第一篇:机械原理课程设计说明书封面
机械原理课程设计
设计计算说明书
设计题目: _______________________
_______________________
院系:___________________ 专业:___________________ 姓名:___________________ 指导教师:___________________
年月日
郑州大学
第二篇:机械原理课程设计说明书撰写规范
机械原理课程设计说明书撰写规范
机械原理课程设计是本科生进入大学后进行的第一次设计训练,标准采用学校毕业设计的标准来进行,所以在说明书的撰写上也按毕业设计说明书的要求来进行,从而让学生在大学里进行的第一次设计时就按毕业设计的要求来做,以后的其它设计也按此撰写,那么学生按标准毕业设计说明书的格式来撰写设计说明书自然也就成为习惯。因机械原理课程设计的内容只是毕业设计的内容的一部分,所以,特制定机械原理课程设计说明书的格式。
一.文章结构形式
前置部分:论文标题(3号黑体)居中,隔一行居中排列专业名称、学号、学生姓名(间隔三个汉字,小4号宋体),下一行居中排列指导教师姓名(不标职称,小4号宋体)。
摘要(居中):中文300字左右,英文摘要应与中文摘要内容完全相同(1000个字符左右)。
关键字(居行头):3—5个词。
正文部分:
一、╳ ╳ ╳┉ ┉
1.┉ ┉
2.┉ ┉
┉ ┉
二、╳ ╳ ╳┉ ┉
1.┉ ┉
2.┉ ┉
┉ ┉
参考文献(居中):1 ┉ ┉┉ ┉
┉ ┉
(列出2—5条即可)
上述各项,除特殊要求的字号与字体外,一律用5号宋体,行间距16磅。
二.行文要求
A4纸,要言简意赅,术语规范,论据充分,条理清楚,图表、公式、程序要安排紧凑。
三.插图要求
图形大小合适、规范,图号清楚,中文标注。
四.打印要求
A4纸激光打印,要求5号宋体,行间距16磅,文稿清晰;页边距是上、下、左各2.5cm,右2cm。
五.装订要求
在说明书左侧1cm装订线上,居中订2个订书钉(2个订书钉之间间隔14cm)
第三篇:机械原理课程设计说明书2(样本)
机械原理课程设计说明书撰写说明
一.课程设计说明书内容
封面(见附件1)
目录(小标题、页码)
1.设计题目(包括机器的功能、工作条件及设计要求、原始数据)
2.原动机的选择
3.总传动比的确定及选定运动方案中传动比分配
4.执行机构的选择与比较
5.传动机构的选择(含原动机)与比较
6.机械系统运动方案的拟定(方案布置图4种)
7.机械系统运动方案的分析与比较
7.1方案1分析(主要指原理分析)
7.2方案2分析
7.3方案3分析
7.4方案4分析
7.5各方案的比较(可从是否能顺利地实现预定功能目标,是否满足其运动性能及动力性能,机械效率,机构结构的复杂程度、制造的难易程度等经济性和实用性等多方面进行比较,最后选出最优方案。)
8.执行机构设计
8.1执行机构运动参数的选定及设计
8.2执行机构运动和动态静力分析
9.设计小结(课程设计的体会、本人设计的优缺点及改进意见)
10. 参考资料(作者、书名、出版单位、出版时间)
(例: 1.孙桓,陈作模.机械原理.北京:高等教育出版社,2001.2.作者…)
说明:3,8项内容可根据各组设计题目要求调整,其它为必写内容
二.说明书撰写规范
1.封面用A4纸电子文本打印
2.课程设计说明书要求手工书写在A4纸上,上下左右边距各留20mm,说明书中的计
量单位、制图、制表、公式、缩略词和符号应遵循国家的有关规定。格式如下:
20mm……………………20mm2.原动机的选择
电动机因构造简单、工作可靠、控制简便、维护容易,一般生产
机械上大多采用电动机驱动。而Y系列三相交流异步电动机具有高效、节能、振动小、噪声小和运行安全可靠的特点,安装尺寸和功率等级符合装
订
线国际标准,适合于无特殊要求的各种机械设备。因此,本设计任务选择 Y系列三相交流异步电动机作为原动机。电动机
转速
n=1000
r/min电动机的转速 n=--------……………………
7.机械系统运动方案的分析与比较
……………………
……………………
2)机械运动方案图中应包括电动机、传动机构和执行机构三部分,全部用计算机绘图
