,平稳的保持线路均衡,超额的完成运输计划。

总之,重载铁路由于荷载大和列车密度大,对的养护维修提出了新的更高的要求。所以必须本着创新的思想,立足重载铁路的具体特点,积极探索重载铁路的养护维修方法,提高养护维修的科技含量,迈出重载铁路工务维修的创新之路,以适应时代发展对我们提出的新要求!

第三篇:铁路线路养护维修

题目:铁路线路养护

摘要:铁路线路设备是铁路运输业的基础设备,经常保持线路设备完整和质量均衡,列车能以规定速度安全的运行,合理养护铁路,是保障铁路运输安全的必要。

关键词:铁路线路、养护方法、维修方法

正文:为保持铁路经常处于符合铁路技术标准所规定的良好状态,对铁路路基、轨道等进行的养护修理作业。

铁路线路在列车重力和列车运动产生的各种力的作用下,以及在自然环境的影响下,会发生各种病害。常见的病害有:①铁路线路及其各组成部分在空间位置上的改变,如线路爬行,轨距扩大或缩小,线路方向错动,线路不均匀下沉或冻起等;②钢轨及其各组成部分发生磨损和疲劳;③轨枕损坏和道床脏污等。铁路线路病害影响列车的正常运行,甚至危及列车运行安全。因此,铁路线路养护的基本任务就是通过对线路的系统检查,及时发现线路上一切不符合技术标准的现象和病害,并查清其原因,以便合理地计划和组织线路养护作业,消除病害或缩小病害影响,使线路经常处于完好状态,保证列车按照规定的速度,平稳、安全和不间断地运行。养护内容包括线路状态检查作业和线路养护修理作业。线路状态检查主要形式是:①日常检查,是定时进行的例行检查;②定期检查,在春、秋两季对线路设备进行的全面检查,秋季检查结果是编制设备技术档案的原始资料,也是制定下一设备养护工作计划的依据;③专门检查,对钢轨状态、线路动态、线路纵断面和线路平面等进行的定期检查。

线路养护修理主要作业有:①轨道几何状态的整修,包括顺平线路、拨正方向、改正轨距、矫正轨底坡、调整轨缝和防爬锁定线路等;②保养并个别更换伤损的钢轨、轨枕及联结零件,或全部更新钢轨、轨枕及联结零件;③清筛并补充道碴,使其既密实又有弹性,并具有良好的排水性能;④保养并整修路基、排水及防护加固设备;⑤整修道口和线路标志;⑥做好其他属于延长设备使用寿命的修理工作,如焊补钢轨、辙叉,整修联结零件,补修轨枕等。道岔和曲线是线路上的薄弱环节,除进行上述有关作业外,还需根据特别规定的技术标准和要求,进行相应的作业项目。

线路养护修理一般采取周期性修理为主的方式,主要包括周期性轨道更新或大修,周期性轨道综合维修,以及经常性巡检和重点补修。中国铁路对线路养护修理作业划分为线路经常维修、线路中修和线路大修三个方面。

经常维修是预防线路发生一切不良现象,并及时消除已经发生的病害的作业。它包括:①线路维修,主要是以整修轨道几何形状及个别更换和修理保养

轨道构件为主。维修工作程序采取周期性综合维修,经常保养和紧急补修相结合的方式。②线路巡查,包括巡道、巡山和巡河工作,巡道由专职巡道工按照批准的巡回图,有计划地巡查线路,发现和排除故障,并做好力所能及的线路补修工作;在路基条件复杂的地段,设专职巡山巡河工,进行登山沿河检查,观测路基及其防护加固设备状况和病害发展情况。③线路建筑物看守,即在有必要的道口设道口看守工,维护道口交通秩序,保证道口安全,并保证道口的经常完好和整洁;在有危及行车安全的路基病害处所,设固定的或临时的坍方落石看守工进行监视。

中修消除线路上积累起来的,同时又是经常维修所不能消灭的病害的作业。其主要内容是:清筛并补充道碴,恢复道床弹性和良好的排水性能,同时更换失效轨枕和伤损钢轨及联结零件,整修线路,使线路质量基本恢复到或接近原来的标准。线路中修按规定的工作范围和技术条件进行设计或编制工作量表,并按设计或工作量表进行施工。

大修消除线路上积累起来的一切病害,使线路质量全面恢复到原有标准或达到更高标准的作业。线路大修有两种作法,一是全面更新,一是部分更新。中国线路大修的主要作业是:全面更换新钢轨及联结零件;更换失效轨枕,或全部更换为预应力混凝土轨枕;彻底清筛道床,补充道碴;校正、改善线路纵断面和平面;整修路基、排水和防护加固设备;更换道岔等。线路大修要经过勘测,编制设计,并按设计施工。

中国铁路线路维修是利用列车间隔时间进行,但在运输繁忙的线路上,由于间隔时间太短,这种方式已不适用。线路大、中修施工,一般是在列车运行图中预留施工封锁“天窗”。

线路养护组织中国铁路在工务段设置若干养路领工区,负责组织和监督管内的线路经常维修工作。此外,还设置专业的钢轨检查、钢轨焊补、线路中修及路基工队或工组,在全段范围内流动作业,完成各自的专业工作计划。在养路领工区范围内划分为几个养路工区,具体执行线路维修、巡查和建筑物看守工作。路基特别复杂的地区设路基工区。在实行养路机械化的地区,也有在领工区设机械化维修工队的,专门负责全领工区范围内的轨道计划维修,工区只负责日常的保养、紧急补修和巡守工作。线路大修和中修工作主要由铁路局直辖的专业大修队承担,根据安排,在铁路局范围内流动施工。

