第一篇:三角形垂心定理
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。(此直线称为三角形的欧拉线(Euler line))
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
定理证明
已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F,求证:CF⊥AB
证明:
连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC
∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度 ∴∠ACF+∠BAC=90度 ∴CF⊥AB
第二篇:三角形射影定理
几何证明
射影就是正投影,从一点到过顶点垂线垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影,即射影定理。
直角三角形射影定理
直角三角形射影定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)=BD·DC,(2)(AB)=BD·BC,(3)(AC)=CD·BC。
证明:在 △BAD与△ACD中,∠B+∠C=90°,∠DAC+∠C=90°,∴∠B=∠DAC,又∵∠BDA=∠ADC=90°,∴△BAD∽△ACD相似,∴ AD/BD=CD/AD,即(A
D)^2=BD·DC。其余类似可证。
注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得:(AB)+(AC)=BD·BC+CD·BC =(BD+CD)·BC=(BC)
即(AB)+(AC)=(BC)。22222222
2任意三角形射影定理
任意三角形射影定理又称“第一余弦定理”:
设⊿ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有a=b·cosC+c·cosB,b=c·cosA+a·cosC,c=a·cosB+b·cosA。
注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。
证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且
BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB.同理可证其余。
1.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.2.圆周角定理的推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.弦切角定理:弦切角的度数等于它所夹的弧的度数的一半.2.弦切角定理推论:弦切角等于它所夹的弧所对的圆周角.切线的性质定理:圆的切线垂直于过切点的半径.
进一步指出:由于过已知点有且只有一条直线与已知直线垂直,所以经过圆心垂直于切线的直线一定过切点;反过来,过切点垂直于切线的直线一定经过圆心,因此可以得到两个推论:
推论1 经过圆心且垂直于切线的直线必经过切点.
推论2 经过切点且垂直于切线的直线必经过圆心.
引导学生分析性质定理及两个推论的条件和结论间的关系,总结出如下结论:如果一条直线具备下列三个条件中的任意两个,就可推出第三个.
(1)垂直于切线;(2)过切点;(3)过圆心.
相交弦定理
:圆内的两条相交弦,被交点分成的两条线
段长的积相等
几何语言:
若弦AB、CD交于点P
则PA·PB=PC·PD(相交弦定理)
推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
几何语言:
若AB是直径,CD垂直AB于点P,则PC=PA·PB(相交弦定理推论)
割线定理:
割线定理:从圆外一点引圆的两条割线则有这点到割线与圆交点的两条线段的积相等.要证PT2=PA·PB,可以证明,为此可证以 PA·PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB。容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证:
直线ABP和CDT是自点P引的⊙O的两条割线,则PA·PB=PC·PD
证明:连接AD、BC
∵∠A和∠C都对弧BD
∴由圆周角定理,得 ∠A=∠C
又∵∠APD=∠CPB
∴△ADP∽△CBP
∴AP:CP=DP:BP, 也就是AP·BP=CP·DP
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
圆内接四边形的判断定理定理1:圆内接四边形的对角互补;定理2:圆内接四边形的外角等于它的内角的对角。
圆幂定理
圆幂的定义:一点P对半径R的圆O的幂定义如下:OPR
所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。
(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
2如图,AB、CD为圆O的两条任意弦。相交于点P,连接AD、BC,则∠D=∠B,∠A=∠C。所以△APD∽△BPC。所以 APPDAPBPPCPD PCBP
(2)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。
如图,PT为圆切线,PAB为割线。连接TA,TB,则∠PTA=∠B(弦切角等于同弧圆周角)所以△PTA∽△PBT,所以
PTPAPT2PAPB PBPT
(3)割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有
PA·PB=PC·PD。
这个证明就比较简单了。可以过P做圆的切线,也可以连接CB和AD。证相似。存在:PAPBPCPD
进一步升华(推论):
过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于
A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则 PCPD(POR)(POR)PO2R2|PO2R2|(一定要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)
若点P在圆内,类似可得定值为RPO|POR|
故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝 对值。(这就是“圆幂”的由来)
2222
第三篇:三角形公式定理
第三章 三角形公式定理
第三章 三角形三角形的有关概念和性质
1.1三角形的内角和
在同一平面内,由一些不在同一条直线上的线段首位顺次相接所围成的封闭图形叫做多边形.组成多变形的那些线段叫做多边形的边.相邻两边的公共端点叫做多边形的顶点.多变形相邻两边所夹的角叫做多边形的内角,简称多边形的角.多变形的角的一边与另一边的反向延长线组成的角叫做多边形的外角.三角形内角和定理:三角形三个内角和等于180