软件完成。要求4种方案各自打印在一张A4纸上(注意图纸上加边框),共四张。图形绘制时各机构运动简图应按国标规定的符号和画法,并且注意粗实线、细实线应有所区分。(图纸打印输出时,要定义线宽。建议:粗实线0.5mm,细实线0.25mm)3)执行机构运动简图、机构运动分析和动态静力分析要求在图纸上完成,简图绘制时
粗实线、细实线应按国标规定。
4)应用三维造型软件进行机构运动仿真时,要求选择反映多数构件的运动平面为视图
平面并打印在A4上。
三.参考文献
1.孙桓,陈作模.机械原理.北京:高等教育出版社,2001.2.陆凤仪.机械原理课程设计.北京:机械工业出版社,2002.3.裘建新.机械原理课程设计指导书.北京:高等教育出版社,2005.4.张美林.机械创新设计.北京:化学工业出版社,2005.……
第四篇:机械原理课程设计说明书的个人小结
机械原理课程设计心得
经过两周的奋战我们的课程设计终于完成了,在这次课程设计中我学到得不仅是专业的知识,还有的是如何进行团队的合作,因为任何一个作品都不可能由单独某一个人来完成,它必然是团队成员的细致分工完成某一小部分,然后在将所有的部分紧密的结合起来,并认真调试它们之间的运动关系之后形成一个完美的作品。
这次课程设计,由于理论知识的不足,再加上平时没有什么设计经验,一开始的时候有些手忙脚乱,不知从何入手。在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个设计中我懂得了许多东西,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的可能不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。
在这次课程设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。在这种相互协调合作的过程中,口角的斗争在所难免,关键是我们如何的处理遇到的分歧,而不是一味的计较和埋怨.这不仅仅是在类似于这样的协调当中,生活中的很多事情都需要我们有这样的处理能力,面对分歧大家要消除误解,相互理解,增进了解,达到谅解…..也许很多问题没有想象中的那么复杂,关键还是看我们的心态,那种处理和解决分歧的心态,因为我们的出发点都是一致的。
经过这次课程设计我们学到了很多课本上没有的东西,它对我们今后的生活和工作都有很大的帮助,所以,这次的课程设计不仅仅有汗水和艰辛,更的是苦后的甘甜。
__来自网络分享
第五篇:机械原理课程设计
机械原理 课程设计说明书
设计题目:牛头刨床的设计
机构位置编号:11 3
方案号:II
班 级: 姓 名: 学 号:
年 月 日
目录
一、前言………………………………………………1
二、概述
§2.1课程设计任务书…………………………2 §2.2原始数据及设计要求……………………2
三、设计说明书
§3.1画机构的运动简图……………………3 §3.2导杆机构的运动分析…………………4 §3.3导杆机构的动态静力分析3号点……11 §3.4刨头的运动简图………………………15
§3.5飞轮设计………………………………17
§3.6凸轮机构设计…………………………19 §3.7齿轮机构设计…………………………24
四、课程设计心得体会……………………………26
五、参考文献………………………………………27
一〃前言
机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要实践环节。是培养学生机械运动方案设计、创新设计以及应用计算机对工程实际中各种机构进行分析和设计能力的一门课程。其基本目的在于:
⑴.进一步加深学生所学的理论知识培养学生独立解决有关本课程实际问题的能力。
⑵.使学生对于机械运动学和动力学的分析设计有一较完整的概念。
⑶.使学生得到拟定运动方案的训练并具有初步设计选型与组合以及确定传动方案的能力。
⑷.通过课程设计,进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。
⑸.培养学生综合运用所学知识,理论联系实际,独立思考与分析问题能力和创新能力。
机械原理课程设计的任务是对机械的主体机构连杆机构、飞轮机构凸轮机构,进行设计和运动分析、动态静力分析,并根据给定机器的工作要求,在此基础上设计凸轮,或对各机构进行
运动分析。
二、概述
§2.1课程设计任务书
