葛洲坝水利枢纽导游词(精选五篇)

时间:2019-05-15 06:37:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《葛洲坝水利枢纽导游词》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《葛洲坝水利枢纽导游词》。

第一篇:葛洲坝水利枢纽导游词

各位来宾: 大家好!一路辛苦了。欢迎大家来葛洲坝电厂!我是某旅游公司的导游,我姓Ⅹ,大家叫我小Ⅹ好了。这次参观由我为大家服务,欢迎大家对我的服务多提宝贵意见。

葛洲坝水利枢纽工程是我国万里长江上建设的第一个大坝,是长江三峡水利枢纽的重要组成部分。这一伟大的工程,在世界上也是屈指可数的巨大水利枢纽工程之一。水利枢纽的设计水平和施工技术,都体现了我国当前水电建设的最新成就,是我国水电建设史上的里程碑。

葛洲坝水利枢纽工程位于湖北省宜昌市三峡出口南津关下游约3公里处。长江出三峡峡谷后,水流由东急转向南,江面由390米突然扩宽到坝址处的2200米。由于泥沙沉积,在河面上形成葛洲坝、西坝两岛,把长江分为大江、二江和三江。大江为长江的主河道,二江和三江在枯水季节断流。葛洲坝水利枢纽工程横跨大江、葛洲坝、二江、西坝和三江。

葛洲坝水利枢纽工程由船闸、电站厂房、泄水闸、冲沙闸及挡水建筑物组成。船闸为单级船闸,一、二号两座船闸闸室有效长度为280米,净宽34米,一次可通过载重为1.2万至1.6万吨的船队。每次过闸时间约50至57分钟,其中充水或泄水约8至12分钟。三号船闸闸室的有效长度为120米,净宽为18米,可通过3000吨以下的客货轮。每次过闸时间约40分钟,其中充水或泄水约5至8分钟。上、下闸首工作门均采用人字门,其中一、二号船闸下闸首人字门每扇宽9.7米、高34米、厚27米,质量约600吨。为解决过船与坝顶过车的矛盾,在二号和三号船闸桥墩段建有铁路、公路、活动提升桥,大江船闸下闸首建有公路桥。两座电站的厂房,分设在二江和大江。二江电站设2台17万千瓦和5台12.5万千瓦的水轮发电机组,装机容量为96.5万千瓦。大江电站设14台12.5万千瓦的水轮发电机组,总装机容量为175万千瓦。电站总装机容量为271.5万千瓦。二江电站的17万千瓦水轮发电机组的水轮机,直径11.3米,发电机定子外径17.6米,是当前世界上最大的低水头转桨式水轮发电机组之一。二江泄水闸共27孔,是主要的泄洪建筑物,最大泄洪量为83900米3/秒。三江和大江分别建有6孔9孔冲沙闸,最大泄水量分别为10500米3/秒和20000米3/秒,主要功能是引流冲沙,以保持船闸和航道畅通;同时在防汛期参加泄洪。挡水大坝全长2595米,最大坝高47米,水库库容约为15.8亿立方米。

葛洲坝水利枢纽工程的研究始于50年代后期。1970年12月30日破土动工。

1974年10月主体工程正式施工。整个工程分为两期,第一期工程于1981年完工,实现了大江截流、蓄水、通航和二江电站第一台机组发电;第二期工程1982年开始,1988年底整个葛洲坝水利枢纽工程建成。

葛洲坝水利枢纽工程近期具有发电、改善峡江航道等效益。它的电站发电量巨大,年发电量达157亿千瓦时。相当于每年节约原煤1020万吨,对改变华中地区能源结构,减轻煤炭、石油供应压力,提高华中、华东电网安全运行保证度都起了重要作用。仅发电一项,在1989年底就可收回全部工程投资。

葛洲坝水库回水110至180公里,由于提高了水位,淹没了三峡中的21处急流滩点、9处险滩,因而取消了单行航道和绞滩站各9处,大大改善了航道,使巴东以下各种船只能够通行无阻,增加了长江客货运量。

葛洲坝水利枢纽工程施工条件差、范围大,仅土石开挖回填就达7亿立方米,混凝土浇注1亿立方米,金属结构安装7.7万吨。它的建成不仅发挥了巨大的经济和社会效益,同时提高了我国水电建设方面的科学技术水平,培养了一支高水平的进行水电建设的设计、施工和科研队伍,为我国的水电建设积累了宝贵的经验。这项工程的完成,再一次向全世界显示了中国人民的聪明才智和巨大力量。

万里长江映彩霞,高山峡谷千秋坝。站在西陵峡口,眺望葛洲坝这座世界级水利枢纽工程,只见它犹如一颗璀璨的明珠镶嵌在风光秀丽的三峡峡口,自然风光和人工奇观交相辉映,相得益彰,为美丽的三峡添上了浓墨重彩的一笔。

长江三峡段,坡度陡,落差大,峡长谷深,不但水利资源丰富,又有优良的坝址,是建设大型水利枢纽工程的理想地点。

毛泽东曾为此写下了“高峡出平湖”的壮丽诗篇,这不是领袖的一时兴起,而是他用诗的语言为人们描绘出未来三峡的宏伟蓝图。

周恩来向全国人民提出了“为充分利用中国五亿四千万千瓦的水力资源和建设长江水力枢纽的远大目标而奋斗”,同时他还指出:“若不修建长江三峡水力枢纽工程,长江防洪就得不到彻底解决,也更谈不上综合利用问题。我们修建三峡大坝,就是为了从根本上解决洪水的威胁,实现毛主席‘高峡出平湖’的宏伟理想,使它永远造福于人民。”

1958年二、三月间,周恩来在李富春、李先念两位同志的陪同下,从武汉溯江而上,视察了三峡,踏勘了三峡的两个坝区,之后便确定了长江的近期治理和远景规划。

1970年冬,周恩来亲自主持中央政治局会议,研究和讨论了长江三峡枢纽工程的组成部分——葛洲坝水利枢纽工程的有关问题。随后,毛泽东批示“赞成兴建此坝”。这年12月30日,建设葛洲坝的战斗打响了。

葛洲坝水利枢纽工程位于宜昌市区西部的长江干流上,坝址距三峡出口南津关2.3公里,距三峡大坝坝址37千米,距宜昌市中心4千米,因坝址横穿江心小岛葛洲而得名。这里的江中有葛洲和西坝洲两个小岛,把长江分割成三条水道。

第二篇:葛洲坝水利枢纽及三峡水利枢纽实习报告

葛洲坝水利枢纽及三峡水利枢纽实习报告

姚春桂

2010年3月1日至3月6日,我们南京理工大学动力工程学院电气工程及其自动化专业的全体同学来到了葛洲坝水利枢纽进行了为期6天的生产实习。

实习内容包括以下几个方面:

一、安全教育

来到这里上的第一堂课就是安全教育,电力生产企业在安全上遵循的原则是安全第一、预防为主。作为实习人员,对于这里的电气设备基本不熟悉,所以更应该注意安全,大家听得十分认真。

实习安全包括两个方面:人身安全和设备安全。人身安全包括以下几个方面:(1)进入生产现场必须戴安全帽;

(2)进入生产现场必须与导电体保持足够的安全距离;

(3)所有水工建筑物的栏杆、护栏(包括临时设置的遮拦或围栏)严禁任何实习人员翻越、攀爬、骑坐,楼梯禁止上下等。设备安全包括以下几个方面:

(1)在生产现场,严禁任何人动任何设备;(2)生产现场严禁吸烟、携带火种;

