第一篇:证明直角三角形斜边上的中线等于斜边的一半
用证明全等三角形的方法证明(直角三角形不为等腰三角形)直角三角形斜边上的中线等于斜边的一半
在三角形ABC中,∠A=90°,AD为BC边上的中线,做AB、AC的中点E、F,连接ED、DF,因为BE=EA,BD=DC,所以ED∥AC,又因为,∠A=90°,所以∠BED=90°,∠BED=∠AED=90°,BE=AE,ED=ED(三角形全等:边角边)所以,△BED≌△AED,所以BD=AD,同理AD=CD(△ADF≌△CDF),所以AD=CD,所以AD=BD=CD,所以直角三角形斜边上的中线等于斜边的一半,
第二篇:1、直角三角形斜边中线等于斜边的一半、勾股定理证明
1、直角三角形斜边中线等于斜边的一半证明:
ΔABC是直角三角形,AD是BC上的中线,作AB的中点E,连接DE
∴BD=CB/2,DE是ΔABC的中位线
∴DE‖AC(三角形的中位线平行于第三边)
∴∠DEB=∠CAB=90°(两直线平行,同位角相等)
∴DE⊥AB
∴n是AB的垂直平分线
∴AD=BD(线段垂直平分线上的点到这条线段两端点的距离相等)
∴AD=CB/2