工作原理及工艺动作过程 牛头刨床是一种用于平面切削加工的机床,如图(a)所示,由导杆机构1-2-3-4-5带动刨头5和削刀6作往复切削运动。工作行程时,刨刀速度要平稳,空回行程时,刨刀要快速退回,即要有极回作用。切削阶段刨刀应近似匀速运动,以提高刨刀的使用寿命和工件的表面 加工质量。切削如图所示。
§2.2.原始数据及设计要求
三、设计说明书(详情见A1图纸)
§3.1、画机构的运动简图
以O 4为原点定出坐标系,根据尺寸分别定出O 2点B点,C点。确定机构运动时的左右极限位置。曲柄位置图的作法为,取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3„12等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置,如下图:
§3.2 导杆机构的运动分析
11位置的速度与加速度分析 1)速度分析
取曲柄位置“11”进行速度分析。因构件2和3在A处的转动副相连,故VA2=VA3,其大小等于W2lO2A,方向垂直于O2 A线,指向与ω2一致。
曲柄的角速度 ω2=2πn2/60 rad/s=6.702rad/s υA3=υA2=ω2〃lO2A=6.702×0.09m/s=0.603m/s(⊥O2A)
取构件3和4的重合点A进行速度分析。列速度矢量方程,得
υA4= υA3+ υA4A3 大小 ?
√ ? 方向 ⊥O4B ⊥O2A ∥O4B 取速度极点P,速度比例尺µv=0.01(m/s)/mm,作速度多边形如下图
由图得
υA4=0.567m/s
υA4A3 =0.208m/s
用速度影响法求得
VB5=VB4=VA4*04B/O4A=1.244m/s 又
ω4=VA4/O4A=2.145rad/s 取5构件为研究对象,列速度矢量方程,得
vC = vB+ vCB 大小
? √ ? 方向 ∥XX ⊥O4B ⊥BC 取速度极点P,速度比例尺μv=0.01(m/s)/mm, 作速度多边行如
上图。则图知,vC5= 1.245m/s
Vc5b5=0.111m/s
ω5=0.6350rad/s
2)加速度分析
取曲柄位置“11”进行加速度分析。因构件2和3在A点处的转动副相连,故aA2n=aA3n,其大小等于ω22lO2A,方向由A指向O2。ω2=6.702rad/s, aA3n=aA2n=ω22lO2A=6.702×0.09 m/s2=4.0425m/s2 取3、4构件重合点A为研究对象,列加速度矢量方程得:
aA4 = aA4n + aA4τ
= aA2n
+ aA4A2k
+
aA4A
2大小:
?
ω42lO4A
?
√
2ω4υA4 A2
?
方向: ? A→O4 ⊥O4B A→O2
⊥O4B
∥O4B 取加速度极点为P',加速度比例尺µa=0.1(m/s2)/mm, 作加速度多边形如下图所示.由图可知
aA4=2.593m/s2 用加速度影响法求得
aB4= aB5 = aA4* L04B / L04A =5.690 m /s2 又
ac5B5n =0.0701m/s2 取5构件为研究对象,列加速度矢量方程,得
ac5= aB5+ ac5B5n+ a c5B5τ 大小
?
√
w52 Lbc
? 方向
∥XX √
c→b
⊥BC 作加速度多边形如上图,则
″
aC5B5τ= C5´C5·μa =2.176m/s2
aC5 =4.922m/s2
3号位置的速度与加速度分析 1)速度分析
取曲柄位置“3”进行速度分析,因构件2和3在A处的转动副相连,故VA3=VA2,其大小等于w2〃lO2A,方向垂直于O2 A线,指向与w2一致。
曲柄的角速度 ω2=2πn2/60 rad/s=6.702rad/s υA3=υA2=ω2〃lO2A=6.702×0.09m/s=0.603m/s(⊥O2A)取构件3和4的重合点A进行速度分析,列速度矢量方程,得,VA4
=VA3
+ VA4A3
大小
?
√
?
方向
⊥O4B
⊥O2A
∥O4B 取速度极点P,速度比例尺µv=0.01(m/s)/mm,作速度多边形如下图
VA4=pa4〃µv= 0.487m/s VA4A3=a3a4〃µv= 0.356 m/s w4=VA4⁄lO4A=1.163rad/s VB=w4×lO4B= 0.675m/s
取5构件作为研究对象,列速度矢量方程,得
υC =
υB
+
υCB
大小
?