目前,中国铁路在维修作业方面,主要是应用以捣固为主的小型养路机械;在大修施工方面,如轨排组装和铺设、起拨道、捣固、道床清筛、装运道碴、长轨运输等应用机械,但效率较低。在运输高度繁忙区段,有待采用快速高效的机械。

参考文献:

章子春;《线路》;北京;中国铁道出版社;1988

刘永孝;《铁路线路维修与养护》;西南交通大学出版社;

第四篇:铁路线路养护维修 听课报告

铁路线路养护

为保持铁路经常处于符合铁路技术标准所规定的良好状态,对铁路路基、轨道等进行的养护修理作业。

铁路线路在列车重力和列车运动产生的各种力的作用下,以及在自然环境的影响下,会发生各种病害。常见的病害有:①铁路线路及其各组成部分在空间位置上的改变,如线路爬行,轨距扩大或缩小,线路方向错动,线路不均匀下沉或冻起等;②钢轨及其各组成部分发生磨损和疲劳;③轨枕损坏和道床脏污等。铁路线路病害影响列车的正常运行,甚至危及列车运行安全。因此,铁路线路养护的基本任务就是通过对线路的系统检查,及时发现线路上一切不符合技术标准的现象和病害,并查清其原因,以便合理地计划和组织线路养护作业,消除病害或缩小病害影响,使线路经常处于完好状态,保证列车按照规定的速度,平稳、安全和不间断地运行。养护内容包括线路状态检查作业和线路养护修理作业。

线路状态检查

主要形式是:①日常检查,是定时进行的例行检查;②定期检查,在春、秋两季对线路设备进行的全面检查,秋季检查结果是编制设备技术档案的原始资料,也是制定下一设备养护工作计划的依据;③专门检查,对钢轨状态、线路动态、线路纵断面和线路平面等进行的定期检查。

线路养护修理

主要作业有:①轨道几何状态的整修,包括顺平线路、拨正方向、改正轨距、矫正轨底坡、调整轨缝和防爬锁定线路等;②保养并个别更换伤损的钢轨、轨枕及联结零件,或全部更新钢轨、轨枕及联结零件;③清筛并补充道碴,使其既密实又有弹性,并具有良好的排水性能;④保养并整修路基、排水及防护加固设备;⑤整修道口和线路标志;⑥做好其他属于延长设备使用寿命的修理工作,如焊补钢轨、辙叉,整修联结零件,补修轨枕等。道岔和曲线是线路上的薄弱环节,除进行上述有关作业外,还需根据特别规定的技术标准和要求,进行相应的作业项目。

线路养护修理一般采取周期性修理为主的方式,主要包括周期性轨道更新或大修,周期性轨道综合维修,以及经常性巡检和重点补修。中国铁路对线路养护修理作业划分为线路经常维修、线路中修和线路大修三个方面。

经常维修

是预防线路发生一切不良现象,并及时消除已经发生的病害的作业。它包括:①线路维修,主要是以整修轨道几何形状及个别更换和修理保养轨道构件为主。维修工作程序采取周期性综合维修,经常保养和紧急补修相结合的方式。②线路巡查,包括巡道、巡山和巡河工作,巡道由专职巡道工按照批准的巡回图,有计划地巡查线路,发现和排除故障,并做好力所能及的线路补修工作;在路基条件复杂的地段,设专职巡山巡河工,进行登山沿河检查,观测路基及其防护加固设备状况和病害发展情况。③线路建筑物看守,即在有必要的道口设道口看守工,维护道口交通秩序,保证道口安全,并保证道口的经常完好和整洁;在有危及行车安全的路基病害处所,设固定的或临时的坍方落石看守工进行监视。

中修

消除线路上积累起来的,同时又是经常维修所不能消灭的病害的作业。其主要内容是:清筛并补充道碴,恢复道床弹性和良好的排水性能,同时更换失效轨枕和伤损钢轨及联结零件,整修线路,使线路质量基本恢复到或接近原来的标准。线路中修按规定的工作范围和技术条件进行设计或编制工作量表,并按设计或工作量表进行施工。

大修

消除线路上积累起来的一切病害,使线路质量全面恢复到原有标准或达到更高标准的作业。线路大修有两种作法,一是全面更新,一是部分更新。中国线路大修的主要作业是:全面更换新钢轨及联结零件;更换失效轨枕,或全部更换为预应力混凝土轨枕;彻底清筛道床,补充道碴;校正、改善线路纵断面和平面;整修路基、排水和防护加固设备;更换道岔等。线路大修要经过勘测,编制设计,并按设计施工。

