第一篇:七年级数学下册_第五章《三角形》知识点总结_北师大版
数学:第五章《三角形》知识点总结(北师大版七年级下)
一、三角形及其有关概念
1、三角形:
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2.三角形的表示:
三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”3.三角形的三边关系:
(1)三角形的任意两边之和大于第三边。(2)三角形的任意两边之差小于第三边。①判断三条已知线段能否组成三角形
②当已知两边时,第三边的范围4.三角形的内角的关系:
(1)三角形三个内角和等于180°。(2)直角三角形的两个锐角互余。
5、三角形的稳定性:
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。6.三角形的分类:
7.三角形的三种重要线段:(1)三角形的角平分线:
定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。交点在三角形的内部。(2)三角形的中线:
定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。这点叫做三角形的重心。(3)三角形的高线:
定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
性质:三角形的三条高所在的直线交于一点。
锐角三角形的三条高线的交点在它的内部; 直角三角形的三条高线的交点在它的直角顶点; 钝角三角形的三条高所在的直线的交点在它的外部; 8.三角形的面积:
三角形的面积=
1×底×高
二、全等图形:
定义:能够完全重合的两个图形叫做全等图形。性质:全等图形的形状和大小都相同。
三、全等三角形
1、全等三角形及有关概念:
能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、全等三角形的表示: 全等用符号“≌”表示
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、全等三角形的性质:
全等三角形的对应边相等,对应角相等。
4、三角形全等的判定:
(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)
第二篇:七年级数学下册 北师大版 第五章《三角形》知识点总结
第五章《三角形》知识点总结(北师大版七年级下)
一、三角形及其有关概念
1、三角形:
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的表示:
三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
3、三角形的三边关系:
(1)三角形的任意两边之和大于第三边。(2)三角形的任意两边之差小于第三边。
(3)作用:
①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4、三角形的内角的关系:
(1)三角形三个内角和等于180°。
(2)直角三角形的两个锐角互余。
5、三角形的稳定性:
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
6、三角形的分类:
(1)三角形按边分类:不等边三角形三角形
等腰三角形底和腰不相等的等腰三角形
等边三角形
(2)三角形按角分类:
直角三角形(有一个角为直角的三角形)
锐角三角形(三个角都是锐角的三角形)
钝角三角形(有一个角为钝角的三角形)
把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。
7、三角形的三种重要线段:
(1)三角形的角平分线: 定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。交点在三角形的内部。
(2)三角形的中线:
定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。
(3)三角形的高线:
定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点在它的直角顶点;钝角三角形的三条高所在的直线的交点在它的外部;
8、三角形的面积:
三角形的面积=
二、全等图形:
定义:能够完全重合的两个图形叫做全等图形。
性质:全等图形的形状和大小都相同。
三、全等三角形
1、全等三角形及有关概念: 能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、全等三角形的表示:
全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、全等三角形的性质:全等三角形的对应边相等,对应角相等。
4、三角形全等的判定:
(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)
(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)
(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对 2 1×底×高
2应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)3
第三篇:苏教版七年级下册数学知识点总结
第七章平面图形的认识(二)
一、平行线
1、同位角、内错角、同旁内角的定义
两条线(a,b)被第三条(c)直线所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角(corresponding angles)如图:∠1与∠8,∠2与∠7,∠3与∠6,∠4与∠5均为同位角。
两条线(a,b)被第三条(c)直线所截,两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。如图:∠1与∠6,∠2与∠5均为同位角。
两条线(a,b)被第三条(c)直线所截,两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角(interior angles of thesame side)。如图:∠1与∠5,∠2与∠6均为同位角。
2、平行线的性质
(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。
3、平行线的判定
(1)同位角相等,两直线平行。(2)内错角相等,两直线平行。(3)同旁内角互补,两直线平行。(4)平行于同一直线的两直线平行。
4、平移
平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移(translation),简称平移。5、平移的性质