(3)禁止实习人员动用生产场所的电话机等。

从以上老师对于我们实习人员的安全要求中我明白了安全是电力生产企业永恒的主题的意义。

二、葛洲坝及三峡水利枢纽总体介绍

此后,杨诗源老师还向我们介绍了葛洲坝水利枢纽工程。大坝型式:闸坝(直线坝);厂房型式:河床式电站厂房;大坝全长:2606.5m;大坝高度:40m;坝顶(坝面)高程:70m;设计上游蓄水水位: 66m;校核水位:67m;实际运行水位:64-66.5m;水库总库容:15.8亿立方米;设计落差(水头):18.6m;最大落差:27m;葛洲坝水利枢纽工程示意图如图1。

图1 葛洲坝水利枢纽工程示意图

二江电厂:17万kW2+12.5万kW 5=96.5万kW,大江电厂:12.5万kW 14=175万kW。总装机容量:271.5万kW,总装机台数:21台,全部机组过负荷运行总容量:288万kW。设计年发电量:140.9亿kWh,实际年发电量:152亿kWh-162亿kWh;对社会累积贡献:截至2004年5月29日,总发电量突破3000亿kWh。

三峡水利枢纽工程介绍。大坝型式:混凝土重力坝(直线坝);厂房型式:坝后式(全封闭);大坝全长:2309.47m;最大坝高:183m(高坝);坝顶(坝面)高程:185m;设计上游蓄水水位: 175m(枯水期)、145m(丰水期);水库总库容:393亿立方米(对应175m水位),其中预留防洪库容221.5亿立方米(对应145m水位),可削减洪峰流量:2700立方米/s-33000立方米/s;

最大落差:113m。单机容量:70万kW,左岸电站:70万kW 14=980万kW,右岸电站:70万kW 12=840万kW,总装机容量:1820万kW,总装机台数:26台,设计年发电量:847亿kWh。负荷分配:华东700万kW,广东300万kW,华中820万kW。

以上是对葛洲坝水利枢纽和三峡水利枢纽的总体介绍,通过这些数据让我认识到了大型水利枢纽工程的三大效益:通航效益、发电效益、灌溉效益。

三、葛洲坝水利枢纽电气一次部分

发电厂、变电所(站)的电气设备,按照其功能可分为两类。第一类是直接与生产或输送电能(电力)有关的设备(例如:发电机、变压器、高压母线、断路器、隔离开关等),称为一次设备。第二类设备是对一次设备进行监测、控制、操作或保护的设备,我们称为二次设备(例如:继电保护装置、励磁调节系统、断路器操作系统、电气仪表等)。一次、二次设备互相配合,保证电力生产与输送安全可靠进行。

二江电厂电气一次部分

1.220kV开关站的接线方式及有关配置

1)接线方式:双母线带旁路,旁路母线分段,如图2所示。

图2 220kV开关站电气主接线

2)接线特点:旁路母线分段。

双母线带旁路在电力系统的发电厂、变电所的一次接线中应用很普遍,但旁路母线分段却不多见,教科书也很少介绍,这是二江电厂220kV开关站接线方式的一个特点。将旁路母线分段并在每个分段上各设置一台断路器的原因是母线上的进、出线回数多,且均是重要电源或重要线路,有可能出现有其中两台断路器需要同时检修而对应的进、出线不能停电的情况,在这种情况发生时旁路母线分段运行、旁路断路器分别代替所要检修的两台断路器工作,保证了发供电的可靠性。同时两台旁路断路器也不可能总是处于完好状态,也需要检修与维护,当其中一台检修例一台处于备用状态,这样可靠性比旁路母线不分段、仅设置一台旁路断路器高。

3)开关站的主要配置: 出线8回 :1-8E(其中7E备用);

进线7回 :1-7FB(FB:发电机-变压器组); 大江、二江开关站联络变压器联络线2回;

上述各线路各设置断路器一台、加上母联及2台旁路断路器,共19台断路器。

母线:圆形管状空心铝合金硬母线。主母线分别设置电压互感器(CVT)及避雷器(ZnO)一组。

4)开关站布置型式:分相中型单列布置(户外式)。2.发电机与主变压器连接方式:单元接线

3.厂用6kV系统与发电机组的配接方式:分支接线

分支接线是机组与主变压器采用单元接线或扩大单元接线方式下获得厂用电的一种常用方法。在有厂用分支的情况下,为保证对厂用分支供电可靠性,必须作到:

1)发电机出口母线上设置隔离开关; 2)隔离开关安装位置应正确。

葛洲坝二江电厂的厂用分支就是按照上述原则进行配置的,因此,具有所要求的可靠性。

4.厂用6kV系统的接线方式及有关配置 1)厂用6kV系统的接线方式:单母线分段

二江电厂厂用 6kV母线共4段,各段编号分别为3、4、5、6,与各自供电变压器(公用变压器)所连接的发电机编号对应。如图3所示

图3 2)有关配置

单母线分段方式用作厂用电接线,基本是一种固定模式。因为厂用电电压等级相对较低、送电距离很近、输送容量小,单母线分段接线结构简单、操作方便、同时也具备良好经济性,所以只要不设置机压母 线的电厂,几乎都采用该接线方式。对发电厂来讲,厂用电就是“生命线”,必须具有足够高可靠性。然而,单母线分段接线方式可靠性并不高,为解决这一技术上矛盾,一般的、普遍采用的配置原则是:

(1)电源配置原则

各分段的电源必须相互独立,且获得电源方向不得单一。二江电厂厂用6kV系统4段母线的电源分别取自3-6F分支,4台机组同时故障停电的概率几乎为零,满足各分段供电电源独立的原则。

(2)负荷配置原则

同名负荷的双回路或多回路必须连接于母线的不同分段上。二江电厂400V 配电室1P、2P、3P配电盘、220 kV 开关站31P配电室的电源分别通过两台降压变压器(51B与52B、53B与54B、55B与56B、71B与72B)作为双回路由6 kV母线供电,两台降压变压器按照上述负荷配置原则分别连接于6kV母线4、5两分段上。

(3)段间配置原则

分段与分段间应具备相互备用功能或设置专门备用段。二江电厂采用的是分段互为备用方式。

5.发电机中性点的接地方式:经消弧线圈接地 6.主变压器绝缘防护措施

1)分别在主变压器高、低压侧装设避雷器,防大气(雷击)过电压。高压侧避雷器动作值是:340-390kV; 低压侧避雷器动作值是:33-39kV。

2)在主变压器中性点装设避雷器与放电保护间隙。避雷器的动作值是:170-190kV;

放电保护间隙动作值(击穿电压)按照额定电压(220kV)一半整定,既可以防止大气过电压,也可以防范当主变压器中性点不接地运行方式下高压侧发生单相接地而引起的中性点位移过电压(零序过电压)。

大江电厂电气一次部分

1.500kV开关站接线方式及有关设备配置 1)接线方式:3/2接线,如图4

图4 选择3/2 接线方式,是基于开关站重要性考虑的。因为开关站进出线回数多,且均是重要电源与重要负荷,电压等级高、输送容量大、距离远,母线穿越功率大(最大2820 MVA),并通过葛洲坝500kV换流站与华东电网并网,既是葛洲坝电厂电力外送的咽喉,又是华中电网重要枢纽变电站。

2)布置型式:分相中型三列布置(户外式)。3)开关站有关配置

开关站共6串,每串均作交叉配置。(交叉配置:一串的2回线路中,一回是电源或进线,另一回是负荷或出线。)

交叉配置是3/2接线方式普遍的配置原则,作交叉配置时,3/2接线可靠性达到最高。因为这种配置在一条母线检修例一条母线故障或2条母线同时故障时电源与系统仍然相连接,(在系统处于稳定条件下)仍能够正常工作。

1-6串的出线分别是:葛凤线、葛双1回、葛双2回、葛岗线、葛换2回、葛换1回。

其中葛凤线、葛双2回、葛岗线首端分别装设并联电抗器(DK)。因为这三回出线电气距离长、线路等效电感及电容量大,“电容效应”的影响严重,装设并联电抗器后,可以有效防止过电压的产生(过电压现象最严重的情况是线路空载)、适当地改善线路无功功率的分布、从而使系统潮流分布的合理性与经济性得到相应的改善。