中国铁路线路维修是利用列车间隔时间进行,但在运输繁忙的线路上,由于间隔时间太短,这种方式已不适用。线路大、中修施工,一般是在列车运行图中预留施工封锁“天窗”。

线路养护组织

中国铁路在工务段设置若干养路领工区,负责组织和监督管内的线路经常维修工作。此外,还设置专业的钢轨检查、钢轨焊补、线路中修及路基工队或工组,在全段范围内流动作业,完成各自的专业工作计划。在养路领工区范围内划分为几个养路工区,具体执行线路维修、巡查和建筑物看守工作。路基特别复杂的地区设路基工区。在实行养路机械化的地区,也有在领工区设机械化维修工队的,专门负责全领工区范围内的轨道计划维修,工区只负责日常的保养、紧急补修和巡守工作。线路大修和中修工作主要由铁路局直辖的专业大修队承担,根据安排,在铁路局范围内流动施工。

目前,中国铁路在维修作业方面,主要是应用以捣固为主的小型养路机械;在大修施工方面,如轨排组装和铺设、起拨道、捣固、道床清筛、装运道碴、长轨运输等应用机械,但效率较低。在运输高度繁忙区段,有待采用快速高效的机械。

第五篇:重载铁路的研究进展

重载铁路的研究进展

1.什么是重载铁路运输?

铁路重载运输定义:用于运载大宗散货的总重大、轴重大的列车、货车行驶或行车密度和运量特大的铁路。运输量5000t以上,总重1~2万吨,轴重25t以上,年运量2亿吨以上。重载铁路是一种效率甚高的运输方式。重载列车需着重研究的问题是运行管理、轨道的适应性,以及大宗散货的装卸等。

重载运输开始于 20世纪60年代开始,美、加、俄、巴西、南非、澳大利亚领先,美国运煤列车长6500m,重44000t,500车辆、6台机车;南非矿石列车,长7200m,重71600m,660车辆;俄国重载列车长6500m,重43000t,400车辆,4台机车;澳大利亚2001年6月创新的世界记录,列车长7353m,总重99734t,682车辆,8台机车;我国第一条重载铁路大秦铁路,2002年实现1亿吨年运量设计能力,2004年实现1.5亿吨年运量,2005年实现2亿吨年运量,2006年实现2.5亿吨年运量,2007年实现3亿吨年运量,3亿吨创国际年运量最高记录。未来目标40000 t。

2.重载铁路运输方式

重载列车种类:单元式、整列式、合并式。

单元式重载列车是把大功率机车双机或多机与一定编成辆数的同类专用货车固定组成一个运输“单元”(unit),并以此作为运营计费的单位。单元式重载列车特点:固定机车车辆编组,固定发站和到站,固定运行线路,运送单一品种的货物列车。它在装卸站间往返循环运行,中间无改编作业。(大秦铁路)

组合式重载列车是由两列及其以上同方向运行的普通货物列车首尾相接、合并组成的列车。机车分别挂于各自的物货列车首部,由最前方货物列车的机车担任本务机车,运行至前方某一技术站或终到站后,分解为普通货物列车。

整列式重载列车是由挂于列车头部的大功率单机或双机牵引,采用普通货物列车的作业组织方法,牵引重量达到5 000 t及其以上的列车。

1)单元重载列车是加速货物送达和机车车辆周转的有效运输组织形式。在货源充足、品类单

一、产销关系稳定的大宗散堆装货物(如煤炭、矿石、粮食等),可组织开行装卸车地之间的单元式重截列车。但是,这种重载运输方式要求装、运、卸各环节技术设备协调配套,装车采用不停车作业方法,设置装车环形线及高效率装车设备,卸车地采用不摘钩卸车作业方法,设置卸车环形线及高效率卸车设备(翻车机、车底开门车辆等)。

2)整列式重载列车是既有繁忙干线发展重载远输的主要形式.适量延长全线一部分既有车站到发线的有效长,采用大功率机车牵引。能大幅度地提高铁路输送能力。可在车流集中地,组织开行装卸本地之间,技术作业站之间的整列式重载列车。

3)合并式重载列车对设备要求简单,具有一定的扩能效果,做为辅助手段,发挥可分可合灵活机动特点。

3.世界铁路重载运输发展过程

世界各国重载铁路借助于采用高新技术,促使重载列车牵引重量不断增加。2001年6月21日澳大利亚西部的BHP铁矿集团公司在纽曼山—海德兰重载铁路上创造了重载列车牵引总重99734t的世界纪录。2004年巴西CVRD铁矿集团经营的卡拉齐重载铁路上,开行重载列车的平均牵引重量已达39000t。南非Orex铁矿重载线是窄轨铁路(1067mm轨距),开行重载列车的平均牵引重量为25920t。美国最大的一级铁路公司联合太平洋铁路(UP)经营的铁路里程为54000km,其所有列车的平均牵引重量已达14900t,一般重载列车的牵引重量普遍达到2~3万t,其复线年货运量在2亿t以上。

2005年国际重载运输协会(IHHA)的巴西年会上已对重载运输的定义作了新的修订:重载列车牵引重量至少达到8000t(以前为5000t);轴重(或计划轴重)为27t及以上(以前为25t);在至少150k上年运量m线路区段超过4000万t(以前为2000万t)。

