第一篇:大数据时代舆情管理的三大变革
大数据时代舆情管理的三大变革
要点:随着互联网的迅速发展,大数据带来的信息风暴正在改变我们的生活、工作和思维。无论政府和企业,对网络舆情的分析研判应对,正面临着大数据的挑战。
大数据,正由技术热词变成一股社会浪潮乃至国家战略。
随着互联网的迅速发展,大数据带来的信息风暴正在改变我们的生活、工作和思维。无论政府和企业,对网络舆情的分析研判应对,正面临着大数据的挑战。在大数据时代,对网络舆情管理必将在管理思维、工作模式、技术方法等领域发生重大变革。
一、大数据时代的舆情管理工作变革
(一)社会治理与舆情管理
2011年全球被创建和复制的数据总量为1.8ZB(10的21次方),其中75%来自于个人,远远超过人类有史以来所有印刷材料的数据总量(200PB)。过去几年全世界产生的数据量甚至超过了历史上2万年来产生的数据量的总和。我们的世界正在被数据化,一切皆可“量化”,数据“取之不尽,用之不竭”。这带来了更大的管理问题,信息爆炸与信息对称。比如,环保部门投入巨资监测环境数据,构建环境物联网,尽力还原真实环境治理现状的实时的基础数据库,以辅助决策治理。但是公众常常通过手机拍摄雾霾天气或是污染现场,并且在网络上快速传播。环境监测公示数据与网民环境感受,一旦不能形成对应,势必产生负面情绪。
(二)从重视到行动
新形势下,网络舆情管理,亟需新的工作体系与之匹配。通过成立本单位网络舆情管理小组、制定相关制度,培养专业人才,结合第三方专家顾问,建立健全网络舆情管理工作体系。从而,以维护群众的权利来树立政府的权威,倾听民意进行科学决策。
我们看到,有一些政府机构已经逐步摸索形成了这样的舆情管理的责任机构,网络舆情管理小组,值得借鉴。单位主要领导担任小组组长,单位下属各部门确定专人为小组成员,并分别组成监测,分析,应对等职能部门。制定舆情管理工作制度,做到网络舆情工作有章可循,完善网络舆情的联动应急机制。加强信息公开和第三方顾问,善用互联网思维模式,通过新媒体多种形式和手段,信息公开,倾听民意,疏导舆情。
二、大数据时代的舆情管理思维变革
(一)认识与转变
在10年前,我们将互联网称为“虚拟世界”。在今天,网络“虚拟世界”正在向“镜像世界”转化。虚拟世界的匿名性、非对称性、非真实性,正在转变为镜像世界的对称性、真实性(真实的画面、真实的情感等)、即时性。在全球范围内,大到国家社会治理,小到企业经营个人形象,都受到了网络舆情的影响和改变。在这种情况下,对网络舆情的管理思维必然发生改变,这种改变可能会带来政府舆情管理相关行政职能的改变,面对网络舆情的行政流程的改变,政府信息
公开速度和透明度的改变,信息发布的效率和方式的转变。这种改变应上升为社会治理体系的一个重要组成部分。
(二)创新管理,融入网络
舆情管理从流程上看包括是监测、发现、研判、应对。但是,在网络舆情面前,是不是拥有这样的流程就能够从容应对呢?问题还是大量存在的。这和我们大多数政府企业的管理模式相关,我们看到,很多单位的舆情工作只是一个或几个工作人员负责,或者一个部门负责,发现问题的处理办法是层层上报,由领导批复处理。实际上,这样的模式与网络舆情管理是不吻合的,难以做到全面分析,准确研判,及时应对。那么,如何创新舆情管理的模式呢。舆情管理,应自上而下,形成一整套全新的工作体系。一把手总负责,全员转变思维模式。充分借助大数据技术分析力量,和第三方专家顾问力量。敢于接受网络曝光和检验,融入网络,充分在网络空间展示形象。这样才能消减物理与文化空间的矛盾和区隔。
三、大数据时代的舆情分析技术变革
(一)移动互联网将再次改变舆情格局
据最新数据,我国手机上网网民突破5亿,80%的手机网民使用手机看新闻。各大互联网门户网站,纷纷在移动新闻客户端上发力,大有形成第四大互联网入口的趋势。随着4G网络的普及,视频类应用将迎来新的爆发,视频的真实感将更大的拉近网络空间的距离感。移动互联网的每个信息发布节点,将是每一个网民,全民麦克风的时代即将爆发。在这个背景下,网络舆情将会演变为何种格局,大数据
分析技术在哪些方面还能拥有用武之地?这一领域,势必会迎来新的技术突破与应用。
(二)用大数据预判舆情趋势
大数据的目标是预测。对于舆情管理者而言,能通过大数据技术手段,分析事件关注程度,传播情况,发展趋势,网民情绪变化。也可以深入某个观点的影响程度,影响人群。从而预测舆情走向,辅助决策和判断。大数据分析技术给舆情分析带来的更多的可能,舆情分析不再是分析样本数据,而是分析更多来源更复杂的数据。不再是看似精确性的定位于某条信息,某个人,而是在混杂的舆情信息中,发现趋势,预测走势。不再是非正即负的机械判断情感,而是分析相互关联的人物之间的情绪传递。
第二篇:大数据给网络舆情带来的三大变革
大数据给网络舆情带来的三大变革
随着互联网的迅速发展,大数据带来的信息爆炸正在影响着我们的工作、生活和思维。无论是政府还是企业,在未来的舆情监控、舆情研判方面都面临着大数据的挑战。
