正弦定理教学案例

时间:2019-05-15 07:58:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《正弦定理教学案例》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《正弦定理教学案例》。

第一篇:正弦定理教学案例

正弦定理教学案例

一、教学设计

1、教材分析

“正弦定理”是全日制普通高级中学教科书(试验修订本·必修)数学第一册(下)的第五章第九节的主要内容之五,既是初中“解直角三角形”内容的直接延拓,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本次课是“正弦定理”教学的第一节课,其主要任务是引入并证明正弦定理,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

为什么叫解斜三角形?解斜三角形必须要用正弦定理和余弦定理吗?正弦定理和余弦定理是怎样发现的?其证明方法是怎样想到的?还有别的证法吗?这些都是教材没有回答,而确实又是学生所关心的问题。

2、设计思路

为了回答上述问题我想到了“情境——问题”教学模式,即构建一个以情境为基础,提出问题与解决问题相互引发携手并进的“情境——问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,笔者具体做出了如下设计:①创设一俱现实问题情境作为提出问题的背景;②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性7问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?③为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生使用计算器对猜想进行验证,进而引导学生对猜想进行严格的逻辑证明。证明时,关键在于启发、引导学生明确以下两点:一是证明的起点AC+CB=AB;二是如何将向量关系转化成数量关系,同时将三个项的关系式转化为只有两个项的关系式,以揭示引入单位向量j和使用向量的数量积运算的合理性。④由学生独立使用已证明的结论去解决②中所提出的问题。

二、教学过程

1、设置情境

利用投影展示:如图1,一条河的两岸平行,河宽d=1km。因上游暴

发特大洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及留守人员用船转运到正对岸的码头B处

或其下游1km的码头C处。已知船在静水中的速度

|v 1|=5km/ h,水流速度|v 2|=3km/ h。

2、提出问题

师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。

待各小组将题纸交给老师后,老师筛选了几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的五个问题:

⑴船应开往B处还是C处?

⑵船从A开到B、C分别需要多少时间?

⑶船从A到B、C的距离分别是多少?

⑷船从A到B、C时的速度大小分别是多少?

⑸船应向什么方向开,才能保证沿直线到达B、C?

师:大家讲座一下,应该怎样解决上述问题?

大家经过讨论达成如下共识:要回答问题⑴,需要解决问题⑵,要解决问题⑵,需要先解决问题⑶和⑷,问题用直角三角形知识可解,所以重点是解决问题⑷,问题⑷与问题⑸是两个相关问题。因此,解决上述问题的关键是解决问题⑷和⑸。

师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。

生1:般从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小|v|及v 1与v 2的夹角θ:

=|v1|=5,|DE|=|AF|=|v2|=3,易求得∠AED=∠EAF=45°,还需求 及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。

师:请大家想一下,这两个问题的数学实质是什么?

部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。

师:请大家讨论一下,如何解决这两个问题?

生3:在已知条件下,若能知道三角形中两条边与其对角这四个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。

生4:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这四个元素的数量关系,则第三边也可求出。

生5:在已知条件下,如果能知道三角形中三条边和一个角这四个元素之间的数量关系,也能求出第三边和另一边的对角。

师:同学们的设想很好,只要能知道三角形中两边与它们的对角间的数量关系,或者三条边与一个角间的数量关系,则两个问题都能够顺利解决。下面我们先来解答问题:三角形中,任意两边与其对角之间有怎样的数量关系?

3、解决问题

师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的?

众学生:先从特殊事例入手,寻求答案或发现解法。直角三角形的特例,可以先在直角三角形中试探一下。

师:如图4,请各小组研究在Rt△ABC中,任意两边及其对角这四个元素间有什么关系?

多数小组很快得出结论:

众学生:不一定,可以先用具体例子检验,若有一个不成立,则否定结论:若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。

师:这是个好主意。请每个小组任意做出一个非Rt△ABC,用量角器和刻度尺量出各边的长和各角的大小,用计算器作为计算工具,具体检验一下,然后报告检验结果。

几分钟后,多数小组报告结论成立,只有一个小组合 因测量和计算误差,得出否定的结论。教师在引导学生找出失误的原因后指出:此关系式在任意△ABC中都能成立,请大家先考虑一下证明思路。

生6:想法将问题转化成直角三角形中的问题进行解决。

生7:因为要证明的是一个等式,所以应先找到一个可以作为证明基础的等量关系。

师:在三角形中有哪些可以作为证明基础的等量关系呢?