1-6串的进线分别是:

8B 与10B 并联引线、12B 与14B并联引线、16B与18B并联引线、20B引线(上述各变压器共连接大江电厂14台发电机组)。

例外两条进线是二江电厂220kV开关站与大江电厂 500kV 开关站两台联络变压器(251B、252B)的高压侧引出线。

251B、252B 为三绕组变压器,为使系统潮流分布合理、经济,251B、252B设计为有载调压方式。由于高压额定电压等级为500kV、中压绕组额定电压等级为220kV,变比很小,故将二二者选为自耦式。

2.发电机与主变压器的连接方式及有关设备的型号参数 1)连接方式:扩大单元接线。

由于主变压器连接 2台发电机,且1-3串进线由二台主变压器并联,所以在发电机出口母线上设置了断路器。这样当一台发电机故障时,仅切除故障发电机,本串上其他发电机仍能正常工作,最大限度保证了对系统供电的可靠性。

3.发电机组制动电阻的设置 1)设置制动电阻的原因

大江电厂外送有功功率很大,当系统故障或出线跳闸时,原动机(水轮机)的输入功率由于惯性作用不可能迅速减小,此时发电机发出功率总和大于线路输出功率总和,机组转子的制动力矩小于拖动力矩,转子在原有旋转速度基础上加速,从而导致机组与系统不同步,造成振荡或失步,机组被迫解列,甚至引起整个系统瓦解。设置制动电阻后,制动电阻在上述情况下通过继电保护或自动装置自动投入。制动电阻作为负载吸收故障时有功功率的“多余”部分,因而对转子加速起制动作用,保证机组与系统正常运行。

2)制动电阻投入的时间:2S。3)制动电阻安装部位

制动电阻共 2组,分别通过断路器与隔离开关连接于10F、18F的出口母线上。

应该指出的是,虽然不是每台发电机均设置制动电阻,但由于全部发电机组皆通过主变压器及500 kV开关站并联在一起,所以制动电阻对全部发电机组均起制动作用。

4.厂用6kV系统与发电机的配接方式 1)配接方式:分支接线

由于发电机与主变压器采用扩大单元接线方式,且发电机、主变压器容量较大,因此厂用分支或 6kV母线短路时短路电流很大,从保护有关设备、选用轻型分支断路器等技术、经济原因出发,在厂用分支(变压器高压侧)串入了电抗器,以限制短路电流。

5.厂用6kV系统接线方式及有关设备型号参数 1)接线方式:单母线分段。如图5所示

图5 2)有关配置

为保证对厂用负荷供电可靠性,分别在分段断路器60708、60910设置BZT。25B与26B、27B与28B分别工作在互为“暗备用”运行方式下。

6.500kV开关站站用6kV系统的接线方式及有关配置 1)接线方式:单母线分段,如图6

图6 2)有关配置

分别在61211与61213分段断路器设置BZT。

变压器35B、36B分别从251B、252B获得电源,且为有载调压方式,这样既可以保证供电可靠性,又可以确保在不同运行方式下6kV母线电压合格。

四、实习小结

这次为期六天的实习,是我们第一次真正进入电力生产企业进行细致系统的参观实习,第一次亲自见到书本上介绍的各种电力设备,加深了对于书本知识的理解,原来一些似懂非懂的知识也得到了解决。同时通过这次实习了解了葛洲坝水利枢纽及三峡水利枢纽工程在我国电力工业及水利航运工业的重要地位,为我的祖国能够建设成世界上最大的水利枢纽工程——三峡水利枢纽而感到骄傲和自豪。这份自豪感会陪伴我的一生,激励我在学习的道路上更加努力拼搏,实现自己的人生理想。

在此我要特别感谢带领我们大家学习参观的杨诗源老师,他参观前细致生动的讲解对于到现场参观实习非常有帮助。同时也要感谢我们此次实习的带队老师杨伟老师和李斌老师,他们对我们在葛洲坝实习时的生活安排的井井有条,保证了大家有充足的精力放在实习上。

第三篇:葛洲坝实习

葛洲坝电厂(大江二江)实习报告

一、实习名称:葛洲坝生产实习

二、实习时间地点:2009年6月9日-18日,中国湖北宜昌市

三、实习单位:葛洲坝水力发电厂

四、实习目的意义:

实习是教学计划中的一个重要环节。通过单位实习,让学生向单位技术人员及工人学习单位管理知识,了解一般的操作过程,进一步巩固课堂所学专业知识,了解并熟悉本专业的现代化技术和组织现场管理方法。为毕业后参加实际工作打好基础。实习锻炼了学生的实际动手能力,将学习的理论知识运用于实践当中,另一方面检验书本上理论的正确性,使学生对知识能够融会贯通。同时,开拓视野,完善学生的知识结构,达到锻炼能力的目的。

五、实习内容:

6月11日上午:入厂安全教育、厂纪教育,葛洲坝、三峡水利枢纽工程总体概况介绍

葛洲坝工程奠基于20世纪70年代初,竣工于八十年代末,总投资48.48亿元。大坝全长2606.5米,坝顶高程70米,设计装机21台,总容量2777MW,年均发电量157亿千瓦时。截止2008年6月30日,其累计发电量超过3656.48亿千瓦时。

三峡水利枢纽工程开始于20世纪90年代,预期2010年左右完成,拦河大坝为混凝土重力坝,坝顶总长3035米,坝高185米,水电站为坝后式,左岸设14台,左岸12台,共表机26台,前排容量为700MW的小轮发电机组,总装机容量为18200MW,年发电量847亿千瓦时。

葛洲坝水力发电厂成立于1980年11月,2002年11月改制重组,与三峡电厂成为长江电力的下属企业。

6月11日下午:葛洲坝电气一次部分介绍(二江电厂)

220kV开关站的接线方式为:

双母线带旁路,旁路母线分段——这是二江电厂220kV开关站接线方式的一个特点。将旁路母线分段并在每个分段上各设置一台断路器的原因是母线上的进、出线回数多,且均是重要电源或重要线路,有可能出现有其中两台断路器需要同时检修而对应的进、出线不能停(资/料来.源,于:gzu521学;习/网]gzu521.com电的情况,在这种情况发生时旁路母线分段运行、旁路断路器分别代替所要检修的两台断路器工作,保证了发供电的可靠性。同时两台旁路断路器也不可能总是处于完好状态,也需要检修与维护,当其中一台检修例一台处于备用状态,这样可靠性比旁路母线不分段、仅设置一台旁路断路器高。

开关站的主要配置:

出线8回:1-8E(其中7E备用);

进线7回:1-7FB(FB:发电机-变压器组);

大江、二江开关站联络变压器联络线:2回;

断路器:19台;

母线:圆形管状空心铝合金硬母线,主母线分别设置电压互感器(CVT)及避雷器(ZnO)一组。

开关站布置型式:

分相中型单列布置(户外式)。

发电机与主变压器连接方式:

采用单元接线方式。

厂用6kV系统与发电机组的配接方式:

采用分支接线方式(仅3-6F有此分支)。分支接线是机组与主变压器采用单元接线或扩大单元接线方式下获得厂用电的一种常用方法。在有厂用分支的情况下,为保证对厂用分支供电可靠性,必须作到:1)发电机出口母线上设置隔离开关;2)隔离开关安装位置应正确。为提高对厂用分支供电的可靠性,在3F-6F出口母线上加装了出口断路器。这样当机组故障时出口断路器跳闸切除故障,主变压器高压断路器不再分闸,不会出现机组故障对应6kV分段短时停电情况。

厂用6kV系统的接线方式:

采用单母线分段方式——二江电厂厂用6kV母线共4段,各段编号分别为3、4、5、6,与各自供电变压器(公用变压器)所连接的发电机编号对应。

厂用电有关配置:

