第一篇:1、直角三角形斜边中线等于斜边的一半、勾股定理证明
1、直角三角形斜边中线等于斜边的一半证明:
ΔABC是直角三角形,AD是BC上的中线,作AB的中点E,连接DE
∴BD=CB/2,DE是ΔABC的中位线
∴DE‖AC(三角形的中位线平行于第三边)
∴∠DEB=∠CAB=90°(两直线平行,同位角相等)
∴DE⊥AB
∴n是AB的垂直平分线
∴AD=BD(线段垂直平分线上的点到这条线段两端点的距离相等)
∴AD=CB/2
第二篇:证明直角三角形斜边上的中线等于斜边的一半
用证明全等三角形的方法证明(直角三角形不为等腰三角形)直角三角形斜边上的中线等于斜边的一半
在三角形ABC中,∠A=90°,AD为BC边上的中线,做AB、AC的中点E、F,连接ED、DF,因为BE=EA,BD=DC,所以ED∥AC,又因为,∠A=90°,所以∠BED=90°,∠BED=∠AED=90°,BE=AE,ED=ED(三角形全等:边角边)所以,△BED≌△AED,所以BD=AD,同理AD=CD(△ADF≌△CDF),所以AD=CD,所以AD=BD=CD,所以直角三角形斜边上的中线等于斜边的一半,
第三篇:怎么证明1加1等于2
怎么证明1加1等于2
陈景润证明的叫歌德巴-赫猜想。并不是证明所谓的1+1为什么等于2。当年歌德巴-赫在给大数学家欧拉的一封信中说,他认为任何一个大于6的偶数都可以写成两个质数的和,但他既无法否定这个命题,也无法证明它是正确的。欧拉也无法证明。这“两个质数的和”简写起来就是“1+1”。几百年过去了,一直没有人能够证明歌德巴-赫猜想,包括陈景润,他只是把证明向前推进了一大步,但还是没有完全证明
21+1为什么等于2?这个问题看似简单却又奇妙无比。在现代的精密科学中,特别在数学和数理逻辑中,广泛地运用着公理法。什么叫公理法呢?从某一科学的许多原理中,分出一部分最基本的概念和命题,对这些基本概念不下定义,而这一学科的所有其它概念都必须直接或间接由它们下定义;对这些基本命题(也叫公理)也不给予论证,而这一学科中的所有其它命题却必须直接或间接由它们中推出。这样构成的理论体系就叫公理体系,构成这种公理体系的方法就叫公理法。1+1=2就是数学当中的公理,在数学中是不需要证明的。又因为1+1=2是一切数学定理的基础,.........3由此我们可以得出如下规律:
A+A=B、B+B=A、A+B=C;N+C=N
A*A=A、B*B=A、A*B=B;N*C=C(注:N为任意自然数)
这八个等式客观准确地反映了自然数中各类数的相互关系。
下面我们就用ABC属性分类对“猜想”做出证明,(我们只证明偶数中的偶A数,另两类数的证明类同)
设有偶A数p求证:p一定可以等于:一个质数+另一个质数
证明:首先作数轴由原点0到p。同时我们将数轴作90度旋转,由横向转为纵向,即改为原点在下、p在上。我们知道任意偶数都可以从它的中点二分之一p处折回原点。把0_p/2称为左列,把p/2_p(0)称为右列。这时,数轴的左右两列对称的每对数字之和都等于p:0+p=p;1+(p-1)=p;2+(p-2)=p;、、、、、、p/2+p/2=p。这样的左右对称的数列我们称之为数p的“折返”数列。
对于偶A数,左数列中的每一个B数都对应着右列的一个B数。(A=B+B)
如果这个对应的“B数对”中左列的B数是质数而右列的B数是合数,我们叫这种情形为“屏蔽”。显然,对于偶A数的折返数列,左列中的所有质数不可能同时被屏蔽,总有不能被屏蔽的“质数对”存在,这样我们就证明了偶A数都可以写作两个质数之和。其它同理。继而我们就证明了“猜想”。
第一步:写出B数数列:5、11、17、23、29、35、41、47、53、59、65、71、、、、(6*N-1)
第二步:写出B数数列中的合数:35、65、77、95、119、125、155、161、185、203、、、、、第三步:由于对于偶A数p,它右列出现合数的最小数是35,所以能够屏蔽左列第一个质数5的p数的取值是40,也就是说只有当p=40时,左列中的5才可以被35屏蔽,这时左列0_p/2=20,左列中还有11、17两个质数不能被屏蔽,这两个“质数对”是11+29、17+23。如果要同时屏蔽5和
11、就必须加大p的取值,p由原来的40增加到p1=130;而这时的(p1)/2也同时增加到65。
第四步:左列中有5、11、17、23、29、35、41、47、53、59、65共11个B数,而右列65_130间的合数只有65、77、95、119、125共5个,除去屏蔽5和11的125和119以后只剩余95、77、65显然即使偶A数p=130的折返数列的右列中的所有合数、都去屏蔽,也不能完全屏蔽左列中的质数。也就是说偶A数p中最少可以找出许多质数对,可以写成p=一个质数+另一个质数的形式。这里它们分别是:
130=17+113、130=23+107、130=29+101、130=41+89、130=47+83、130=59+71
第五步:同理,即使我们再继续增加p的取值,而p/2的值也同时增加,右列中的合数永远也不可能全部屏蔽左列中的质数,所以,任意偶A数都一定可以写作两个质数之和。
同理,我们可以做出偶B数和偶C数也都可以写作两个质数之和。
这样我们就证明了对于任意偶数(大于6)我们都可以写作两个质数之和。
第四篇:用几何方法证明坐标平面内互相垂直的两直线的斜率之积等于-1
用几何方法证明“坐标平面内,两直线互相垂直时,它们的斜率的乘积等于-1”
证明:如图,直线y1=k1x和直线y2=k2x互相垂直,过直线y1=k1x上任意一点A做AC⊥x轴于点C,在直线y2=k2x上取一点B使OB=OA,过B点做BD⊥x轴于点D,则∠ACO=∠BDO=90
又∵∠AOB=90°,∴∠AOC+∠BOD=90∵∠ACO=90°,∴∠AOC+∠OAC=90∴∠OAC=∠BOD,∴△AOC≌△BOD(设OC=a,则BD=OC=a∵点B在第二象限,∴点B的坐标是(-k1a,a),把点B坐标代入直线y2=k2x,得:a=k2×(-k1a),∴k1k2=-1.应用举例:
如图,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足,且AH⊥BC于点H,AH交PB于点ab2a420.若点C坐标为(-1,0)
P,试求点P坐标.解:由aba40易得:a=4,b=-4,22∴点B坐标为(0,-4),∵点C坐标为(-1,0),∴线段BC的解析式为y=-4x-4,∵AH⊥BC,∴线段AH的斜率为1,4因为点A坐标为(4,0),易得线段AH的解析式为y1x1,4
所以点P的坐标为(0,-1).当然,该题利用全等三角形的知识解决起来会更简便一些。这留给同学们自己来解答.