互联网的信息泛滥深切地影响着我们每个人的生活。网络信息的不断膨胀也给以往的舆情监测工作提出挑战。网络舆情监测要想适应现在大数据时代的监控要求就需要做出变革。包含舆情工作方式的变革、舆情管理思维的变革、舆情数据分析技术的变革。
一、舆情监控工作方式的变革
在社交媒体蓬勃发展的时代来临之前,普通大众扮演的角色主要是信息的接受者,网络信息的可控性非常强。这就造成了舆情管理者的工作形式单一且没有很大压力。但是随着社交媒体的出现和迅速发展,普通大众扮演的角色也发生了变化,从信息的被动接受者变成了网络信息的缔造者与传播者。这就加快了信息的传播速度,加大了信息的不可控性。促使舆情监控工作从单一向多元转化,从监控信息到研判、疏导与处理转化。
二、舆情监控管理思维的变革
社交媒体出现之前,一个单位的舆情管理者一般是单个人或是一个几人的团队组成,在工作单一的情况下,这样的体制完全可以满足需求。但是在这个信息爆炸的时代,只靠人工做舆情监控就有点天方夜谭了。在这个时代需要的是舆情管理的思维变革,靠智能监控系统改变现在的一切。由舆情监控系统代替繁重的人工工作。但由于舆情服务对于专业性的要求非常高,最为有效和专业的处理模式是专业团队+人工智能。
三、舆情监控数据分析技术的变革
在数据量小的KB时代,人工审阅完全可以把控舆情脉动。但随着EB甚至ZB时代的到来,尤其是移动互联网数据的加入和渗透,人工审阅成为不可能完成的任务。这时需要的就是改变分析技术和分析方法。专业的舆情智能分析系统非常必要。
大数据的目标是前瞻与预测。对于舆情管理者而言,能通过大数据技术手段,分析事件的关注程度、传播情况、发展趋势、网民情绪变化等。也可以深入某个观点的影响程度,影响人群,从而预测舆情走向,辅助决策和判断。大数据分析技术给舆情分析带来更多的可能,舆情分析不再是分析样本数据,而是分析更多来源更复杂的数据。不再是看似精确性的定位于某条信息、某个人,而是在混杂的舆情信息中,发现趋势,预测走势。不再是非正即负的机械判断情感,而是分析相互关联的人物之间的情绪传递。、大数据的蓬勃发展给舆情监控带来挑战,更是带来发展机遇。大数据也是舆情监控发展的必经之路。顺应大数据时代的潮流发展,把握热点舆情脉动。
第三篇:大数据时代
大数据时代
近年来,随着互联网、移动互联网、智能手机及传感器等的普及,信息流量有了爆发性的增长,两会以后,互联网里最热的词汇,就是李克强总理在政府工作在报告里面提到的“互联网+”,大数据将会更广泛的被运用到各个领域,越来越多的业内人士开始谈论“大数据”,如何利用大数据,成为政府和众多企业关心的热点?
互联网+《大数据》紧紧围绕这些问题展开,帮您如何利用大数据为企业从战略上面进行指导挖掘和预测,从战术上进行营销服务和安全措施,精彩我们共同期待。
第一篇大数据很热,大数据不神秘(趋势)有人说,如果你不知道大数据,你就OUT了 --大数据到底有多热 什么样的数据算是大数据 --大数据的特点和概念辨析 乱我心者,大数据之事多烦忧 --大数据并不象你想象的那样神秘 身边的大数据
--大数据就在你我身边
案例分析:淘宝是如何利用大数据淘宝的 小结:不管你愿不愿意,大数据已经在那里 电话:010---59002742 010--59004371 第二篇:认识大数据 1.什么是大数据 2.大数据应用的意义
3.大数据在企业经营中应用的意义 4.对大数据的认识误区 案例分析
第三篇:大数据时代变革 1:大数据时代的思维变革 2:大数据时代的商业变革 3:大数据时代的管理变革
第四篇:大数据在营销中的运用 大数据精准营销 1.什么是精确营销 2.精确营销的方法 实操教学+案例分析
第五篇:在技术中应用 数据挖掘
大数据的核心价值——挖掘 1.什么是数据挖掘? 2.数据挖掘的流程 3.数据挖掘解决的问题 结合现场实操教学+案例分析
第六篇:预测
大数据的核心价值——预测 1:如何预测? 案例分析
第七篇:大数据与云计算 1:什么是云计算
2:大数据与云计算的关系
第八篇:大数据的安全问题
大数据给信息安全带来新的挑战和机遇 大数据存储安全策略 大数据应用安全策略 大数据管理安全策略
第四篇:大数据时代
“大”数据时代 众所周知,数据本身就蕴藏着价值,但是将有用的数据与没有价值的数据进行区分看起来可能是一个棘手的问题。
显然,您所掌握的人员情况、工资表和客户记录对于企业的运转至关重要,但是其他数据也拥有转化为价值的力量。一段记录人们如何在您的商店浏览购物的视频、人们在购买您的服务前后的所作所为、如何通过社交网络联系您的客户、是什么吸引合作伙伴加盟、客户如何付款以及供应商喜欢的收款方式……所有这些场景都提供了很多指向,将它们抽丝剥茧,透过特殊的棱镜观察,将其与其他数据集对照,或者以与众不同的方式分析解剖,就能让您的行事方式发生天翻地覆的转变。
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