对发电厂来讲,厂用电就是“生命线”,必须具有足够高的可靠性。但单母线分段接线方式可靠性不高,为解决这一矛盾,普遍采用的配置原则是:

1、电源配置原则:各分段的电源必须相互独立,且获得电源方向不得单一。

2、负荷配置原则:同名负荷的双回路或多回路须连接于母线不同分段上。

3、段间配置原则:分段与分段间应具备相互备用功能或设置专门备用段。

6月12日上午:参观二江电厂,220kv开关站,泄洪设施

6月13日上午:葛洲坝一次部分介绍(大江电厂)

500kV开关站接线方式:

采用3/2接线——选择3/2接线方式,是基于开关站重要性考虑的。因为开关站进出线回数多,且均是重要电源与重要负荷,电压等级高、输送容量大、距离远,母线穿越功率大(最大2820MVA),并通过葛洲坝500kV换流站与华东电网并网,既是葛洲坝电厂电力外送的咽喉,又是华中电网重要枢纽变电站。3/2接线可以保证供电的高可靠性。

500kV开关站布置型式:

分相中型三列布置(户外式)。

开关站有关配置:

开关站共6串,每串均作交叉配置(交叉配置:一串的2回线路中,一回是电源或进线,另一回是负荷或出线),交叉配置是3/2接线方式普遍的配置原则,作交叉配置时,3/2接线可靠性达到最高。因为这种配置在一条母线检修时另一条母线故障或2条母线同时故障时电源与系统仍然相连接,(在系统处于稳定条件下)仍能够正常工作。

1-6串的出线分别是:葛凤线、葛双1回、葛双2回、葛岗线、葛换2回、葛换1回。其中葛凤线、葛双2回、葛岗线首端分别装设并联电抗器(DK)。

1-6串的进线分别是:8B与10B并联引线、12B与14B并联引线、16B与18B并联引线、20B引线(上述各变压器共连接大江电厂14台发电机组)。例外两条进线是二江电厂220kV开关站与大江电厂500kV开关站两台联络变压器(251B、252B)的高压侧引出线。

发电机与主变压器的连接方式:

扩大单元接线方式——由于主变压器连接2台发电机,且1-3串进线由二台主变压器并联,所以在发电机出口母线上设置了断路器。这样当一台发电机故障时,仅切除故障发电机,本串上其他发电机仍能正常工作,最大限度保证了对系统供电的可靠性。

厂用6kV系统接线方式:

单母线分段方式。

6月13日下午:参观500kv开关站

6月14日下午:葛洲坝电厂继电保护介绍

继电保护的对象:

电力元件、电力系统

继电保护的任务:

1、故障跳闸;

2、异常时发信号。

继电保护的要求:

1、可靠性;

2、选择性;

3、快速性;

4、灵敏性。

继电保护的构成:

厂房的保护:

1、机组保护:纵差保护、不对称保护、失磁保护、转子过流保护、负序过流保护;

2、主变压器保护:重瓦斯保护、轻瓦斯保护、差动保护、纵联保护、过电流保护等。

6月15日上午:参观大江电厂

6月16日上午:参观三峡水利枢纽工程

6月16日下午:葛洲坝电厂励磁装置介绍

励磁系统分类(按有无旋转磁场分): 旋转磁场励磁;

静止磁场励磁:二极管整流励磁、可控硅整流励磁、二极管可控硅混合整流励磁。

励磁系统任务:

1、机端电压控制;

2、无功功率的分配;

3、保证系统稳定性。

电厂主励为交流侧串联,有自并励、自复励方式;电厂备励有3~4台,为二极管整流、他励方式。

励磁调节器(2套):

远方控制:恒机端电压调节、恒励磁电流调节、恒无功调节;

限制功能:1)强励限制;2)功率柜停风或部分功率柜故障时,降低励磁;3)过无功限制;4)欠励限制;5)V/F限制。

6月17日上午:参观500kv换流站

6月17日下午:葛洲坝500kv换流站原理和配置介绍

葛洲坝-上海南桥直流输电工程是中国第一条超高压直流输电工程。工程送端葛洲坝换流站位于宜昌宋家坝,受端换流站位于上海市奉贤县南桥,途经湖北、安徽、江苏、浙江和上海,线路全长1045.7Km。原计划1987年12月建成极1,1988年工程全部建成。由于换流变压[本文来源于我的 器未通过出厂试验而重新制造,推迟到1989年9月投入运行,整个工程于1990年8月全部建成,从湖北葛洲坝至上海的葛南双极直流输电线路投入商业运行。其额定容量为1200MW(单极600MW),额定电压为±500kV,输送直流电流为1200A。此工程揭开了我国输电史上新的一页,中国电力从此进入了交直流混合输电的时代。

葛洲坝-上海直流输电工程的运行方式有以下几种:

①双极方式(包括双极对称方式和不对称方式);

②单极大地回线方式(包括双导线并联大地回线方式);

③单极金属回线方式;

④功率反送方式(反送最大功率为额定功率的50%);

⑤降压方式(在额定直流电流下,直流电压可降到额定值的70%)。

换流站的主要设备:

换流阀:两端均采用空气绝缘,水冷却,户内悬挂式,晶闸管四重阀结构。三个四重阀构成一个12脉动换流器。每个换流阀由8个组件,每个组件有15个晶闸管,共120个晶闸管组成。

换流变压器:采用单相三线圈的换流变压器,每极3台,共7台(其中1台为备用)。线圈结线为接法,二次线圈对地高压绝缘,单台变压器的额定容量为237/118.5/118.5MVA,额定电压为kV。变压器为有载调压,抽头在525kV侧,调节范围为-6%-+4%,每级1%。

交流滤波器:用于消除直流输电时在交流侧产生的特征谐波(12n±1次),以及补偿无功。单组容量67MVAR,6组共402MVAR。其中有四组11/12.94次的低通交流滤波器,和两组23.6/36.23次、23.25/35.37次的双调谐高通交流滤波器。

直流滤波器:换流站的每极各配备调谐频率为12/24次和12/36次的双调谐滤波器各一组。

6月18日上午:葛洲坝电厂设备高压实验与意义

目的:

检验电气设备的绝缘性。

分类:

按类型分:1)出厂试验;2)交接试验;3)预防性试验(周期性);

按性质分:1)非破坏性试验(UsUe)。

常用试验:

定子绕组绝缘试验;

定子绕组的直流耐压试验;

定子绕组交流耐压试验„„

意义:

由于没有做好运行前的实验,或者试验方法不正确,导致的国民经济损失是相当巨大的。如三峡电厂的某机组在没有进行非破坏性试验的情况下进行破坏性试验,导致机组相间绝缘损坏,须返厂修理,光运费就达上千万人民币;由于该机组是水力发电机组,水能的利用是即时的,不能存储,按700MW的单机容量、0.25元的电价、100天的维修时间,损失达4.2亿元,而且这是在当时电力紧缺情况下的直接电能损失,折算成间接地国民经济损失则是不可估量的。所以做好电气设备的高压试验是保证发电供电安全可靠的运行,保证国民经济平稳发展所必须的。

六、心得体会:

实习时别瞎动设备,小心电死人,一个德国进口的220kv开关站的断路器价值500万RMB(呈圆筒状,高约1.0M,截面直径约0.7M);发电机出线变压器价值1000多万RMB(国产的)。吓人啊!