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。二、三角形
1、由三条不在同一直线上的三条线段首尾依次相接组成的图形叫做三角形。
2、三角形的性质
1)三角形的任意两边之和大于第三边(由此得三角形的两边的差一定小于第三边)
2)三角形三个内角的和等于180度(在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度)(一个三角形的3个内角中最少有2个锐角)3)直角三角形的两个锐角互余
4)三角形的一个外角等于与它不相邻的两个内角之和(三角形的一个外角大于任何一个与它不相邻的内角)5)等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一
6)三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点 7)三角形的外角和是360° 8)等底等高的三角形面积相等
9)三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
3、三角形的分类 1)按边分①不等边三角形②等腰三角形(含等腰直角三角形、等边三角形)
2)按角分①锐角三角形②直角三角形③钝角三角形(锐角三角形和钝角三角形可统称为斜三角形)
4、三角形的有关定义
1)三角形的高:在三角形中,从一个顶点向它的对边所在的直线作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高。三角形的三条高交于一点,这一点叫三角形的垂心。垂心到三角形三个顶点的距离相等
2)三角形的角平分线:三角形的一个内角的平分线与它的对边相交,这个角的顶点和交点之间的线段叫三角形的角平分线。(也叫三角形的内角平分线。)三角形的三条角平分线都在三角形的内部,并交于一点,这一点叫三角形的内心。三角形的内心到三边的距离相等。
3)三角形的中线:三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。三角形的三条中线在三角形的内部,并交于一点,这一点叫三角形的重心。每条三角形中线分得的两个三角形面积相等。
三、多边形
1、多边形:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。
2、n边形内角和为(n-2)*180° 3、任意多边形的外角和为360° 4、正n边形的一个外角为360°/n 5、n边形具有不稳定性(n>3)
第八章 幂的运算
幂(power)指乘方运算的结果。ɑ指将ɑ自乘n次(n个ɑ相乘)。把ɑ看作乘方的结果,叫做ɑ的n次幂。对于任意底数ɑ,b,当m,n为正整数时,有
mnm+n ɑ•ɑ=ɑ(同底数幂相乘,底数不变,指数相加)mnm-n ɑ÷ɑ=ɑ(同底数幂相除,底数不变,指数相减)mnmn(ɑ)=ɑ(幂的乘方,底数不变,指数相乘)nnn(ɑb)=ɑɑ(积的乘方,把积的每一个因式乘方,再把所得的幂相乘)0ɑ=1(ɑ≠0)(任何不等于0的数的0次幂等于1)-nn ɑ=1/ɑ(ɑ≠0)(任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)
n科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10的形式(其中1≤|a|<10),这种记数法叫做科学记数法.n
n
第九章 从面积到乘法公式
一、单项式、多项式、整式
1、代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。单独一个数或者字母也是代数式。
2、单项式: 由数字与字母或字母与字母的相乘组成的代数式叫做单项式(单独的一个数字或字母也是单项式)。单项式中的数字因数叫做这个单项式的系数。所有字母的指数的和叫做这个单项式的次数。1)分母含有未知数的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如,1/x不是单项式。
2y2)单独的一个数字或字母也是单项式。例如,1和x也是单项式。如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1.3)单项式书写规则:数与字母相乘时,数在字母前;乘号可以省略为点或不写;除法的式子可以写成分数式;带分数与字母相乘,带分数要化为假分数
3、多项式:若干个单项式的和组成的式子叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。
4、整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式统称为整式。5、同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
6、合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。7、去、添括号法则
1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。2)括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号)3)若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号 4)遇到多层括号一般由里到外,逐层去括号,也可由外到里.数“-”的个数.8、单项式乘单项式,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
9、单项式乘多项式,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加。
10、多项式乘多项式,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
二、乘法公式
2221、完全平方公式:(a±b)=a±2ab+b 2、平方差公式:(a+b)(a-b)=a-b33223 3、完全立方公式:(a±b)=a±3ab+3ab±b33224、立方和公式:a+b=(a+b)(a+ab+b)3322立方差公式:a-b=(a-b)(a+ab+b)
三、因式分解
1、公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。
2、因式分解(分解因式)Factorization:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。3、因式分解的方法:
⑴提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
⑵运用公式法:运用乘法公式把一个多项式因式分解的方法叫运用公式法。
⑶分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.