而随着重载运输推广范围日益扩大,欧洲已在客货混运干线上开行重载列车。

重载运输技术在越来越多的国家推广应用。不仅在幅员辽阔的大陆性国家(如美国、加拿大、澳大利亚、南非等国)重载铁路上大量开行重载列车,而目前在欧洲传统以客运为主的客货混运干线铁路上也开始开行重载列车。德国铁路从2003年开始在客货混运的既有线路(如汉堡—萨尔兹特)上开行轴重25t、牵引重量6000t的重载列车,最高运行速度80km/h(重车),同时开行200~250km/h速度的旅客列车。2005年9月开始,法国南部铁路正式开行25t轴重的运送石材的重载列车。芬兰铁路正在研究开行30t轴重的重载列车。欧盟经过研究认为,欧洲铁路客运非常发达,每年运送90亿人次、6000亿人公里。但欧洲铁路货运同样也很繁忙,货运量占全世界铁路货运总量的30%,而且每年还以4.4~7.5%的速度增加。欧洲铁路的货运量中有30%重载运输潜力。2001年以欧洲铁路为主体的国际铁路联盟(UIC)以团体名义加入国际重载运输协会(IHHA)、成为团体理事成员。由此可见欧洲铁路发展重载运输的战略已定局。

美国也已在高速既有铁路东北走廊上开行30t轴重重载列车。2003年美国在东北走廊高速铁路的巴尔的摩和Rerryville间不仅开行240km/h的Acela高速列车,还同时开行轴重为30t、平均速度为80km/h的重载列车。Acela高速列车的动力车轴重为25.5t,高速客车轴重为15.9t。这是世界既有线高速铁路同时开行重载货物列车轴重最大的一条铁路,其年货运量达3700万t,年客运量2650万人,每天开行122列客货列车。

4.我国重载铁路运输发展过程

我国重载铁路运输的发展经历了三个阶段,采取了三种相应的重载运输模式。

第一阶段自1985至1993年,通过旧线改造,发展组合式重载列车。在一系列试验的基础上,北京铁路局于1985年3月正式开行了大同—秦皇岛的组合式重载列车,列车总至7400t,双机牵引。采用了高摩合成闸瓦、103型制功阀、滚动轴承及13号车钩等多项新技术。

为了扩大重载列车的开行范围,并能普遍推广组合式重载列车,发展了“非固定”式的重载组合列车,即不受车底、车型、车钩及缓冲器的限制。沈阳、北京、济南、郑州及上海等铁路局先后组织开行了组合列车,有效地缓解了运输能力紧张的局面,同时也暴露了技术滞后,并且不配套等问题。

第二阶段自1990年至1992年,大秦铁路的建成开通后,进行了大量的单项试验、综合试验及开行试验,并于1992年分别正式开行/单机牵引6000t、双机牵引10000t的单元式重载列车,采用120型制动机、高强度旋转式车钩及大容量缓冲器等多项新技术,车辆轴重为2lt。

第三阶段为1992年以后。对沿海繁忙干线进行技术改造,开行整列式重载列车,牵引重量为5000t及其以上。整列式重载列车的运输织方式与普通列车基本相同,机车挂于列车头部,列车的运行、到达、装卸和机车的换挂都采用通常的办法,但在列车编组时要对旧型车辆进行限制,列车的操纵也有严格要求。这种重载列车模式对繁忙干线的扩能具有普遍意义。

2007年实现3亿吨年运量,车辆轴重25吨,延米重量7吨,单车最重达20000吨,每天开行49对列车。

5.世界铁路重载运输技术的最新进展

5.1 重载机车新技术

为了适应重载运输,对铁路的固定设施和移动设备必须进行一定的技术改造,其中作为载运工具的铁路车辆应具备一些特殊的结构性能,主要表现在下面几个方面:大吨位、低自重系数、大延米荷载、低重心高度、便于迅速装卸、减少纵向冲动、加强纵向力的承受能力、低动力作用转向架。

5.1.1 采用IGBT、IPM大功率变流器的交流传动技术

20世纪70年代末欧洲开始发展交流传动技术,至20世纪90年代,大功率交流传动内、电机车已成为世界重载牵引动力的发展趋势。美国铁路已拥有4000多台重载交流传动内燃机车,GM-EMD公司生产了SD70Ace、SD90MAC、GT46MAC、DE30AC/DM30AC等型交流传动内燃机车,GE公司生产了ES44AC、AC6000CW、AC4400CW等型交流传动内燃机车,已在美国,加拿大,澳大利亚,巴西等国重载铁路批量投入运营。GE公司制造的AC6000型机车主发电机输出功率达6000马力,持续牵引力达738kN,超动牵引力800kN,粘着系数利用值可达0.37以上。德国西门子公司为欧洲制造的BR186型及BR189型重载交流传动电力机车、轴功率已达1400kW、在欧洲批量投入运营。最近西门子公司为满足中国重载运输牵引动力需求而设计的DJ4型交流传动电力机车,轴功率已达1600kW。

重载机车交流传动采用的新技术包括:

(1)三相交流异步电机轻量化。电机单位重量功率已达0.81kW/kg,甚至可达1kw/kg,机车单位重量功率可接近75kW/t。

(2)IGBT(IPM)大功率牵引变流器的采用。同等容量的IGBT变流器的体积和重量比GTO变流器减少1/3~1/2,IGBT具有驱动简单、保护容易、不用缓冲电路、开关速度高等优点,目前BR185.2型电力机车、SD70MAce、ES44AC型内燃机车均批量采用IGBT变流器。