第四篇:水利枢纽实习报告

一、前言

1、实习目的进一步加固和加深课堂多学过的理论知识,了解主要建筑物的施工特点、施工方法等,培养我们分析问题和解决实际问题的能力,提升自我的专业知识和现场操作技能。

2、实习任务

通过理论知识回顾、资料搜集,以及老师讲解、学生提问,实地观察、现场记录参与实验等等方式,对xx水利枢纽工程情况进行现场实习,掌握一定的施工技艺。

3、实习时间

2008年12月x日—12月x日

4、实习人员

带队老师:

学生:

二、实习内容

1、工程概况

xx水利枢纽工程地处xx江一级支流xx河上游的xx市xx县境内,坝址位于xx县xx镇xx村上游1km处,距xx县城7.6km,距xx市约30km。是一座以供水、防洪为主,兼顾发电、灌溉等综合利用的大(ⅱ)型水利枢纽工程。

xx河发源于xx市xx县xx乡境内的xx山金顶北麓,河流自源头向北流经xx、xx、xx、xx、xx、xx、xx等地,至xx与xx会合流入xx市境,而后自西向东流经xx、xx、xx、xx及xx诸县市,于xx镇附近汇入xx江。xx河主河全长273km,全流域面积6486km2。xx河在xx市境内的河长为52km,流域面积为698km2。

1985年由xx省xx地区行署水电局编制的《xx河流域规划报告》,对xx河干流拟定了十五级开发方案:xx347.7——山弯——xx240——西村一级103——xx船运闸98.4——高山头96.4——化成岩91.4——雷坤85.5——二马滩75——江口70——xx惠渠滚水坝50.7——二化坝45.7——水西41——宋家36.6——矗湖30。规划报告指出,xx是一个缺水地区,尤其是工业及城镇生活用水需求较大,xx水库调蓄xx河径流,可解决xx市东部一带的工业与城镇生活用水,推荐xx水利枢纽为近期开发工程。

2、水文地质情况

xx水库坝址以上流域面积230km2,主河长28.7km,流域平均宽度8.01km,主河道平均比降14.8‰。

据xx气象站资料统计,多年平均气温为17.3℃,多年平均蒸发量为1282.9mm(20cm蒸发皿观测值),多年平均相对湿度为82%,多年平均年最大风速为11.0m/s,多年平均无霜期为279天。

xx水利枢纽工程坝址下游7.6km处设有xx水文站,具有1958~2004年共47年连续的实测水文资料系列,是本工程水文分析计算的主要依据站。经计算,xx水库坝址多年平均流量为7.54m3/s,多年平均径流深为1033.8mm,多年平均径流量为2.38×108m3。

xx河为雨洪式河流,洪水多发生在4~9月份,经分析计算,水库坝址设计洪水标准(p=0.2%):洪峰流量1260m3/s,24h洪量42.3×104m3,72h洪量68.3×104m3;校核洪水标准(p=0.05%):洪峰流量1820m3/s,24h洪量61.1×104m3,72h洪量98.4×104m3。施工设计洪水:9月~次年3月洪峰流量(p=10%)196m3/s。

xx河为少沙河流,坝址多年平均输沙量为3.35×104t,水库50年泥沙淤积量为128.8×104m3。

本区处华南褶皱系xx中南褶皱,xx西南拗陷之xx山~玉华山隆断束构造单元中。区内地势南高北低,南部为构造剥蚀中低山地貌,北部为丘陵区,局部见有小规模滑坡体及崩塌堆积体等不良物理地质现象。供水管线区和坝下灌区属于丘陵低山及冲洪积地貌,未见不良物理地质现象。

库周和库盆由透水性较微弱的变质岩系、花岗岩、花岗闪长岩及石炭系碎屑岩构成,无可溶性岩分布,山体雄厚,地下水分水岭高程高于正常蓄水位,未发现通向库外的导水构造,不存在水库永久渗漏问题。

[1][2][3]下一页

库岸多为岩质岸坡,土质岸坡一般亦较平缓,库岸稳定性较好,但自下坝址至九洲段库岸岸坡较陡,局部见有滑坡及坍塌现象;坝址上游右岸400m处滑坡体,存在失稳的可能,将威胁大坝的安全与稳定;同时,崩塌堆积体对左岸引水隧洞进口(短线方案)的稳定亦构成威胁,对近坝左岸崩塌堆积体予以清除。部分土质库岸在水库蓄水过程中或蓄水后,将会产生坍塌或滑坡等现象,虽对大坝及水库安全不会构成威胁,但对邻近正常蓄水位线库岸的居民将产生一定影响,建议可能受影响的居民进行搬迁。

库区植被发育,水土保持良好,固体迳流微略,未来库区淤积问题不大。库区内未见有开采价值的矿产资源及文化古迹遗址分布,淹没影响小,库尾地面高程高于正常蓄水位6.5~8.8m,不存在浸没问题。由于库区无孕震断裂分布,上基岩深部张裂隙不发育,导水性差,地下水分水岭高程远高于正常蓄水位,因此水库蓄水后,发生水库诱发地震的可能性较小。

下坝址河谷狭窄,呈“v”型,主要分布有震旦系松山群老虎塘组浅变质岩系、石炭系下统大塘组测水段(c1d2)碎屑岩系及第四系(q)松散堆积物,坝基岩体为石炭系下统大塘组测水段沉积碎屑岩系,岩性由砾岩、石英砂岩、细砂岩、炭质(或含炭)粉砂岩和长石石英砂岩等组成。

沿线洞段上覆山体雄厚,隧洞沿线穿越岩层为:c1d2-1-2层、c1d2-1-3层、c1d2-2-1层、c1d2-2-2层及c1d2-2-3层;隧洞进口洞脸局部置于崩塌堆积体之中,建议将堆石体予以清除,隧洞出口岩性主要为微风化巨厚层长石石英砂岩,洞脸边坡稳定性较好。主厂址置于(c1d2-2-3)层岩体之上,为巨厚层状长石石英砂岩,其力学强度基本能满足建主厂房要求。

供水管线管基和支墩地基的工程地质条件尚好,供水隧洞进、出口及洞身成洞条件较差,建议对进、出口洞脸边坡采取相应的加固处理,进、出口附近洞段围岩视开挖情况,采取边挖边支护措施;灌区渠系建筑物大部将置于第四系残坡积层或洪冲积层之上,局部渠段置于基岩上,一般不存在较大的边坡稳定问题,局部可能存在边坡渗漏及渠坡渠底抗冲刷问题。灌区运行后,不会产生盐碱化等不良问题。

坝址附近天然建筑材料中砂卵(砾)石料缺乏,需利用块石人工轧制;土料质量及储量均能满足填筑上、下游围堰的设计要求,运距较近,运输方便,但开采不甚方便;块石料分布于坝址附近,块石料场主要岩性为长石石英砂岩,为巨厚层状构造,岩体多呈弱下~微新状,储量丰富,轧制粗、细砼骨料成材率较高,块石料储量和质量均能满足设计要求。该料场运距较近,交通运输方便,开采亦较方便

3、工程任务和规模

经前期工作研究及本阶段工作复核,确定xx水利枢纽为一座大(2)型水库,水库总库容1.048×108m3,其开发任务以供水、防洪为主,兼顾发电、灌溉等综合利用。

xx水库建设的主要任务之一是为水库下游xx县城防洪。xx县城坐落在xx河两岸,现状防洪能力较低,经常遭受xx河洪水的威胁与侵害,严重制约了当地国民经济持续稳定的发展。根据《xx县城防洪规划报告》,县城防洪采用堤库结合的工程措施进行解决,即先期对县城xx河两岸现状堤防(河岸)进行加高加固处理,使其达到5年一遇防洪标准,在县城上游xx河干流上拟建xx水利枢纽工程,设置防洪库容,使县城防洪标准从5年一遇提高到20年一遇。2001~2002年xx县对县城沿xx河两岸堤防(河岸)进行了整治加固处理,目前xx县城沿xx河两岸堤防防洪能力已达到5年一遇。因此兴建xx水库是进一步解决xx县城防洪问题的关键性工程。

xx市地处xx省西部湘xx交界的分水岭,区域内无过境河流,人均水资源量为2000m3,为全省人均3570m3的56%。xx市中心城区控制面积为132.7km2,城区地表水资源量仅约1.2×108m3,按2005年人口测算,人均地表水资源量仅为276m3,属于水资源贫乏区。经水资源平衡分析,xx水库向xx市中心城区年供水量为6205×104m3;向xx县城年供水量为1095×104m3,合计年供水量为7300×104m3。通过设计研究,水库供水从引水隧洞供给原水,通过输水管道向白源水厂(配套新建)及xx县城水厂输送原水,经水厂按工艺规定处理后,利用城区输水管网向城区用户供水。