⑷十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法. 4、因式分解和整式乘法是互逆的两种运算。
5、通常,把一个多项式分解因式,应先提公因式,再应用公式法,或者其他方法。进行多项式因式分解时,必须把每一个因式都分解到不能再分解为止。
第十章 二元一次方程组
1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程(linear equations of two unknowns)。
2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。3、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。
4、代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。5、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.6、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;
(2)找:找出能够表示题意两个相等关系;
(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;
(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.十一 一元一次不等式和一元一次不等式组
一、不等式
1、概念:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。能使不等式成立的未知数的值,叫做不等式的解.不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.2、解不等式:求不等式解集的过程叫解不等式。
3、不等式组:由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组
4、不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。
5、等式基本性质:
(1)在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。(2)在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式。
6、不等式的基本性质
(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(注:移项要变号,但不等号不变。)
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。(4)若a>b, 则a+c>b+c;
(2)若a>b, c>0 则ac>bc若c<0, 则ac 7、不等式的其他性质: (1)反射性:若a>b,则b (2)传递性:若a>b,且b>c,则a>c。 8、解不等式步骤:(1)去分母(2)去括号(3)移项合并同类项(4)系数化为1。 9、解不等式组步骤:(1)解出不等式的解集(2)在同一数轴表示不等式的解集。 10、列一元一次不等式组解实际问题步骤:(1)审题(2)设未知数,找关系式(3)设元,根据关系式列不等式(4)解不等式组,检验并作答。 第六章 证明 1、对事情作出判断的句子,就叫做命题。 2、命题结构: (1)条件:条件是已知的事项,结论是由已知事项推断出的事项。(2)结论:由条件所推出的结果。 (3)反例:要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。 3、证明一个命题是真命题的基本步骤:(1)根据题意,画出图形。 (2)根据条件、结论,结合图形,写出已知、求证。 (3)经过分析,找出由已知推出求证的途径,写出证明过程。(在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据) 【北师大版数学四年级下册知识点总结】 一小数的认识和加减法 小数的意义 1、小数的意义: 用来表示十分之几、百分之几、千分之几„„的数,叫小数。 2、体会十进分数与小数的关系,并能互相转。 3、表示十分之几的小数是一位小数,百分之几的小数是两位小数,千分之几的小数是三位小数„„ 4、小数的读写法。 5、借助计数器,介绍小数部分的数位以及数位之间的进率 6、掌握小数的数位和计数单位。 7、了解小数的组成:整数部分和小数部分 测量活动(小数的单位换算)1、1分米=0.1米 1厘米=0.01米 1克=0.001千克„„学会低级单位与高级单位之间的互化(长度单位,面积单位,重量单位„„)。低级单位转化为高级单位时,先将这个低级单位的数改写成分数的形式,再写成小数的形式。 2、会进行单名数与复名数之间的互化。比大小(比较小数的大小) 1、会比较两个小数的大小以及将几个小数按大小顺序排列。 2、比较小数大小的方法:先看整数部分,整数部分大的小数就大。