(3)采用基于网络(现场总线)的控制系统。其特征是:采用基于网络通信的控制,通信协议大多采用TCN国际标准,用模块化、通用化、分布式将主变控制、辅变控制和微机网络控制统一在一个平台上,并具有智能化故障诊断功能。

5.1.2 径向转向架技术

大功率交流传动内燃机车和电力机车采用径向转向架成为国际重载机车发展趋势,尤其在美国、加拿大、澳大利亚等国的大轴重的重载线路上,径向转向架技术越来越成熟。GE、GM-EMD等大公司生产的机车基本均采用径向转向架。我国主要机车制造厂如大连、戚墅堰、紫阳等工厂均开始小批量生产带径向转向架的重载机车。

据美国GM-EMD公司的HTCR径向转向架长期运营数据表明,径向转向架减少轮对与轨道间的冲角,比传统的转向架的轮轨冲角减少75%,有效地降低轮轨间横向作用力,减少轮轨磨耗及阻力,提高运行稳定性;机车车轮寿命延长10%,在0.35粘着系数利用值条件下,转向架的轴重转移从35%减少到10%。5.1.3 重载列车网络控制技术

随着重载运输发展,新型重载机车越来越多采用先进的列车网络控制系统,借助于网络传递重联控制信息,逻辑顺序控制信息及牵引、制动和速度控制信息。而重载列车中各车辆或部件的工作状态也需要通过网络传送到主控机车上以用于状态监视和故障诊断。实际运用表明基于计算机网络的列车控制与故障检测技术的运用,不仅可以提高重载列车系统的集成度、可靠性和可维修性,而且可以节省列车连线,减轻列车重量。

重载列车网络控制系统在国际上主要有两种发展模式,一种是欧洲模式,其列车通信网络速度较高,实时性较强,具有代表性的是TCN网络,已形成ICE61375列车通信网络的国际标准。一种是北美模式,可以分为有线列车通信网络和无线列车通信网络2种。有线车载网络基于LonWorks现场总线,基础标准是IEEE1473列车通信网络协议。主要供应商有Webtec和NYAB公司;无线车载网络供应商主要是GE公司。5.1.4 重载内燃机车柴油机节油技术

先进的重载内燃机车上均采用柴油机泵管嘴式电子控制喷射系统,对降低柴油机燃油消耗和排放有良好的效果。如美国GM-EMD公司的16-854H型柴油机燃油消耗率199.5g/kWh、美国GE公司GEVO12柴油机为198g/kWh、美国Cat公司Cat3616柴油机为198g/kWh,而我国批量生产的柴油机没有安装电子控制喷射系统,燃油消耗率一般在208~204g/kWh之间。美国对重载内燃机车进行过统计,在1980年未装电子控制喷射系统时,内燃机车1加仑燃油平均产出325英里吨,而目前安装了电子控制喷射系统,内燃机车1加仓燃油平均可产出405英里吨,提高了72%。

5.1.5 重载机车故障遥测监控技术

2001年美国GM-EMD公司为重载机车开发了IntelliTrain机车故障遥测监控系统,采用这套新型的无线遥测遥控系统,可以对每一台机车实施全寿命服务,大大提高了机车使用率,降低全寿命周期成本。2003年IntelliTrain系统正式投入使用,安装了这一系统的机车不论在何处出现了故障,机车上的传感装置能自动检测故障并通过无线通信系统将故障情况、机车车号等信息直接发送到服务中心。服务中心立即通知就近的维修工程师携带备件去机车现场更换备件并检测性能。在消除故障后IntelliTrain系统发出信息告之服务中心,机车已能正常投入使用。根据2年多使用经验,这套系统已能发现机车80%的潜在运行故障,比预期的修理期提早7~21天发现故障,延长了机车使用周期。所有故障中50%是在乘务人员从未报告过的情况下发现,2年多来机车的总故障率已下降70%。

5.1.6 重载机车无线遥控操纵系统(Locotrol)

1959年美国GE-Harris公司首先研发成功Locotrol系统,当时全部装备要用一辆平车才能装下,通过40多年的不断改进,现在已经发展到第4代,采用无线通讯闭环控制方式在前后部机车间传输命令及反馈信息。现在世界各国采用Locotrol系统共有5600套,目前我国大秦线开行2万t重载列车,在机车上均采用Locotrol系统。

Locotrol系统的基本工作方式是前部机车通过GSM-R系统,向中、后部机车发布同步牵引和制动命令,实现前、中、后部机车的牵引及动力制动同步操纵及空气制动系统同步制动与缓解。同时采用制动管压力自动检测,可以对系统的无线通讯状态进行监控。

采用Locotrol系统的优点是:有效减轻重载列车的牵引车钩力;在弯道上减少列车阻力,减轻轮轨磨耗,降低燃油成本5~6%;中、后部机车同步参与了全列车的列车管排风与充风,加快了列车的充排风速度,提高制动波传播速度,有利于减轻列车制动纵向力作用,减少断钩的危险。