“大数据”这个术语最早期的引用可追溯到apache org的开源项目Nutch。当时,大数据用来描述为更新网络搜索索引需要同时进行批量处理或分析的大量数据集。随着谷歌MapReduce和Google File System(GFS)的发布,大数据不再仅用来描述大量的数据,还涵盖了处理数据的速度。
早在1980年,著名未来学家阿尔文·托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪 潮的华彩乐章”。不过,大约从2009年开始,“163大数据”才成为互联网信息技术行业的流行词汇。美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便将翻一番,而目前世界上90%以上的数据是最近几年才产生的。此外,数据又并非单纯指人们在互联网上发布的信息,全世界的工业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
第五篇:大数据时代
《大数据时代》读书笔记
作者:迈尔舍恩伯格
出版发行:浙江人民出版社
版次:2013年1月第一版
读者:物流一班、时菲阳
一、作者观点
谷歌有一个名为“谷歌流感趋势”的工具,它通过跟踪搜索词相关数据来判断全美地区的流感情况。这就是一个典型的“大数据”的应用例子,舍恩伯格的这本《大数据时代》受到了广泛的赞誉,他本人也因此书被视为大数据领域中的领军人物。
作者提出了三点结论:第一,要尽可能分析事物相关的“全部”数据,而不是之前的随机抽样,即“样本=总体”。第二,要乐于接受数据的繁杂,而不应过分追求其精确性。第三,重视大数据呈现的“相关关系”,而不要执于探索事物间的因果关系。
二、摘抄:
在甲型H1N1流感爆发的几周前,互联网巨头谷歌公司的工程师们在《自然》杂志上发表了一篇引人注目的论文。它令公共卫生官员们和计算机科学家们感到震惊。文中解释了谷歌为什么能够预测冬季流感的传播:不仅是全美范围的传播,而且可以具体到特定的地区和州。谷歌通过观察人们在网上的搜索记录来完成这个预测,而这种方法以前一直是被忽略的。谷歌保存了多年来所有的搜索记录,而且每天都会收到来自全球超过30亿条的搜索指令,如此庞大的数据资源足以支撑和帮助它完成这项工作。
发现能够通过人们在网上检索的词条辨别出其是否感染了流感后,谷歌公司把五千万条美国人最频繁检索的词条和美国疾控中心在03年至08年间季节性流感传播时期的数据进行了比较。其他公司也曾试图确定这些相关的词条,但是他们缺乏像谷歌公司一样庞大的数据资源、处理能力和统计技术。
虽然谷歌公司的员工猜测,特定的检索词条是为了在网络上得到关于流感的信息,如“哪些是治疗咳嗽和发热的药物”,但是找出这些词条并不是重点,他们也不知道哪些词条更重要,更关键的是,他们建立的系统并不依赖于这样的语义理解。他们设立的这个系统唯一关注的就是特定检索词条的频繁使用与流感在时间和空间上的传播之间的联系。谷歌公司为了测试这些检索词条,总共处理了4.5亿个不同的数字模型。在将得出的预测与07年、08年美国疾控中心记录的实际流感病例进行对比后,谷歌公司发现,他们的软件发现了45条检索词条的组合,一旦将它们用于一个数学模型,他们的预测与官方数据的相关性高达97%。和疾控中心一样,他们也能判断出流感是从哪里传播出来的,而且他们的判断非常及时,不会像疾控中心一样要在流感爆发一两周之后才可以做到。
所以,09年甲型H1N1流感爆发的时候,与习惯性滞后的官方数据相比,谷歌成为了一个更有效、更及时的指示标。公共卫生机构的官员获得了非常有价值的数据信息。惊人的是,谷歌公司的方法甚
至不需要分发口腔试纸和联系医生——它是建立在大数据的基础之上的。这是当今社会所独有的一种新型能力:以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见。基于这样的技术理念和数据储备,下一次流感来袭的时候,世界将会拥有一种更好的预测工具,以预防流感的传播。
三、感想:
看完本书有如下感想:
首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。
其次,作者认为大数据时代具有三个显著特点。
一、人们研究与分析某个现象时,将使用全部数据而非抽样数据;
二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。
三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。
最后,作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公
司(阿里巴巴、淘宝网)。二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。