在原来图形上添画的线叫做辅助线
依据三角形内角的特征,对三角形进行分类:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形;锐角三角形和钝角三角形统称斜三角形.在直角三角形中,夹直角的两边叫做直角边,直角的对边叫做斜边.推论1 直角三角形的两个锐角互余
推论2 三角形的一个外角等于与它不相邻的两个内角的和
1.2三角形的有关线段
三角形一个角的平分线和对边相交,角的顶点和交点之间的线段叫做三角形的角平分线连接三角形的一个顶点和它对边中点的线段叫做三角形的中线
从三角形的一个顶点向其对边或对边的延长线画垂线,顶点和垂足间的线段叫做三角形的高全等三角形
2.1全等三角形的证明
边边边 有三边对应相等的两个三角形全等
边角边 有两边及其夹角对应相等的两个三角形全等
角边角 有两角及其夹边对应相等的两个三角形全等
定理 有两角及其其中一角的对边对应相等的两个三角形全等
2.2直角三角形全等的判定
定理 斜边和一条直角边对应相等的两个直角三角形全等等腰三角形
3.1等腰三角形及其性质
三角形的三边,有的三边互不相等,有的有两边相等,有的三边都相等.三边都不相等的三角形叫做不等边三角形,有两边相等的三角形叫做等腰三角形,三边都相等的三角形叫做等边三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角
定理 等腰三角形的底角相等
推论 等腰三角形顶角的平分线平分底边并且垂直于底边
定理 有两个角相等的三角形是等腰三角形
定理 一个三角形是等腰三角形的充要条件是这个三角形有两个内角相等
等边三角形定理1 等边三角形的各角都相等,并且每一个角都等于60
等边三角形定理2 三个角都相等的三角形是等边三角形
等边三角形定理3 有一个角等于60的等腰三角形是等边三角形
3.2线段的垂直平分线与角平分线
定理 线段的垂直平分线上的点和这条线段两个端点的距离相等
定理 和一条线段两个端点距离相等的点,都在这条线段的垂直平分线上
线段的垂直平分线可以看成是所有和线段两段距离相等的点的集合定理 点在角平分线上的充要条件是这一点到这个角两边的距离相等
角的平分线可以看作是到角的两边距离相等的所有点的集合3.3 轴对称
定义 如果点A,B在直线l的两侧,且l是线段AB的垂直平分线,则称点A,B关于直线l互相对称,点A,B互称为关于直线l的对称点,直线l叫做对称轴
定义 在平面上,如果图形F的所有点关于平面上的直线l成轴对称,直线l叫做对称轴
定义 在平面上,如果存在一条直线l,图形F的所有点关于直线l的对称点组成的图形,仍是图形F自身,则称图形F为轴对称图形,直线l是它的一条对称轴
定理(1)对称轴上的任意一点与一对对称点的距离相等(2)对称点所连线段被对称轴垂直平分
推论 两个图形如果关于某直线称轴对称,那么这两个图形是全等形
3.4三角形中的不等关系
定理 三角形的外角大于和它不相邻的任一内角
定理 三角形任何两边的和大于第三边
推论 三角形任何两边的差小于第三边
定理 在一个三角形中,如果两边不等,那么它们所对的角也不等,大边所对的角较大定理 在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大
在一个三角形中,一条边大于另一条边的充要条件是,这条边所对的角大于另一条边所对的角 4 直角三角形
4.1勾股定理逆定理
勾股定理逆定理 如果三角形的三边长a,b,c满足条件a+b=c,那么c所对的角是直角
4.2含30角的直角三角形的性质
定理 在直角三角形中,如果一个瑞角等于30,那么它所对的直角边等于斜边的一半
4.3直角三角形斜边上中线的性质
定理 在直角三角形中,斜边上的中线等于斜边的一半基本作图
5.1基本作图
5.1作三角形
5.3轨迹与反证法
我们把物体按某种规律运动的路线叫做物体运动的轨迹
我们就把一个点在空间按某种规律运动的路线,叫做这个点运动的轨迹,这个点就叫做动点定义 具有性质a的所有点构成的集合,叫做具有性质a的点的轨迹
轨迹具有纯粹性和完备性
基本轨迹1 与两个已知点距离相等的点的轨迹是连结这两点的线段的垂直平分线基本轨迹2 与已知角的两边距离相等的点的轨迹是这个角的平分线
圆几何公式:
101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理 不在同一直线上的三个点确定一条直线
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d﹤r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d﹥r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d﹥R+r ②两圆外切 d=R+r
③两圆相交 R-r﹤d﹤R+r(R﹥r)
④两圆内切 d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n∏R/180
145扇形面积公式:S扇形=n∏R/360=LR/2
146内公切线长= d-(R-r)外公切线长= d-(R+r)
第四篇:三角形外心、重心、垂心的向量形式
三角形外心、重心、垂心的向量形式
已知△ABC,P为平面上的点,则
(1)P为外心
(2)P为重心
(3)P为垂心
证明(1)如P为△ABC的外心(图1),则 PA=PB=PC,(2)如P为△ABC的重心,如图2,延长AP至D,使PD=PA,设AD与BC相交于E点.
由重心性质
∴ 四边形PBDC为平行四边形.
BC和PD之中点.
心.
(3)如图3,P为△ABC的垂心
同理PA⊥AC,故P为△ABC之垂心.
由上不难得出这三个结论之间的相互关系:
∴ △ABC为正三角形.
∴ △ABC为正三角形,且O为其中心.
第五篇:三角形内角平分线定理
三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。已知:如图8-4甲所示,AD是△ABC的内角∠BAC的平分线。
求证: BA/AC=BD/DC;
思路1:过C作角平分线AD的平行线,用平行线分线段成比例定理证明。
证明1:过C作CE∥DA与BA的延长线交于E。
则: BA/AE=BD/DC;
∵∠BAD=∠AEC;(两线平行,同位角相等)
∠CAD=∠ACE;(两线平行,内错角相等)
∠BAD=∠CAD;(已知)
∴∠AEC=∠ACE;(等量代换)
∴AE=AC;
∴BA/AC=BD/DC。
结论1:该证法具有普遍的意义。
思路2:利用面积法来证明。
已知:如图8-4乙所示,AD是△ABC的内角∠BAC的平分线。
求证: BA/AC=BD/DC
证明2:过D作DE⊥AB于E,DF⊥AC于F;
∵∠BAD=∠CAD;(已知)
∴DE=DF;
∵BA/AC=S△BAD/S△DAC;(等高时,三角形面积之比等于底之比)
BD/DC=S△BAD/S△ABCDAC;(同高时,三角形面积之比等于底之比)
∴BA/AC=BD/DC
结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法,第四,你能想到用该定理解决问题吗?