5.2 重载车辆新技术

5.2.1 提高轴重,最高轴重已达39t

美国通过1988~1995年在普韦布洛FAST环线上进行35.4t轴重的重载列车与线路相互作用运行试验,累计运量达10亿t,对开行35.4t轴重的重载列车安全性和经济性进行了研究,重点对制约增加轴重的主要因素,如桥梁、钢轨、道碴、路基、焊接接头等进行详细的检测,试验结果表明在北美开行35.4t轴重是可行的、安全的。目前美、加、澳已普遍采用35.4t轴重,巴西、瑞典已采用30t轴重,南非、澳大利亚昆士兰铁路均是窄轨,已采用28t(旧车26t)轴重。俄罗斯重载列车轴重提高到27t。欧洲铁路重载列车也已向25t轴重迈进。目前美国正在普韦布洛FAST环线上进行39t轴重的安全性运行试验,累计通过运量已达12.5亿t。

5.2.2 采用新型转向架及悬挂系统

美国对重载车辆的三大件转向架进行了改进并研制各种新型转向架悬挂系统,1999~2001年已试验了四种具有新型悬挂系统的转向架,并在FAST环形线上进行了3年多的性能试验,取得良好的结果。这些新型转向架在35.4t轴重下,与30t轴重的三大件转向架相比,曲线区段的横向力降低50%,直线区段阻力降低15%,曲线区段阻力降低50%,点头、沉浮加速度小于1.0g,最高运行速度可达100km/h。加拿大研究试验一种可控制型转向架,也取得较好的效果。美国TTCI通过试验旁承承载方式可以提高重载货车的高速稳定性,减少蛇行、空车爬轨倾向,提高货车运行速度24~32km/h。

5.2.3 采用铝合金或不锈钢车体降低空重比

降低车辆自重可以增加载重,同时节约能源,提高效益,美国重载货车中90%采用了铝合金车体,其成本仅比钢车体增加1/3,但使用寿命大大延长,而且提高了载重量,取得很好的经济效益。

5.2.4 采用双层集装箱车辆

北美、澳大利亚等重载国家广泛开展双层集装箱运输,其在铁路公司运输收入的比重中日益增长,现在双层集装箱重载列车已占重载列车总数1/4左右,双层集装箱平车发展很快,成为重载车辆中的新品种。

5.2.5 改进车轮材质、提高车轮耐剥离性能

重载车辆在运用中最突出的问题是车轮踏面剥离严重。由于轮轨接触应力的增加,车轮制动热负荷上升,引起车轮剥离失效。美国TTCI正在系统研究轨顶润滑,钢轨打磨,监测轮轨间动力作用,改进转向架附件及维修,心盘涂油润滑等方法降低轮轨间应力,但关键问题是要提高车轮材质的抗剥离性。为此美国已研制成功一种新合金材质的车轮,与传统车轮相比,相同运量条件下车轮踏面上的剥离长度可减少59%,深度可减少43%。

5.2.6 高强度旋转车钩及大容量高性能缓冲器

开行重载列车最大隐患是由于列车纵向力过大发生断钩脱轨事故,这种事故占美国重载列车全部事故总数的90%左右,因此提高车钩强度及缓冲器的容量特性是保证重载列车安全的重要措施。目前美国AAR标准规定的E级车钩,破坏强度可达9342kN,Mark50型缓冲器,容量达53.8KJ,行程可达83mm,能量吸收率达90%。

5.2.7 车辆高效装卸装备

研究高效率的漏斗装煤设备及其他装煤设备(如底开门煤车的传送带装煤机)等是保证重载列车均衡装煤,缩短装卸周期的重要设备,目前世界各国1万t重载列车装煤时间普遍在40分~1小时之间,翻车机卸煤设备可以三车、四车同时翻转、不摘钩作业,1万吨煤在1小时内能全部卸完。

5.3 重载列车制动新技术—ECP 5.3.1 ECP(电控空气制动系统)对重载列车的重要性

20世纪末超过1万t的重载列车存在的最大隐患是:由于空气制动波速无法超过300m/s,重载列车在常用、紧急制动时经常发生前后制动力不一致,造成断钩、脱轨事故;重载列车在长大下坡道上由于没有阶段缓解作用,再充气时间过长,容易造成列车失控、对安全产生严重威胁。

1995年美国首先研究ECP技术,1997年开始在美国,加拿大装车试验取得成功,1999年美国AAR开始制订ECP规范标准。目前ECP已在美国、加拿大、澳大利亚、南非等国1万t以上重载列车上批量装车运用达数万辆。

5.3.2 ECP的功能、优点

ECP主控机车通过网络直接控制列车中各辆车的副风缸向制动缸充风制动或制动缸排风缓解,空气是制动力产生来源,但空气不作为控制指令传递的介质,达到整列车的车辆同时响应制动、缓解信息,具有严格的同步性。同时还具有阶段制动和阶段缓解性能,利用贯通全列车的电缆可同时实现机车动力分散牵引控制(即Locotrol)。

各国采用ECP系统后,取得良好的效果:平均车钩力降低25%,断钩事故基本消灭,消除制动工况下脱轨的危险;制动距离可缩短50~70%;消除意外紧急制动现象;车辆平均周转时间至少缩短9%;压力空气消耗降低,节能23%;车辆维修费用降低,车轮磨耗减少7%,闸瓦磨耗减少27%;车轮踏面剥离大大减轻;车体疲劳载荷降低。5.3.3 ECP技术发展前景