学生七嘴八舌地说出一些等量关系,经讨论后确定如下一些与直

角三角形有关的等量关系可能有利用价值:①三角形的面积不变;②

三角形同一边上的高不变;③三角形外接圆直径不变。在教师的建议

下,学生分别利用这3种关系作为基础得出了如下三种证法:

证法一:如图5,设AD、BE、CF分别是△ABC的三条高。则

AD=b·sin∠BCA,BE=c·sin∠CAB,CF=a·sin∠ABC。

所以S△ABC=a·b·csin∠BCA

=b·c·sin∠CAB

=c·a·sin∠

ABC.证法二:如图5,设AD、BE、CF分别是△ABC的3条高。

则有

AD=b·sin∠BCA=c·sin∠ABC,BE=a·sin∠BCA=c·sin∠CAB。

证法三:如图6,设CD=2r是△ABC的外接圆的直径,则∠DAC=90°,∠ABC=∠ADC。

师:据我所知,从AC+CB=AB出发,也能证得结论,请大家讨论一下。

生8:要想办法将向量关系转化成数量关系。

生9:利用向量的数量积运算可将向量关系转化成数量关系。

生10:还要想办法将有三个项的关系式转化成两个项的关系式。

生11:因为两个垂直向量的数量积为0,可考虑选一个与三个向量中的一个向量(如向量AC)垂直的向量与向量等式的两边分别作数量积。

师:请大家具体试一下,看还有什么问题?

众学生:向量j与AB、CB的夹角与△ABC是锐角三角形还是钝角三角形有关,所以应分两类情况分别证明。

教师让学生通过小组代表作完成了如下证明。

语法四:如图7,设单位向量j与向量AC垂直。

因为AB=AC+CB,所以 j·AB=j·(AC+CB)=j·AC+j·CB.因为j·AC=0,j·CB=| j ||CB|cos(90°-∠C)=a·sinC,j·AB=| j ||AB|cos(90°-∠A)=c·sinA

.4、反思应用

师:同学们通过自己的努力,发现并证明了正弦定理。正弦定理揭示了三角形中任意两边与其对角的关系,请大家考虑一下,正弦定理能够解决哪些问题?

众生:知三求一,即已知三角形的两边与一边的对角,可求另一边的对角;已知三角形的两角与一角的对边,可求另一角的对边;已知三角形中两边与它们的对角四个元素中的两个元素,可研究另外两个元素的关系。

师:请同学们用正弦定理解决本节课开始时大家提出的问题。

三、教学反思

本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。

创设数学情境是“情境——问题”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。

从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“正弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材第五章第十二节研究性课题的第二个问题,笔者将其加工成一个具有实际意义的决策型问题。实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。在进行教学设计时,笔者曾考虑以“直角三角形”作为情境,考虑到学生据此不易形成目标问题,而且问题缺乏向量背景,不容易想到用向量方法解决问题,故未采用这个方案。

“情境——问题”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境,而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。要引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问绰向深入。

本课中,在教师的启导下,学生首先提出的问题是:船应开往B处还是C处?答案取决于船从A到达B、C的时间;船从A到达B、C的时间,又取决于船从A到达B、C的距离和船的速度的大小;而船能否到达B、C,又取决于船的航向。这些都是具有实际意义的问题,去掉问题的实际意义得出过渡性数学问题,抓住过渡性问题的数学实质,将其上升为一般性数学问题,即目标问题。学生还提出了一个超前性问题:三角形中三条边与一个角之间有什么关系?这是笔者在设计教案时未想到的,笔者除了对提出此问题的学生给予表扬和肯定外,还要求同学们课后认真研究这个问题,这个问题已经自然地成为教学“余弦定理”的情境。

使用计算器处理复杂、烦琐的数字运算是新教材的一个重要特点。本课中通过使用计算器,使“正弦定理在非直角三角形中是否成立”的探究性试验成为可能。这说明计算器在探索、检验规律方面也能发挥重要作用。在启导学生证明正弦定理时,笔者没有限制学生的思路,使学生通过自己的努力发现了多种证法,其中每一种证法都比教材上给出的证法要简单。但没有能够自然地启发、引导学生发现和选择向量方法,是一个遗憾。