4、工程布置及主要建筑物

本工程水库总库容为1.0481×108m3,年平均日供水量20×104t,电站装机容量12mw,灌溉面积10.12×104亩,根据(gb50201-94)《防洪标准》及(sl252-2000)《水利水电工程等级划分及洪水标准》,确定本工程等别为ⅱ等,大(2)型工程。根据本工程等别,确定大坝、溢洪道、放空洞、供水兼发电及灌溉进水口为2级建筑物,引水隧洞为3级建筑物,发电厂房为4级建筑物,临时建筑物为4级。

根据工程规模和工程场址区地形地质条件,在可研阶段推荐下坝址方案的基础上,本阶段拟定上、下两条坝线进行比选,以碾压砼拱坝作为基本坝型进行坝线比选,经过对两坝线布置及技术经济比较,下坝线优于上坝线,本阶段推荐下坝线为选定坝线。

在可研阶段推荐碾压砼拱坝方案的基础上,本阶段对碾压砼拱坝、砼双曲拱坝、碾压砼双曲拱坝三种坝型作进一步的比选,经综合比较,本阶段推荐采用碾压砼双曲拱坝。

上一页[1][2][3]下一页

本阶段引水隧洞洞线拟定左、右岸长、短洞线四条洞线进行比选,以确定工程总体布置。经综合比较,推荐采用左岸短洞方案。

根据坝型、坝线及总体布置方案的比选,本工程枢纽总布置推荐下坝线碾压砼单曲拱坝左岸短洞方案,水库正常蓄水位244.0m,设计洪水位(p=0.2%)246.20m,校核洪水位(p=0.05%)246.72m,大坝采用碾压砼单曲拱坝,坝顶高程247.6m,溢流堰对称布置在拱冠梁处,共三孔,每孔净宽8.0m,溢流堰采用wes实用堰型,弧形闸门控制泄流,堰顶高程237.0m,出口挑流消能;为大坝检修和放空水库,在坝体桩号0+108.62m处设置一放空洞,放空洞进口中心线高程191.0m,放空洞断面尺寸1.6×2.0m(宽×高),放空洞出口采用挑流消能。引水发电系统布置在大坝的左岸,塔式进水口于左坝头上游约100m处,进水口采用分层取水,隧洞总长378.65m,洞径3.0m,隧洞进水口底板高程200.0m,厂房位于大坝下游河道约220m处,采用地面式厂房,厂房内安装2台6mw的水轮发电机组。大坝采用碾压砼双曲拱坝,坝顶高程为247.6m,坝基最低开挖底高程148.50m,最大坝高99.1m,坝底最大宽度30m,坝顶宽度5.0m,坝顶长度为268.23m,大坝上游面设置r90200二级配碾压砼防渗层,防渗面板顶宽2.0m,底宽为8.2m,大坝碾压砼采用r90200三级配碾压砼。坝内布置三条纵向灌浆、排水及观测廊道,廊道采用拱顶平底式,宽度为2.5m,高度为3.5m;在左右岸高程195.0m、220.0m处分别设置横向交通廊道,横向交通廊道采用拱顶平底式,宽度为2.0m,高度为3.5m。溢流堰对称布置在拱冠梁处,共三孔,每孔净宽8.0m,堰顶高程237.0m,溢流堰采用wes实用堰型,弧形闸门控制泄流,出口为挑流消能,反弧半径15m,挑射角为20°,挑流鼻坎顶高程为223.54m,为大坝检修和放空水库,在大坝左侧0+108.62m桩号处设置一放空洞,放空洞断面尺寸为1.6×2.0m(宽×高),进口中心线高程191.0m,出口为挑流消能。

为加强基岩的整体性和均一性,提高基岩的弹性模量,减少坝基的渗透性,对坝基进行全面固结灌浆处理,对坝基断层破碎带和节理裂隙密集带加强固结灌浆。固结灌浆孔深一般为5m,钻孔布置呈梅花形,孔、排距均为3.0m;在断层破碎带和节理密集带范围内加深、加密钻灌,加密部位固结灌浆,孔、排距为1.5m,孔深8m。对坝基进行帷幕灌浆,相对隔水层界线按透水率q<1lu的原则确定。防渗帷幕伸入岸坡一定长度并与河床部位的帷幕保持连续性,防渗帷幕为单排,孔距为2m,孔深伸入相对隔水层界线3m。河床坝段最大幕深16.5m,左、右两岸坝段,幕深由10m~37m,其防渗帷幕伸入岸坡的范围和长度以及帷幕轴线的方向,根据工程地质和水文地质条件,地下水位线与正常蓄水位的交线等,确定左、右岸灌浆平洞分别深入岸坡为20m及30m。

引水隧洞布置在大坝左岸,引水隧洞进水口位于左坝头上游约100m处,进水口为岸塔式结构。隧洞由进水口、进水闸、渐变段、隧洞段、内衬钢管段及岔管段组成。进水闸坐落在弱风化炭质粉砂岩上,进水口设直立式拦污栅,闸室顶高程为247.6m;闸室段长25.3m,宽13m,分两孔布置,边墩厚2m,中墩厚3m,闸顶高程247.6m,闸底板高程200m。闸室布置四道工作门和一道检修门,工作门后布置长6m的消力池,池深2.0m,检修门后设进人孔。闸墩上部设置启闭机房,进水口闸室顶设交通桥与交通公路相连,桥面宽3.5m。

根据城市供水及灌溉供水要求,进水口采用分层取水,取水口共分为四层,各层取水口底高程分别为231.8m、220.6m、210.6m、200.0m,取水孔口尺寸均采用3×10m(宽×高)。隧洞衬砌后内径3.0m,衬砌厚30cm,隧洞全长378.65m,包括渐变段、上平管段、上弯管段、斜管段、下弯管段、岔管渐变段、支管段,岔管段长19.68m,“卜”型布置,支管洞径1.6m,长17.13m,引水隧洞出口中心线高程为158.9m。

发电厂房为引水式地面厂房,布置于大坝下游河道约220m处,主厂房安装两台6mw的水轮发电机组,水轮机号为hljf3001a-lj-103,发电机型号为sf6000-10/2600,总装机容量12mw,机组间距8.50m。主厂房总高度23.09m,长度为31.80m,宽度为14.50m,机组安装高程158.90m。

三、实习心得

通过这次实习,我学到了很多知识那是在课堂上无法学到的东西。在我看来理论知识固然重要,不过实践更重要。对每项工作都要认真踏实,创造出价值才有所收获。对人应该热忱,处理好周边的关系。所谓“先做人后做事”,在水利行业这个大圈子里尤其需要为人处世的能力。并且我们还要学会虚心向他人学习,不懂就问,态度要诚恳,让别人愿意将自身的积累传授于你。这样一点一滴地积累才能是自己不断发展。实习结束了,虽然过程是辛苦的,但确是充实而快乐的。提前感受了工作中的酸甜苦辣,使我对未来的生活有了心理准备也充满了向往和自信。在实习过程中,非常感谢其他施工现场工程技术人员的帮助与讲解,也非常感谢几位老师几天来不辞辛苦的来回奔波在施工现场答疑和指导!在施工中,很多时候靠的是经验,在经验来源的同时用理论知识去检验。所以就算理论知识掌握得在好,没有实习和工作的实际经验也很难解决施工中时刻遇到的种种问题。我坚信通过这一段时间的实习,所获得的实践经验对我终身受益,在我毕业后的实际工作中将不断的得到验证,我会不断的理解和体会实习中所学到的知识,在未来的工作中我将把我所学到的理论知识和实践经验不断的应用到实际工作来,充分展示自我的个人价值和人生价值。为实现自我的理想和光明的前程努力。