国际铁路权威人士对其评价是:“ECP是威斯汀豪斯发明自动制动机后的100多年来货车制动系统的最大改革”,“ECP取代货车传统制动系统的意义就像内燃机车取代蒸汽机车一样”。美国AAR2006年已宣布将全力推广ECP系统。

5.4 重载线路养护维修新技术

5.4.1 采用多品种专业化的大型养路机械

重载线路的养护维修是保证重载列车安全运行的基础,重载发达国家均以大型养路机械来保证重载线路达到技术标准,采用多元化、多品种、专业化的大型机械配套覆盖全部修程。各种大型养路机械由于采用了全新的技术与工艺,达到更高的效率和性能,包括捣固车,道碴清筛车,线路稳定车,边坡整形车,道岔捣固车,线路大修列车等等。普拉查公司最新型的09-3X型连续走行式三枕捣固车集连续捣固,轨道稳定,道床整形三种功能于一身,作业速度达到2200km/h,比双枕捣固车效率提高47%。RM900型道碴清筛车具有1000m3/h的道碴处理能力,比RM80型效率提高54%,一年可铺碴35万m3,60万t。

5.4.2 钢轨断面形状的控制及钢轨打磨技术

预防性钢轨打磨技术已经成为线路养护技术的重要组成部份。美国诺福克铁路公司(NS)2002年试验表明,采用预防性打磨比修理性打磨,钢轨年伤损率降低65%。澳大利亚采用了预防性钢轨打磨技术,半径小于450m的曲线区段,每通过8MGT总重打磨一次,半径大于4000m的直线区段,每通过30MGT总重打磨一次,合理费用是每公里打磨支出10000澳元,而钢轨寿命延长50%~58%。巴西MRS铁路采用了预防性循环打磨技术,在1674km线路上,节油3%,钢轨寿命延长一倍,断轨率降低45%。南非对道岔采用定期预防性打磨,改善了道岔接触应力状态,打磨前接触应力为3300MPa,横向力达43862N,打磨后接触应力降至2376MPa,横向力为42545N。

5.4.3 用轨顶润滑技术降低轮轨接触应力和横向力

加拿大QCM铁路公司有418.4km线路是曲线,其开行的铁矿石重载列车经常在曲线区段发生脱轨事故,2003年7月就发生28辆车严重脱轨的事故。此后采用轨顶润滑的技术,没有再发生曲线脱轨事故。美国采用两种轨顶润滑方式,通过试验,采用道旁润滑装置,每1000辆喷油0.35升,轮轨横向力下降32~38%。采用机车润滑装置,2003年7月没有润滑时,轮轨横向力为90kN,2003年9月采用一个喷嘴润滑后,轮轨横向力降至60kN,2003年12月采用5个喷嘴润滑,轮轨横向力降至40kN。加拿大CP铁路采用轨顶润滑管理5年,曲线区段钢轨磨耗下降43~58%,轮轨横向力降低40~45%,并节省燃油1~3%。

5.5 采用新型重载轨道结构 5.5.1 新型轨道结构

美国、加拿大、澳大利亚、南非等国家在重载线路上均采用无缝线路,提高重载列车运行平稳性,减少对线路的动力作用。一系列新型轨道结构,包括无碴轨道,梯形轨道都在美国普韦布洛环线上进行大运量试验,考核其安全性及可靠性,以利于在重载线路上推广采用。5.5.2 采用可动心轨道岔及其他新型道岔

美国、加拿大、南非、澳大利亚、巴西等国家在重载线路上正在普及采用可动心轨道岔及新型菱形辙叉,有利于减少线路道岔区间的动力作用,提高可靠性。据美国2004年试验证明,新型的菱形辙叉替代旧有的辙叉,使重载列车对线路的动载荷系数从3.0降至1.3,全美国由于采用新型菱形辙叉,节省维修费用1亿美元。各种新型缓冲式轨下垫板正在普韦布洛环行线上进行试验比较。

5.5.3 研究开发耐磨、防表面裂纹、防轨内裂纹的新型钢轨

美国已经针对重载线路最经常现的钢轨表面裂纹,轨内裂纹故障进行大量的研究试验,目前已经开发一种新型HE型钢轨(Hyper Eutectold),具有耐磨,抗表面裂纹及轨内裂纹生成的特殊性能。在现场试铺证明,这种钢轨在曲线地段比普通的钢轨耐磨性提高38%。俄罗斯研究的巴氏钢轨也取得较好的结果。其主经指标Rm=1600N/m2,Rp0.2=1270N/m2,Kcu20=0.35~0.40MJ/m2,Kcu-60=0.26~0.30MJ/m2。