第二篇:正弦定理教学案例分析

欢迎光临《中学数学信息网》 zxsx127@163.com

《正弦定理》教学案例分析

山东省莱芜市第十七中学/田才林

一、教学内容:

本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证明,最后进行简单的应用。

二、教材分析:

1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证明,感受“类比--猜想--证明”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。

2、教学重点和难点:重点是正弦定理的发现和证明;难点是三角形外接圆法证明。

三、教学目标:

1、知识目标:

掌握正弦定理,理解证明过程。

2、能力目标:

(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。

(2)增强学生的协作能力和数学交流能力。(3)发展学生的创新意识和创新能力。

3、情感态度与价值观:

(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。

(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。

四、教学设想:

《中学数学信息网》系列资料 www.xiexiebang.com 版权所有@《中学数学信息网》

欢迎光临《中学数学信息网》 zxsx127@163.com

本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:

五、教学过程:

(一)创设问题情景

课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,突然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰?

[设计一个学生比较感兴趣的实际问题,吸引学生注意力,使其立刻进入到研究者的角色中来!]

(二)启发引导学生数学地观察问题,构建数学模型。

用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题:

1、考察角A的范围,回忆“大边对大角”的性质

2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A 从而抽象出一个雏形:

3、测量角A的实际角度,与猜测有误差,从而产生矛盾: 定性研究如何转化为定量研究? 《中学数学信息网》系列资料 www.xiexiebang.com 版权所有@《中学数学信息网》

欢迎光临《中学数学信息网》 zxsx127@163.com

4、进一步修正雏形中的公式,启发学生大胆想象:以及

[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!]

(三)引导学生用“特例到一般”的研究方法,猜想数学规律。提出问题:

1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式()。

2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。

3、让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系[“特例→类比→猜想”是一种常用的科学的研究思路!]

(四)让学生进行各种尝试,探寻理论证明的方法。提出问题:

1、如何把猜想变成定理呢?使学生注意到猜想和定理的区别,强化学生思维的严密性。

2、怎样进行理论证明呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证明。

3、你能找出它们的比值吗?借以检验学生是否掌握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。

4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。[学生成为发现者,成为创造者!让学生享受成功的喜悦!] 《中学数学信息网》系列资料 www.xiexiebang.com 版权所有@《中学数学信息网》

欢迎光临《中学数学信息网》 zxsx127@163.com

(五)反思总结,布置作业

1、正弦定理具有对称和谐美

2、“类比→实验→猜想→证明”是一种常用的研究问题的思路和方法 课下思考:三角形中还有其它的边角定量关系吗?

六、板书设计:

正弦定理

问题:大边对大角→边角准确的量化关系? 研究思路:特例→类比→实验→猜想→证明 结论:在△ABC中,边与所对角满足关系:

七、课后反思

本节课授课对象为实验班的学生,学习基础较好。同时,考虑到这是一节探究课,授课前并没有告诉学生授课内容。学生在未经预习不知正弦定理内容和证明方法的前提下,在教师预设的思路中,一步步发现了定理并证明了定理,感受到了创造的快乐,激发了学习数学的兴趣。

(一)、通过创设教学情境,激活了学生思维。从认知的角度看,情境可视为一种信息载体,一种知识产生的背景。本节课数学情境的创设突出了以下两点:

1.从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,本教案紧紧地抓住高二学生的这一特征,利用“正弦定理的发现和证明”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。

2.以问题为导向设计教学情境。“问题是数学的心脏”,本节课数学情境的设计处处以问题为导向:“怎样调整发射角度呢?”、“我们的工作该怎样进行呢?”、“我们的‘根据地’是什么?”、“对任意三角形都成立吗?”„„促使学生去思考问题,去发现问题。

《中学数学信息网》系列资料 www.xiexiebang.com 版权所有@《中学数学信息网》

欢迎光临《中学数学信息网》 zxsx127@163.com

(二)、创造性地使用了教材。数学教学的核心是学生的“再创造”,新课标提倡教师创造性地使用教材。本节课从问题情境的创造到数学实验的操作,再到证明方法的发现,都对教材作了一定的调整和拓展,使其更符合学生的思维习惯和认知水平,使学生在知识的形成过程、发展过程中展开思维,发展了学生的能力。