上一页[1][2][3]

第五篇:水利枢纽实习报告

一﹑实习目的

通过实地参观,获得水利水电方面的感性认识,大致了解水利枢纽的基本组成与作用,为我们继续学习专业课并进行某些课程设计及毕业设计打下良好的基础。

1.了解当前党和国家对水利水电工程建设的方针、政策以及水利工程规划、设计和施工方面的经验,为后续课程设计及毕业设计打下实践基础。

2.结合已学过的课程,通过实践巩固并扩大知识面。

3.通过枢纽建筑物及主要工种施工工艺的参观与学习,增强对所学基础理论和专业知识的感性认识,增长独立工作的能力,并扩大知识面。

4.通过现场实践和听报告,学习水利水电建设工人及技术员的优良品质,进一步培养学生热爱专业、献身于水利水电建设事业的志向。

二﹑实习要求

1.通过实地参观、查阅资料和听报告,我们能够了解到:

(1)本枢纽所在河流的规划情况及水利枢纽在国民经济中的地位和作用。(2)坝型及枢纽布置的方案比较,组成建筑物的结构型式及主要轮廓尺寸确定。

(3)主要建筑物的施工方法,施工导流计划与施工进度的安排。(4)工地的施工管理。

2.通过现场老师教学和工种操作,我们能够了解到:(1)主要建筑物的设计方法及细部结构。(2)大型施工机械设备的用途及作业组织。

3.通过工地调查,我们应对自己关心的问题掌握更多的资料,使课堂上的知识有更深入的了解。

三﹑实习安排

实习地点:驷马山引江工程﹑陈村水电站 实习时间:10月15日—10月19日

四﹑实习内容和过程

1.驷马山引江工程

(1)引江工程概况

驷马山引江灌溉工程是全国8大灌区之一,全国最大泵站之一;是皖苏2省滁河流域以灌溉为主,结合分洪、排涝和航运的大型综合性水利工程。因其主要作用是引长江水补充滁河灌溉水源之不足,故又称引江济滁灌溉工程。位于皖东滁河中上游地区和江苏省西南隅,灌区地跨安徽省来安、滁州、全椒、巢湖、含山、和县、肥东、定远和江苏省江浦等市县,总面积5306平方公里。主体工程包括乌江枢纽(含节制闸、船闸、抽水站、变电所及乌江大桥等)、引江水道(为一新开河道,长27.5公里)、滁河疏浚、襄河口枢纽、汊河集枢纽、滁河干流4级抽水站等。设计总抽水流量621.9立方米/秒(其中引江设计流量215立方米/秒),总抽水扬程46.9米,总灌溉面积24万多公顷。历史上滁河河道弯曲狭窄,阻水严重,流域内丘陵面积较大,地势高亢,水旱灾害均较突出。1969年冬始建上述工程后,水旱灾害已有根本改变,并且大大加强了京沪铁路南京、滁州段的运行安全。(2)专业了解

在工程师们的带领参观和详细讲解下,我们了解到驷马山引江灌溉工程主要包括:乌江枢纽﹑滁河一级站枢纽﹑滁河二级站﹑滁河三级站﹑襄河口闸枢纽以及滁河分洪道切岭管理段组成。

我们首先参观了乌江枢纽。据工程师介绍,它由抽水站﹑节制闸以及一座V级船闸组成,它具有抗旱灌溉排涝减灾以及运输的重要作用。

乌江船闸现为300吨级标准五级船闸,长160m,宽12m,一次能通过大船3艘,小船4艘。从开闸到关闸需要30分钟,要等到上下闸道水位平衡才能开闸,一边蓄水一边放水,上下游的最大水位差为5m。船闸的开门顺序为:输水门(阀门)-横拉门-横拉门-输水门(阀门),横拉门在平水位下运行,输水门在有水位差的情况下运行,利用卷扬式启闭机运作。由于船闸为单行道,且过往船闸的船民很多,所以管理所在上游3km处和下游4.5km处均设有一个远程调度站,它的作用是提前安排好过船闸的船只,让船民们拿号排队过闸,并通过无线电与乌江船闸管理所控制室进行讯息传达。此外,管理所还免费为船民提供水和充电服务。虽然拿号排队能有序地通过船闸,但由于过往船闸的船只实在是太多了,有的甚至要排一个月的队才能过闸。因此,有些船民为了能提前过闸就去找工作人员送钱送礼拉关系,造成了管理上的混乱更严重地影响了船闸的正常通行。为了遏制这一恶劣现象,乌江船闸管理所设立了乌江船闸警务室,并联合了海事警察,共同维护船闸的秩序。乌江船闸管理所这一举措,很好的杜绝了违规插队的现象,获得了众多船民们的一致好评,树立了清廉公正的良好形象。这是我第一次接触船民这个群体,据工程师介绍,船民们大多一辈子都生活在船上,文化水平较低,有的甚至连自己的名字都不会写。听到这里,我觉得他们为了生活牺牲了许多,为了生活,一辈子呆在船上,为了生活,没法接受更好的教育。不过幸好,听说有些船民渐渐意识到教育的重要性,把孩子寄养在父母家中,让孩子上学接受教育。希望国家所倡导的全民教育也能普及到船名这一群体。之后,我们在工程师的带领下还参观了控制室,随着科技的进步和发展,控制室已采用实时监控和全自动化控制了,工作人员们也不需要这么辛苦了,多年来乌江船闸在防汛物资的运输和两岸经济上发起了重要作用。

随后,工程师还带领我们去参观了水文站。水文站是实时监测和记录水情雨情的,在那里我们看到了人工雨量器﹑雨量传感器﹑水文绞车和铅鱼等设备,在工程师的详细讲解下,我们对水文站以及其他相关的设备有了更进一步的认识和了解。

下午,我们参观了乌江抽水站,抽水站现安装6台套水泵机组,单机容量 1600kw;抽水站的有效灌溉面积达150万亩,每年的4﹑5月份正是农民耕作需要用水的月份,此时抽水站便能放水,以供农耕用水,抽水站在抗旱方面的能力日益突出,已成为灌区农业丰收不可缺少的重要支柱。乌江节制闸为矩形平底闸门,共5孔,闸身长15米,闸孔净宽5.0m,具有调节上下游水位差的作用。据介绍,一个闸门是由十几扇钢闸门组成的,为了方便运输安装及检修,把钢闸门设计成能在水中浮起来的,并做好了防腐的措施。闸门又分为工作闸门和检修闸门,检修闸门安装在工作闸门的前方,便能在工作闸门要进行检修的时候抵挡水流。工程师跟我们讲,水位是有控制值的,控制水位为8.2m。抽水泵站的下面有检修闸门,用于防淤泥。我们在抽水站外面看到的起重车则是在检修检修闸门的时候用来吊起检修闸门,而导流墩具有分流的作用。据实测水文统计,1991年闸上水位达11.19m,闸下达11.13m,最大洪峰实测流量为818m3/s,大大地超过了设计范围,当年泄洪总量为24.83亿立方米,保证了津浦铁路、上游沿河两岸重要城镇以及下游工业重镇—南京大厂区的安全。

最后,我们在会议室听取了站内工程师们的讲座。讲座内容为驷马山引江工程的历史、分类、优缺点、组成与工作流程等,使我们对驷马山引江工程又有了进一步了认识。同时,当我得知这驷马山引江工程是由我国早期的革命人士和农民靠双手修建而成的,内心深深被他们的精神震撼到了。在当时的科技水平丝毫不及现在的年代,能造出正常运行这么多年而且还屹立不倒的工程,可见那个年代的人们把诚信看作如生命重要,对工作极其负责,是这个浮躁年代的人们无法比拟的。只有向先人学习他们的态度,我们这个社会才有希望,才能有美好的未来。