5.5.4 采用铝热焊新技术

无缝钢轨的焊接接头是重载线路的薄弱环节,经常发生焊接接头断裂事故。法国已研发一套新型的铝热焊技术装备,保证接头部分的材质强度比钢轨母体还好。

5.6 安全监测技术

5.6.1 集成型路旁安全监测系统

美国已研发的路旁安全监测系统包括:路旁轴承声学探测系统(ABD)、转向架性能监测系统(TPD),车轮扁疤检测系统(SWD),车轮冲击载荷测试系统(WILD),车轮外形监测系统(WPD),车轮温度测试系统(WTD),红外轴承温度探测系统(HBD)。路旁轴承声学探测系统采用拾音器采集通过列车的噪声,应用高频共振原理,分辨出轴承的工作状态。这种装置已有90%正确判别率,可有效防止轴承故障。我国大秦线及繁忙干线已引进美国的这套系统。集成型路旁安全监测系统用远程信息服务系统进行管理。

5.6.2 先进的轨检车及钢轨探伤车

美国、加拿大、澳大利亚、巴西、南非等国均采用了先进的轨检车技术,应用惯性制导系统,矢量化计算方法,自行标定与自检,对轨道的各种几何形状参量,线路不平顺及钢轨断面磨耗进行检测,提高重载路网的安全性和使用效率。钢轨探伤车在超声波探伤工作原理基础上,又开发了探伤速度更高的新技术,美国已研制了新型低频涡流钢轨探伤车,探伤速度可达80km/h以上。

5.6.3 采用地面探测雷达对路基状态作出评价

路基是重载线路的承载基础,但其发生病害不易检测。美国已经采用新型地面探测雷达装置,安装在高轨车辆上,采集的数据可以直接处理路基横断面图象,确认道碴囊,软粘土,底碴深度及湿土区等病害问题,有利于路基病害的及时处理。

5.6.4 接触网状态监测

南非、澳大利亚、巴西等国对重载线路牵引供电接触网系统进行状态监测,采用力测量法原理,测量弓网之间的垂直、纵向、横向三维接触力,接触导线相对轨面的高度,拉出值,磨耗等参数,保证接触网处于正常工作状态。

5.7 重载列车控制技术

4.7.1 采用调度集中控制中心(CTC)

美国、加拿大、巴西、澳大利亚等重载铁路的运营都由调度集中控制中心来指挥。美国伯灵顿北方圣太菲铁路公司(BNSF),联合太平洋铁路公司(UP)等都有一个先进的调度集中控制中心指挥5万公里左右线路上重载列车的运营。CTC的设备先进,有指挥中心,车站系统,数据传输系统,监测维护系统等。保证重载路网具有很高的效率和安全性。

5.7.2 基于无线通信的列车自动运行控制系统

美国、加拿大在2000年开始实施一项列车自动运行控制系统的研究计划,投资7500万美元,研究基于无线通信的列车自动运行控制系统,名为CBTC系统。整个系统是以基于GPS的局部决策系统(LDS)为核心,包含了决策管理,速度自动控制,列车故障控制,路旁集成检测监控,道口报警,机车动力控制及安全警报、车站进路优化,列车自动操纵(无司机)等子系统。目前研究工作正在进行之中。

下载浅谈重载铁路线路的养护word格式文档
下载浅谈重载铁路线路的养护.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    大秦铁路重载范文

    走近两万吨重载列车 在大秦铁路全长653公里的线路上,平均不到15分钟,就有一列运煤列车呼啸而过。这些列车很长,以至于不选择一个合适的地点,从车头都看不见车尾。这些忙忙碌碌、......

    铁路线路维修与养护五篇范文

    铁路线路维修与养护 摘要:铁路线路在长时间运行情况下,受自然条件以及火车车辆的动力作用,会出现较大的机械磨损,铁路轨道的几何尺寸也相应地出现了变化,其道床和路基经常会出现......

    铁路线路病害整治及养护维修

    铁路线路病害整治及养护维修 学 生 姓 名:学 号: 201000002008 专 业 班 级:指 导 教 师:中文摘要 中国铁路始建于1876年是由英国的怡和洋行在华修建的吴淞铁路,铁路运输线是我国......

    铁路线路病害整治及养护维修

    铁 路 线 路 病 害 整 治 及 养 护 维 修 兰州铁路职业技术学院毕业设计(论文) 摘 要 中国铁路始建于1876年是由英国的怡和洋行在华修建的吴淞铁路,铁路运输线是我国国民经济......

    铁路线路

    ,引言随着全国铁路大面积的提速及运输密度的加大,加之工务设备基础相对薄弱,维修手段相对落后,曲线病害日益突出,曲线晃车和钢轨严重磨耗直接影响着运输安全和生产成本,是限制列车......

    铁路线路标志

    铁路线路标志沿铁路线路设置的固定标桩,其作用是向行车人员和线路养护维修人员显示铁路建筑物、线路设备等的位置或状态。在铁路由国家统一经营的国家,如中国和苏联等,对这些标......

    西南山区重载铁路钢轨磨耗探讨

    龙源期刊网 http://www.xiexiebang.com 西南山区重载铁路钢轨磨耗探讨 作者:蒋万军 来源:《科技创新导报》2011年第15期 摘 要:本文概述了西南重载线路钢轨磨耗情况,根据测量......

    铁路线路病害整治及养护维修—吕思轩

    铁路线路病害整治及养护维修 学 生 姓 名: 吕思轩学 号: 0931885 专 业 班 级: 铁道工程技术转专业2班指 导 教 师: 冷鑫西安铁路职业技术学院毕业设计(论文) 摘 要 中国铁路始建......