(三)数学实验走进了课堂,这一朴实无华而又意义重大的科学研究的思路和方法给了学生成功的快乐;这一思维模式的养成也为学生的终身发展提供了有利的武器。

一些遗憾:由于这种探究课型在平时的教学中还不够深入,有些学生往往以一种观赏者的身份参与其中,主动探究意识不强,思维水平没有达到足够的提升。但相信随着课改实验的深入,这种状况会逐步改善。

一些感悟:轻松愉快的课堂是学生思维发展的天地,是合作交流、探索创新的主阵地,是思想教育的好场所。新课标下的课堂是学生和教师共同成长的舞台!

《中学数学信息网》系列资料 www.xiexiebang.com 版权所有@《中学数学信息网》

第三篇:《正弦定理》教学案例分析

《正弦定理》教学案例分析

刘文弟

一、教学内容:

本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。

二、教材分析:

1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。

2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。

三、教学目标:

1、知识目标:

把握正弦定理,理解证实过程。

2、能力目标:

(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。

(2)增强学生的协作能力和数学交流能力。(3)发展学生的创新意识和创新能力。

3、情感态度与价值观:

(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。

四、教学设想:

本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:

五、教学过程:

(一)创设问题情景

课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,忽然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰?

[设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!]

(二)启发引导学生数学地观察问题,构建数学模型。

用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题:

1、考察角A的范围,回忆“大边对大角”的性质

2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A 从而抽象出一个雏形:

3、测量角A的实际角度,与猜测有误差,从而产生矛盾: 定性研究如何转化为定量研究?

4、进一步修正雏形中的公式,启发学生大胆想象:以及

[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!]

(三)引导学生用“特例到一般”的研究方法,猜想数学规律。提出问题:

1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式()。

2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。

3、让学生总坚固验结果,得出猜想:

在三角形中,角与所对的边满足关系

[“特例→类比→猜想”是一种常用的科学的研究思路!]

(四)让学生进行各种尝试,探寻理论证实的方法。提出问题:

1、如何把猜想变成定理呢?使学生注重到猜想和定理的区别,强化学生思维的严密性。

2、怎样进行理论证实呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证实。

3、你能找出它们的比值吗?借以检验学生是否把握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。

4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。[学生成为发现者,成为创造者!让学生享受成功的喜悦!]

(五)反思总结,布置作业

1、正弦定理具有对称和谐美

2、“类比→实验→猜想→证实”是一种常用的研究问题的思路和方法 课下思考:三角形中还有其它的边角定量关系吗?

六、板书设计: 正弦定理

问题:大边对大角→边角准确的量化关系? 研究思路:特例→类比→实验→猜想→证实 结论:在△ABC中,边与所对角满足关系:

七、课后反思 本节课授课对象为实验班的学生,学习基础较好。同时,考虑到这是一节探究课,授课前并没有告诉学生授课内容。学生在未经预习不知正弦定理内容和证实方法的前提下,在教师预设的思路中,一步步发现了定理并证实了定理,感受到了创造的快乐,激发了学习数学的爱好。

(一)、通过创设教学情境,激活了学生思维。从认知的角度看,情境可视为一种信息载体,一种知识产生的背景。本节课数学情境的创设突出了以下两点:

1.从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,本教案紧紧地抓住高二学生的这一特征,利用“正弦定理的发现和证实”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。

2.以问题为导向设计教学情境。“问题是数学的心脏”,本节课数学情境的设计处处以问题为导向:“怎样调整发射角度呢?”、“我们的工作该怎样进行呢?”、“我们的‘根据地’是什么?”、“对任意三角形都成立吗?”„„促使学生去思考问题,去发现问题。

(二)、创造性地使用了教材。数学教学的核心是学生的“再创造”,新课标提倡教师创造性地使用教材。本节课从问题情境的创造到数学实验的操作,再到证实方法的发现,都对教材作了一定的调整和拓展,使其更符合学生的思维习惯和认知水平,使学生在知识的形成过程、发展过程中展开思维,发展了学生的能力。

(三)数学实验走进了课堂,这一朴实无华而又意义重大的科学研究的思路和方法给了学生成功的快乐;这一思维模式的养成也为学生的终身发展提供了有利的武器。

一些遗憾:由于这种探究课型在平时的教学中还不够深入,有些学生往往以一种观赏者的身份参与其中,主动探究意识不强,思维水平没有达到足够的提升。但相信随着课改实验的深入,这种状况会逐步改善。

一些感悟:轻松愉快的课堂是学生思维发展的天地,是合作交流、探索创新的主阵地,是思想教育的好场所。新课标下的课堂是学生和教师共同成长的舞台!