2.陈村水电站(1)水电站概况

陈村水电站位于皖南山区青弋江上游,地处旅游胜地黄山和佛教圣地九华山之间的太平湖畔泾县境内,是目前安徽省装机容量最大的水力发电厂。电厂1958年开工,分为二级开发,全站总装机容量18.4万千瓦,设计年发电量3.15亿千瓦时。一级陈村站装机3台,总容量15万千瓦,最大库容26.88亿立方米。二级纪村站装机2台,总容量3.4万千瓦,为径流式水电厂,利用陈村下游尾水,通过青弋江灌区总干渠与青弋江河道之间的落差,筑坝壅水发电。枢纽工程属一等工程,其主要建筑物有:混凝土重力拱坝、溢洪道、电站厂房和筏道等,以发电为主,兼有防洪、灌溉、航运和养鱼等综合效益。(3)专业了解

到站当天,受到电站领导和员工的热情接待。随后,由领导给我们讲了进入厂房的注意事项和相关的规定,由于我们是进行的电方面的操作,所以需时时处处注意安全,切实遵守安全操作规程,听从安排,才能确保人身、设备、仪器的安全,避免给个人和集体造成损失。当我们了解完这一切后,正式进入实习环节。

我们首先到了大坝的顶部,大坝是混凝土重力拱坝。大坝的上游是美丽的太平湖,坝顶高126.3米,上游最高水位为76.3米,蓄汛限水位117m,死水位101m。据工作人员介绍,陈村水电站主要包括大坝、溢洪道、底孔、中孔、厂房和筏道。其中,大坝两侧是左右溢洪道,没一侧溢洪道是由2个闸门经由竖直方向力拉起进行放水,其上面厂房是控制室;底孔主要用于清理淤泥的作用,中孔用于减少库水位;发电系统主要包括发电机—变压器—输电枢纽。发电时水库蓄水,将水位调高后,闸门全开,发电机转动发电通过变压器变压后将电送到电网处,为保证电力系统更好的运行,输送的电要并入到国家电网,再输送到不同的城市,这样如果其中有个电站出现故障,其它的电站还能支援确保城市用电正常运行。随后,工作人员带领我们去参观廊道,我们还见到了有名的105裂缝。据工作人员介绍,即使这裂缝逐年增大,但每年大坝都会进行评级,测评的结果是大坝是能安全工作的,让我不禁发出“以前的工程质量就是好啊!”的感叹。

下午,我们在工作人员的带领下参观了发电厂房。发电机﹑电动机﹑主变压器﹑水轮机﹑油泵﹑水泵﹑检修水泵﹑渗漏水泵﹑高压气储气罐﹑低压空压机﹑高压空压机„„各种仪器设施引入我们眼帘,这个发电站就是需要这么多的仪器设备运行发电的,值得庆幸的是,随着科技的迅速发展,电站的运行由上层的自动化操作间控制,利用电脑与机器联机,实时监控,既减轻工作人员的负担的同时又提高了工作的效率;而且电脑开机更能预防突发情况,当机组出现故障后,通过电脑控制能使机组正常运行。

五﹑实习体会和收获

1.通过此次的实习活动,使我真正接触到了水工建筑物,对水工建筑物外观,规模,作用及特点的进一步认识;掌握了大坝、闸门、溢洪道、溢洪遂洞及水电站厂房、机组的性能及特点;初步掌握了水利枢纽的基本组成与作用,让我对我们的专业有了更深入了解,为我们继续学习专业课并进行某些课程设计及毕业设计打下良好的基础。

2.通过听取水电站工作人员讲述工作中的事情,明白了水利行业是个艰苦的行业,但我们的技术人员还是认认真真、兢兢业业的在自己的岗位上忠于职守,从他们身上看到了一中艰苦奋斗的优秀品质,使我更加体会到热爱专业、献身于水利水电建设事业的志向是多么的伟大。3.一项水利工程所产生的影响力是巨大的。水利工程需要投资巨大的财力和物力, 因此做每项工程都必须收集尽可能多的水文、地质、气象等资料,经过严密的科学论证,推断施工当中可能遇到的一切可能的难题最后再结合当时的国力人力及技术水平。

4.通过此次的实习活动,我切身体会到了做好自己工作的重要性,在做事之前,要周全考虑到各个方面,特别是我们学理工的,更要有逻辑思维和一丝不苟的态度来对待事情,例如:在电站中和工作人员一块实习,必须认真负责,要记录好那些数据,并且要检查那些机组的运转是否正常,记录完一定数据还要分析,这些都是技术员必须认真做好的,因为分析数据可以早发现机组运行时的一些运行即将出现的问题,从而做好检修工作,不然的话,若机组一出现故障,那损失是相当巨大的。正是因为他们对工作认真负责、一丝不苟,所以从未发生过重、特大安全事故,希望他们继续保持发扬这种精神。这是我们应该学习的精神。

5.通过此次的实习活动,我深刻意识到身上的责任重大。我不仅要把专业知识学好学精,而且还要掌握计算机方面的专业知识,才能跟得上时代的步伐。我所学的专业,以后从事的行业,是一个与人们生活生产息息相关的事业,如果没有过硬的专业知识,没有及其负责的责任心,是会把这个能造福人民的工程毁于一旦,给人民和国家带来巨大损失的。

下载葛洲坝水利枢纽导游词(精选五篇)word格式文档
下载葛洲坝水利枢纽导游词(精选五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    水利枢纽实习报告

    一、前言1、实习目的进一步加固和加深课堂多学过的理论知识,了解主要建筑物的施工特点、施工方法等,培养我们分析问题和解决实际问题的能力,提升自我的专业知识和现场操作技能......

    长江三峡水利枢纽工程

    项目名称:长江三峡水利枢纽工程 主要项目干系人:国务院、中国建工集团 基本需求和期望:完成长江三峡水利枢纽工程所有项目工程,提高我国水利枢纽的综合使用水平 从以下五个方面......

    葛洲坝生产实习.

    刚到的(实习报告)那天,下午就开始上课了,虽然大家都非常的(实习报告)疲惫,本来还在抱怨不让大家好好休息,但是杨思源工程师精彩的(实习报告)一课就像是一剂兴奋剂给大家注入了活力,大家......

    葛洲坝实习报告

    葛洲坝实习报告 系别电气工程系专业班级 XXXX 学生姓名XXXX 指导教师 XXXX 提交日期 2011年12月 08日 电气工程系毕业实习报告 目 录 一、实习目的............................

    葛洲坝实习报告

    实习报 告 环节名称 学院(系) 专业名称 使用班级 姓学名 号 生产实习电子与信息工程学院 电气工程及其自动化 电气1142 周敏学 201411631235 樊海红、陈景贤 湖北葛洲坝电......

    葛洲坝实习报告

    葛洲坝实习报告 默认分类 2009-05-04 12:21:14 阅读514 评论0 字号:大中小 订阅 摘要 电气主接线是发电厂和变电所电气部分的主体,它反映各设备的作用、连接方式和回路间的......

    葛洲坝实习日志

    葛洲坝实习日志2013年3月12日 今天是我们今天来到长江上的第一座水电站——葛洲坝水电站实习的第一天。我怀着几分兴奋与好奇的心情迎接第一天的实习。今天主要由葛洲坝水电......

    黄河小浪底水利枢纽风景区

    黄河小浪底水利枢纽风景区 黄河小浪底风景区具有有利的地理位置和极为特色的旅游资源,河南省境内大多以山水景区为主要旅游产品,而黄河小浪底则是一座以大坝为主题发展起来的......