整数部分相同,再看小数部分的十分位,十分位上数字大的小数就大„„ 购物小票-----小数的加减法(不进位,不退位) 1、不进位加法,不退位减法的计算方法:小数点对齐,也就是相同数位对齐,再按照整数加减法的法则进行计算。 2、能解决简单的小数加减法的实际问题。 量 体 重----小数的加减法(进位加、退位减) 1、小数进位加法和退位减法的计算法则(同整数加、减法的法则相同)。 2、小数的性质:小数末尾加上“0”或去掉“0”小数的大小不变。 3、整数减去小数,可以在整数小数点的后面添上“0”,帮助计算。歌手大赛---小数加、减法的混合运算 1、掌握小数混合运算的顺序与整数四则混合运算一样。 2、整数加、减法的运算定律同样适用于小数加减法。 3、掌握小数加、减法的估算。 二认识图形 图形分类 1、按照不同的标准给已知图形进行分类:(1)按平面图形和立体图形分; (2)按平面图形时否由线段围成来分的; (3)按图形的边数来分。通过自己动手分类,对图形进行再认识,了解图形的特征。 2、了解平行四边形易变形和三角形的稳定性在生活中的应用。三角形分类 1、把三角形按照不同的标准分类,并说明分类依据。 (1)按角分,分为:直角三角形、锐角三角形、钝角三角形,并了解其本质特征:三个角都是锐角的三角形是锐角三角形,有一个角是直角的三角形是直角三角形,有一个角是钝角的三角形是钝角三角形。 (2)按边分,分为:等腰三角形、等边三角形、任意三角形。有两条边相等的三角形是等腰三角形,三条边都相等的三角形是等边三角形。 2、通过分类,使学生弄清等腰三角形和等边三角形的关系:等边三角形是特殊的等腰三角形。三角形内角和 1、任意一个三角形内角和等于180度。 2、能应用三角形内角和的性质解决一些简单的问题。三角形边的关系 1、三角形任意两边之和大于第三边。 2、根据上述知识点判断所给的已知长度的三条线段能否围成三角形。如果能围成三角形,能围成一个什么样的三角形。四边形的分类 1、通过观察、比较、分类等活动,了解由四条线段围成的图形是四边形,四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形。 2、知道长方形、正方形是特殊的平行四边形。 3、了解正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。图案欣赏 1、通过欣赏图案,体会图形排列的规律,感受图案的美。 2、利用对称、平移和旋转,设计简单的图案。 三小数乘法 文具店(小数乘法的意义) 通过具体情境教学使学生了解小数与整数相乘就是表示几个相同加数的和的简便运算。 1、小数乘法的意义 小数乘法的意义比整数乘法的意义,有了进一步的扩展.小数乘法的意义包括两种情况:一是同整数乘法的意义相同,即求相同加数的和的简便运算.二是求一个数的十分之几,百分之几……是多少.2、小数的计算法则 计算小数乘法,先按照整数乘示的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.小数计算乘法,用的是转化的思想方法.先把小数转化为整数算出积,再确定小数点的位置,还原成小数乘法的积.如6.2×0.3看作62×3相乘的积是186,因数中一共有两位小数,就从186的右边起数出两位,点上小数点还原成小数乘法的积1.86.因此,小数乘法的关键是处理好小数点.在点小数点时注意,乘得的积的小数位数不够时,要在前面用0补足,如0.04×0.2=0.008,在8的前面补两个0,点上小数点后,整数部分也写一个0. 小数点搬家(掌握小数点移动引起小数大小变化的规律) 明白小数点向左移动一位,小数就缩小到原来的十分之一;小数点向左移动两位,小数就缩小到原来的百分之一……以此类推。小数点向右移动一位,这个数就扩大到原来的10倍;小数点向右移动两位,这个数就扩大到原来100倍……以此类推。 街心广场(积的小数位数与乘数的小数位数的关系) 积的小数位数与乘法的小数位数的关系:小数乘法中各个因数中小数的位数和就是这道题中积的小数的位数。包装(小数乘法2) 小数乘小数计算方法,即将小数乘法转化为整数乘法进行计算。根据乘数扩大的倍数,将积缩小相同倍数,进一步体会到两个乘数共有几位小数,积就有几位小数。 爬行最慢的哺乳动物(小数乘法3) 进一步理解小数乘小数的计算方法即两个因数里共有几位小数,积就有几位小数;当其中的一个因数是整十数时,积中如果有一位小数,就在末尾画掉一个零…… 手拉手(小数的混合运算) 小数四则混合运算的运算顺序与整数四则混合运算的顺序相同。整数的运算定律在小数运算中仍然适用。例如乘法的结合律,交换律,分配律。等等。 四观察物体 不同位置观察物体的范围不同 不同位置观察物体的形状不同 节日礼物(不同位置观察物体的范围不同) 1、随着观察位置的高低与远近变化,能判断出观察对象的画面所发生的相应变化。 2、根据观察到的画面,判断出观察者所在的位置。天安门广场(不同位置观察物体的形状不同) 1、通过观察、比较一些照片,能够识别和判断拍摄地点与照片的对应关系。 2、通过观察连续拍摄到的一组照片,能够判断照片拍摄的前后顺序。 第五单元 小数除法 《精打细算》―――除数是整数的小数除法 (1)、小数除法的意义:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。 (2)、小数除以整数的计算方法:除数为整数的小数除法和整数除法的计算类似,只要商的小数点和被除数的小数点对齐就可以了。 2、《参观博物馆》―――整数除以整数商是小数的小数除法 整数除以整数,商是小数的小数除法的计算方法:先按照整数除法的法则去做,如果除到被除数的末尾仍有余数,就在后面填上0继续除。 3、《谁打电话的时间长》―――除数是小数的除法 (1)、商不变的规律:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 (2)、除数是小数的小数除法的计算方法:要把被除数和除数扩大相同的倍数,使除数变成整数,再按照小数除以整数的方法进行计算。 4、《人民币兑换》―――积、商的近似值 求近似值方法:积取近似值是先精确计算,再根据题目要求取近似值;商取近似值是直接根据要求多除一位,然后根据题目要求取近似值。注意:有时会出现四不舍、五不入的情况,应根据题目的特点去求出近似数。 5、《谁爬得快》―――循环小数 (1)、循环现象:生活中很多时候有依次不断重复出现的现象。如:日出日落、时间…… (2)、循环小数:从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数就叫做循环小数。 (3)、会用四舍五入法对循环小数取近似值,方法与小数取近似值的方法相同,保留几位小数就看这个小数的下一位。 6、《电视广告》――小数的四则混合运算 (1)、小数连除和乘除混合运算,运算顺序和整数是一样的。(2)、计算小数四则混合运算和整数四则混合运算的顺序完全相同。**奥运 (1)通过“奥运”提供的各种信息,综合应用所学的知识和方法,解决有关的问题。(2)通过解决奥运赛场上的有关问题,体会到数学和体育这间的联系,进一步体会数学的价值。 六游戏公平 通过游戏活动,体验事件发生的等可能性。通过游戏活动分析,判断游戏规则的公平能制定公平的游戏规则。 能通过实验感受实际生活中的随机性。 游戏公平能通过游戏活动,体验事件发生可能性不相等。能辨别游戏可能性是否相等。 能通过自己的分析思考修改游戏规则使之公平,且方法多样。谁先走(判断规则的公平性,设计公平的规则)【知识要点】 1、体会事件发生的等可能性。体会可能性相同游戏公平,可能性不同游戏不公平。 2、感受规则在游戏中的作用,建立规则意识。并会制定公平的游戏规则。3、进一步体验游戏中存在的随机性的特点。 七方程 用字母表示数. 方程 1.方程的意义 2.解简易方程3.列方程解应用题 用字母表示数 1、用字母表示运算定律和有关图形的面积公式。例如:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)减法的特性:a-b-c=a-(b+c)乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c)乘法分配律:a×(b+c)=a×b×a×c 正方形周长:c=4a 正方形面积:s=a×a 长方形的周长:C=(a+b)× 2长方形面积:s=a×b 此外,还可以拓展到以前曾经学过的 路程=速度×时间 总价=单价×数量…… 2、字母表示数的时候,字母与数字相乘,字母与字母相乘,中间的乘号可以用小圆点代替或者省略。例如:a×5=5·a=5a 数字一般都写在字母的前面。 3、区别a的平方和2乘a的区别。方程(方程的意义) 1、了解方程的意义:含有未知数的等式叫做方程。 2、掌握方程与等式的关系:方程是等式但等式不一定是方程.或者说方程属于等式,等式包含方程.并能用图形表示. 3、根据情境图找出等量关系,会列方程。天平游戏一(解简易方程未知数是加数或被减数) 1、等式两边都加上或减去同一个数,等式仍然成立。 2、能根据等式的这个性质求出方程中的未知数。 方程的解:使方程左右两边相等的未知数的值叫做方程的解。解方程:求方程的解的过程叫做解方程。 3、学会检验方程的解是否正确。 天平游戏二(解简易方程未知数是因数或被除数) 1、等式两边都乘或除以同一个数(零除外),等式仍然成立。 2、能根据一定的情境,列方程解决问题。猜数游戏(解简易方程) 1、会利用等式的性质解ax±b=c类型的方程。并能够把方程的解带回方程中进行检验。 2、会用方程解答简单的应用题。邮票的张数(列方程解应用题) 1、学会解形如cx±ax=b这样的方程,能够运用方程解应用题。2、使学生掌握应将一倍数设为未知数. 北师大版二年级下册数学知识点总结 第一章————除法 1、除法算式各部分名称 23÷4=5„„3 23是被除数,4是除数,5是商,3是余数 2、用乘法口诀做除法,余数一定要比除数小.例:()÷3=5„„()余数是2或1 3、应用题当中,除数和余数的单位不一样,商的单位和问题的单位相同,余数的单位和被除数的单位相同; 4、解决生活问题,如提的问题是“至少需要几条船?”,用“进一法(用商加1)”; 例:有22个人,每条船限乘4人,至少要租几条船? 22÷4=5(条)„„2(个) 5+1=6(条)答:至少要租6条船。 如提的是问题是“最多做几件衣服?”,商作为最后的答案。 例:做一套衣服要用3米花布,25米花布最多能做几套衣服? 25÷3=8(套)„„1(米)答:最多可以做8套衣服。 