第四篇:《正弦定理》教学反思

通过本节课的学习,结合教学目标,从知识、能力、情感三个方面预测可能会出现的结果:

1、学生对于正弦定理的发现、证明正弦定理的几何法、正弦定理的简单应用,能够很轻松地掌握;在证明正弦定理的向量法方面,估计有少部分学生还会有一定的困惑,需要在以后的教学中进一步培养应用向量工具的意识。

2、学生的基本数学思维能力得到一定的提高,能领悟一些基本的数学思想方法;但由于学生还没有形成完整、严谨的数学思维习惯,对问题的认识会不周全,良好的数学素养的形成有待于进一步提高。

3、由于学生的层次不同,体验与认识有所不同。对层次较高的学生,还应引导其形成更科学、严谨、谦虚及锲而不舍的求学态度;基础较差的学生,由于不善表达,参与性较差,还应多关注,鼓励,培养他们的学习兴趣,多找些机会让其体验成功。

第五篇:正弦定理 教学设计

《正弦定理》教学设计

郭来华

一、教学内容分析

“正弦定理”是《普通高中课程标准数学教科书·数学(必修5)》(人教版)第一章第一节的主要内容,它既是初中“解直角三角形”内容的直接延拓,也是三角函数一般知识和平面向量等知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。为什么要研究正弦定理?正弦定理是怎样发现的?其证明方法是怎样想到的?还有别的证法吗?这些都是教材没有回答,而确实又是学生所关心的问题。

本节课是“正弦定理”教学的第一课时,其主要任务是引入并证明正弦定理,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且通过对定理的探究,能使学生体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。

二、学生学习情况分析

学生在初中已经学习了解直角三角形的内容,在必修4中,又学习了三角函数的基础知识和平面向量的有关内容,对解直角三角形、三角函数、平面向量已形成初步的知识框架,这不仅是学习正弦定理的认知基础,同时又是突破定理证明障碍的强有力的工具。正弦定理是关于任意三角形边角关系的重要定理之一,《课程标准》强调在教学中要重视定理的探究过程,并能运用它解决一些实际问题,可以使学生进一步了解数学在实际中的应用,从而激发学生学习数学的兴趣,也为学习正弦定理提供一种亲和力与认同感。

三、设计思想

培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。

四、教学目标

1、知识与技能:通过对任意三角形的边与其对角的关系的探索,掌握正弦定理的内容及其证明方法。

2、过程与方法:让学生从已有的知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察、归纳、猜想、证明,由特殊到一般得到正弦定理等方法,体验数学发现和创造的历程。

3、情感态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。

五、教学重点与难点

重点:正弦定理的发现和推导 难点:正弦定理的推导

六、教学过程设计

(一)设置情境

利用投影展示:如图1,一条河的两岸平行,河宽d1km。因上游暴发特大洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及留守人员用船尽快转运到正对岸的码头B处或其下游1km的码头C处,请你确定转运方案。已知船在静水中的速度v15km/h,水流速度v13km/h。【设计意图】培养学生的“数学起源于生活,运用于

(二)提出问题

师:为了确定转运方案,请同学们设身处地地考虑有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。

待各小组将问题交给老师后,老师筛选了几个问题通过投影向全班展示,经大家归纳整理后得到如下的五个问题:

1、船应开往B处还是C处?

2、船从A开到B、C分别需要多少时间?

3、船从A到B、C的距离分别是多少?

4、船从A到B、C时的速度大小分别是多少?

5、船应向什么方向开,才能保证沿直线到达B、C?

【设计意图】通过小组交流,提供一定的研究学习与情感交流的时空,培养学生合作学习的能力;问题源于学生,突出学生学习的主体性,能激发学生学习的兴趣;问题通过老师的筛选,确定研究的方向,体现教师的主导作用。

师:谁能帮大家讲解,应该怎样解决上述问题?

大家经过讨论达成如下共识:要回答问题1,需要解决问题2,要解决问题2,需要先解决问题3和4,问题3用直角三角形知识可解,所以重点是解决问

A图 1BC生活”的思想意识,同时情境问题的图形及解题思路均为研究正弦定理做铺垫。题4,问题4与问题5是两个相关问题。因此,解决上述问题的关键是解决问题4和5。

师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。

生1:船从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小|v|及v1与v2的夹角:

|v||v1||v2||v1||v2|35, 22BDEC534,22v1vFAv2图 2sin 用计算器可求得37

BDv1vv2AF图 3EC船从A开往C的情况如图3,|AD||v1|5,|DE||AF||v2|3,易求得AEDEAF45,还需求DAE及v,我还不知道怎样解这两个问题。

师:请大家思考,这两个问题的数学实质是什么? 部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。

【设计意图】将问题数学化,有助于加深学生对问题的理解,有助于培养学生的数学意识。

师:请大家讨论一下,如何解决这两个问题? 生3:不知道。

师:图2的情形大家都会解,但图3的情形却有困难,那么图2与图3有何异同点?

生4:图2和图3的情形都是已知三角形的两边和其中一边的对角,求另一边的对角和第三边。但图2中ADE是直角三角形,而图3中ADE不是直角三角形,不能象在直角三角形中可直接利用边角的关系求解。

师:图3的情形能否转化成直角三角形来解呢?

【设计意图】通过教师的问题引导,启发学生将问题进行转化,培养学生的化归思想,同时为下一步用特例作为突破口来研究正弦定理以及用作高的方法来证明正弦定理做好铺垫。

生5:能,过点D作DGAE于点G(如图4),|DG||v1|sinDAG|DE|sinAED|AG||v1|cosDAGBDv1vAGv2EC,|EG||DE|cosAED

F图 4sinDAG|DE|sinAED|v1|3sin4553210

|v||AG||GE|

师:很好!采取分割的方法,将一般三角形化为两个直角三角形求解。但在生活中有许多三角形不是直角三角形,如果每个三角形都划分为直角三角形求解,很不便。能不能象直角三角形一样直接利用边角关系求解呢?三角形中,任意两边与其对角之间有怎样的数量关系?

【设计意图】通过教师对学生的肯定评价,创造一个教与学的和谐环境,既激发学生的学习兴趣,使紧接着的问题能更好地得到学生的认同,又有利于学生和教师的共同成长。

(三)解决问题

1、正弦定理的引入

师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的? 众学生:先从特殊事例入手,寻求答案或发现解法。可以以直角三角形为特例,先在直角三角形中试探一下。

师:如果一般三角形具有某种边角关系,对于特殊的三角形——直角三角形也是成立的,因此我们先研究特例,请同学们对直角三角形进行研究,寻找一般三角形的各边及其对角之间有何关系?同学们可以参与小组共同研究。

(1)学生以小组为单位进行研究;教师观察学生的研究进展情况或参与学生的研究。

(2)展示学生研究的结果。

【设计意图】教师参与学生之间的研究,增进师生之间的思维与情感的交流,并通过教师的指导与观察,及时掌握学生研究的情况,为展示学生的研究结论做准备;同时通过展示研究结论,强化学生学习的动机,增进学生的成功感及学习的信心。

师:请说出你研究的结论? 生7:asinAbsinBcsinC

师:你是怎样想出来的?

生7:因为在直角三角形中,它们的比值都等于斜边c。

师:有没有其它的研究结论?(根据实际情况,引导学生进行分析判断结论正确与否,或留课后进一步深入研究。)

师:asinAbsinBcsinC对一般三角形是否成立呢?

众学生:不一定,可以先用具体例子检验,若有一个不成立,则否定结论:若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。

师:这是个好主意。那么生9:成立。师:对任意三角形

asinAbsinBcsinCasinAbsinBcsinC对等边三角形是否成立呢?