第二章————方向与位置(认识方向) 1、地图上的方向,口诀:上北下南,左西右东。 2、辨认方向时,要认准观测点。例:“小猫在小狗的()方”,观测点是小狗 3、太阳早上从东边升起,西边落下;指南针一头指着()方,一头指着()方。 4、知道一个方向,辨别其他三个方向。 例:小明早上面向太阳时,他的前面是东,后面是西,左面是北,右面是南。面向南时,前面是(),后面是(),左面是(),右面是()。 面向北时,前面是(),后面是(),左面是(),右面是()。面向西时,前面是(),后面是(),左面是(),右面是()。 第三章————生活中的大数(认识10000以内的数) 1、计数器上从右边数起第一位是(个)位,第二位是 (十)位,第三位是(百)位,第四位是(千)位,第五位是(万)位;千位的左边是(万)位,右边是(百)位。 2、一个四位数最高位是(千)位;它的千位是5,个位是2,其他的数位是0,它是(5002)。 3、在8536中,8在(千)位上,表示(8个千);5在(百)位上,表示(5个百); 3在()位上,表示();6在()位上,表示()。 3、由3个千,5个一组成的数是(3005),它是一个 (四)位数;由9个一,2个百和1个千组成的数是(),它是一个()位数。 4、读数时,要从高位读起,中间有一个或两个“0”,都只读1个“零”;末尾不管有几个“0”,都不读;写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。 10个十是(一百),10个一百是(一千),10个一千是(一万),100个一百是(一万),10000里面有(100)个百,1000里面有(100)个十; 5、最大的三位数是(999),最小的三位数是(100),最大的四位数是(9999),最小的四位数是(1000)。 6、比较大小时,先比较位数,位数多的数就大,位数少的数就小;位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。 第四章————测量 1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”; 2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1 千米; 3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较; 4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减 5、准确测量线段的长度 6、画出给定长度的线段。例:画一条比3cm长5mm的线段。第五章————加与减 1、口算整百数加减整百数时,想成几个百加减几个百,加减整十数的算理也相同; 2、计算时要注意:(1)、相同数位要对齐,从个位算起。 (2)、计算加法时,哪一位相加满十,要向前一位“进一”,计算前一位时不要忘加进位1; (3)、计算减法时,哪一位不够减时,要向前一位“借1”,计算前一位时不要忘减借位1; 3、加数+加数=和 一个加数=和—另一个加数 如:()+156=368 280+()=760 4、被减数-减数=差 被减数=减数+差 减数=被减数-差 5、如()-156=368(用156+368计算)980-()=760(用980-760计算) 6、加法的验算方法:(1)交换加数的位置,看和是否相同。(2)用和减去其中一个加数,看差是否等于另一个加数; 减法的验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。 注意:运算时不要抄错数,也不要直接把验算结果抄上。 第六章————认识角 1、每个角都是由1个顶点和2条边组成; 2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大 的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。 3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大; 4、正方形有四个直角,四条边都相等;长方形有四条边,四个直角,长方形的对边相等; 5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。 6、要会在点子图上画角,平行四边形,长方形,正方形。 第七章————时、分、秒 1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格; 2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分 ; 3、分针走一小格是1分,走一大格是5分,走一圈是60分,和1 时; 4、时针走一大格是1 时,走一圈是12 时; 5、时、分、秒相邻单位的进率是60;1时=60分,1分=60秒 6、比较时间,首先要观察,统一单位之后再比较大小 7、准确的读出表面的时间。 8、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减。第四篇:北师大版数学四年级下册知识点总结
第五篇:北师大版二年级下册数学知识点总结