是否成立,现在让我们借助于《几何画板》做一个数学实验,„„

【设计意图】引导学生的思维逐步形成“情境思考”——“提出问题”——“研究特例”——“归纳猜想”——“实验探究”——“理论探究”——“解决问题”的思维方式,进而形成解决问题的能力。

2、正弦定理的探究(1)实验探究正弦定理

师:借助于电脑与多媒体,利用《几何画板》软件,演示正弦定理教学课件。边演示边引导学生观察三角形形状的变化与三个比值的变化情况。

结论:asinAbsinBcsinC对于任意三角形都成立。

【设计意图】通过《几何画板》软件的演示,使学生对结论的认识从感性逐步上升到理性。

师:利用上述结论解决情境问题中图3的情形,并检验与生5的计算结果是否一致。

生10:(通过计算)与生5的结果相同。

师:如果上述结论成立,则在三角形中利用该结论解决“已知两边和其中一边的对角,求另一边的对角和第三边。”的问题就简单多了。

【设计意图】与情境设置中的问题相呼应,间接给出了正弦定理的简单应用,并强化学生学习探究、应用正弦定理的心理需求。

(2)点明课题:正弦定理(3)正弦定理的理论探究

师:既然是定理,则需要证明,请同学们与小组共同探究正弦定理的证明。探究方案:

直角三角形——已验证; 锐角三角形——课堂探究; 钝角三角形——课后证明。

【设计意图】通过分析,确定探究方案。课堂只让学生探究锐角三角形的情形,有助于在不影响探究进程的同时,为探究锐角三角形的情形腾出更多的时间。钝角三角形的情形以课后证明的形式,可使学生巩固课堂的成果。师:请你(生11)到讲台上,讲讲你的证明思路?

生11:(走上讲台),设法将问题转化成直角三角形中的问题进行解决。通过作三角形的高,与生5的办法一样,如图5作BC边上的高AD,则ADcsinBbsinC,所以

bsinBcsinCAcabB,同理可得

asinAbsinBCD图 5 锐角三角形

师:因为要证明的是一个等式,所以应从锐角三角形的条件出发,构造等量关系从而达到证明的目的。注意: csinBbsinC表示的几何意义是三角形同一边上的高不变。这是一个简捷的证明方法!

【设计意图】点明此证法的实质是找到一个可以作为证明基础的等量关系,为后续两种方法的提出做铺垫,同时适时对学生作出合情的评价。

师:在三角形中还有哪些可以作为证明基础的等量关系呢? 学生七嘴八舌地说出一些等量关系,经讨论后确定如下一些与直角三角形有关的等量关系可能有利用价值:①三角形的面积不变;②三角形外接圆直径不变。在教师的建议下,学生分别利用这两种关系作为基础又得出了如下两种证法:

证法二:如图6,设AD、BE、CF分别是ABC的三条高。则有

ADbsinACB,BEcsinBACCFasinABCAFcaD图 6 EbCB。

bcsinBACc12casinABC12SABCa12absinACBbsinABC

AsinBACsinACB

cB

a证法三:如图7,设BD2r是ABC外接圆的直径,则BAD90,ACBADB

BD2r

sinADBab2r同理可证:sinBACsinABCsinACBasinBACbsinABCcsinACBccb

D

C图 7 三角形外接圆

【设计意图】在证明正弦定理的同时,将两边及其夹角的三角形面积公式 及asinAbsinBcsinC2r一并牵出,使知识的产生自然合理。

、BC、CA间有什么关系? 师:前面我们学习了平面向量,能否运用向量的方法证明呢?

师:任意ABC中,三个向量AB生12:ABBCCA0

师:正弦定理体现的是三角形中边角间的数量关系,由ABBCCA0转化成数量关系?

师:在ABBCCA两边同乘以向量j,有(ABBCCA)j0,这里的向量j可否任意?又如何选择向量j?

生14:因为两个垂直向量的数量积为0,可考虑让向量j与三个向量中的一个向量(如向量BC)垂直,而且使三个项的关系式转化成两个项的关系式。生13:利用向量的数量积运算可将向量关系转化成数量关系。

师:还是先研究锐角三角形的情形,按以上思路,请大家具体试一下,看还有什么问题?

教师参与学生的小组研究,同时引导学生注意两个向量的夹角,最后让学生通过小组代表作完成了如下证明。

证法四:如图8,设非零向量j与向量BC垂直。

因为ABBCCA0,所以(ABBCCA)j0 即ABjCAj0 B|AB||j|cosAB,j|CA||j|cosCA,j0 c|j|cos(90B)b|j|cos(90C)0 c|j|(sinB)b|j|sinC0

AcjbaC图 8 向量所以bsinBcsinC,同理可得

asinAbsinB

师:能否简化证法四的过程?(留有一定的时间给学生思考)

师:ABjCAj0有什么几何意义?

生15:把ABjCAj0移项可得CAjBAj义可知CA与BA在j方向上的投影相等。,由向量数量积的几何意生16:我还有一种证法

证法五:如图9,作ADBC,则AB与AC在AD方向上的投影相等,即ABADACAD

|AB||AD|cos(90B)|AC||AD|cos(90C)C

csinBbsin 师:请你到讲台来给大家讲一讲。(学生16上台板书自己的证明方法。)

AcBDabC图 9 向量故bsinBcsinC,同理可得

asinAbsinB

师:利用向量在边上的高上的射影相等,证明了正弦定理,方法非常简捷明了!

【设计意图】利用向量法来证明几何问题,学生相对比较生疏,不容易马上想出来,教师通过设计一些递进式的问题给予适当的启发引导,将很难想到的方法合理分解,有利于学生理解接受。

(四)小结

师:本节课我们是从实际问题出发,通过猜想、实验,归纳等思维方法,最后发现了正弦定理,并从不同的角度证明了它。本节课,我们研究问题的突出特点是从特殊到一般,利用了几何画板进行数学实验。我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。

(五)作业

1、回顾本节课的整个研究过程,体会知识的发生过程;

2、思考:证法五与证法一有何联系?

3、思考:能否借助向量的坐标的方法证明正弦定理?

4、当三角形为钝角三角形时,证明正弦定理。

【设计意图】为保证学生有充足的时间来完成观察、归纳、猜想、探究和证明,小结的时间花得少且比较简单,这将在下一节课进行完善,因此作业的布置也为下节课做一些必要的准备。

七、教学反思

为了使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。我想到了“情境——问题”教学模式,即构建一个以情境为基础,提出问题与解决问题相互引发携手并进的“情境——问题”学习链,并根据上述精神,结合教学内容,具体做出了如下设计:①创设一个现实问题情境作为提出问题的背景(注:该情境源于《普通高中课程标准数学教科书·数学(必修4)》(人教版)第二章习题2.5 B组第二题,我将其加工成一个具有实际意义的决策型问题);②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题4与5时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?③为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后使用几何画板对猜想进行验证,进而引导学生对猜想进行严格的逻辑证明。

总之,整个过程让学生通过自主探索、合作交流,亲身经历了“情境思考”——“提出问题”——“研究特例”——“归纳猜想”——“实验探究”——“理论探究”——“解决问题”——“反思总结”的历程,使学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,从而使三维教学目标得以实现。

下载正弦定理教学案例word格式文档
下载正弦定理教学案例.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《正弦定理》教学设计

    《正弦定理》教学设计 教学目标: 1、理解并掌握正弦定理,总结归纳用正弦定理解三角形问题的步骤。 2、探究证明定理的方法,理解正弦定理是对任意三角形中“大边对大角、小边对......

    正弦定理 教学反思

    教学反思(二) ——关于《正弦定理》这一节课的教学反思 1.本节课虽然在教师的引导下,完成了教学任务,但是一味地为了完成任务而忽略了对学生正确思维的展开和引导.上好一堂课不仅......

    《正弦定理》教学设计

    《正弦定理》教学设计2010级数学课程与教学论专业华娜学号201002101146一、 教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一......

    正弦定理教学设计

    《正弦定理》教学设计茂名市实验中学张卫兵一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简......

    正弦定理证明

    正弦定理证明1.三角形的正弦定理证明: 步骤1. 在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中,......

    正弦定理证明

    正弦定理 1.在一个三角形中,各边和它所对角的正弦的比相等,且等于其外接圆半径的两倍, 即abc2R sinAsinBsinC 证明:如图所示,过B点作圆的直径BD交圆于D点,连结AD BD=2R, 则 D=C,DAB......

    《正弦定理》教案

    《正弦定理》教学设计 一、教学目标分析 1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用......

    正弦定理说课稿

    正弦定理说课稿 正弦定理说课稿1 教材地位与作用:本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也......