√
? 方向 ∥XX(向右)
⊥O4B
⊥BC
取速度极点P,速度比例尺μv=0.01(m/s)/mm, 作速度多边形如上,则
Vc5=0.669m/s
Vcb=0.102m/s
W5=0.589rad/s 2).加速度分析
取曲柄位置“3”进行加速度分析。因构件2和3在A点处的转动副相连,故aA2n=aA3n,其大小等于ω22lO2A,方向由A指向O2。ω2=6.702rad/s,9 aA2n=aA3n=ω22lO2A=6.702×0.09 m/s2=4.0426m/s2 取3、4构件重合点A为研究对象,列加速度矢量方程得:
aA4 =aA4n+ aA4τ = aA3n + aA4A3K + aA4A3v 大小: ? ω42lO4A ? √ 2ω4υA4 A3 ? 方向 ? B→A ⊥O4B A→O2 ⊥O4B ∥O4B(沿导路)取加速度极点为P',加速度比例尺µa=0.1(m/s2)/mm, 作加速度多边形下图所示:
则由图知:
aA4 =P´a4´〃μa =3.263m/s2 aB4= aB5 = aA4* L04B / L04A =4.052 m/ s2 取5构件为研究对象,列加速度矢量方程,得
ac = aB + acBn+ a cBτ
大小 ? √ ω5l2CB ? 方向 ∥X轴 √ C→B ⊥BC 其加速度多边形如上图,则 ac =p ´c〃μa =4.58m/s2 §3.3 导杆机构的动态静力分析 3号点 取3号位置为研究对象:
①.5-6杆组共受五个力,分别为P、G6、Fi6、R16、R45, 其中R45和R16 方向已知,大小未知,切削力P沿X轴方向,指向刀架,重力G6和支座反力R16 均垂直于质心,R45沿杆方向由C指向B,惯性力Fi6大小可由运动分析求得,方向水平向左。选取比例尺μ=(40N)/mm,受力分析和力的多边形如图所示:
已知:
已知P=9000N,G6=800N,又ac=ac5=4.58m/s2 那么我们可以计算 FI6=-G6/g×ac =-800/10×4.5795229205 =-366.361N 又ΣF=P + G6 + FI6 + F45 + FRI6=0,方向 //x轴 → ← B→C ↑ 大小 9000 800 √ ? ? 又
ΣF=P + G6 + Fi6 + R45 + R16=0,方向
//x轴
→
←
B→C
↑ 大小
8000
620
√
?
? 由力多边形可得:F45=8634.495N
N=950.052 N 在上图中,对c点取距,有
ΣMC=-P〃yP-G6XS6+ FR16〃x-FI6〃yS6=0 代入数据得x=1.11907557m ②.以3-4杆组为研究对象(μ=50N/mm)
已知: F54=-F45=8634.495N,G4=220N aB4=aA4〃 lO4S4/lO4A=2.261m/s2 , αS4=α4=7.797ad/s2
可得:
FI4=-G4/g×aS4 =-220/10×2.2610419N=-49.7429218N MS4=-JS4〃aS4=-9.356 对O4点取矩:
MO4= Ms4 + Fi4×X4 + F23×X23-R54×X54-G4×X4 = 0 代入数据,得:
MO4=-9.356-49.742×0.29+F23×0.4185+8634.495×0.574+220×0.0440=0 故:
F23=11810.773N Fx + Fy + G4 + FI4 + F23 + F54 = 0 方向: ? ? √ M4o4 √ √ 大小: √ √ → √ ┴O4B √
解得:
Fx=2991.612N Fy=1414.405N 方向竖直向下
③.对曲柄分析,共受2个力,分别为F32,F12和一个力偶M,由于滑块3为二力杆,所以F32=F34,方向相反,因为曲柄2只受两个力和一个力偶,所以F12与F32等大反力。受力如图:
h2=72.65303694mm,则,对曲柄列平行方程有,ΣMO2=M-F32〃h2=0 即
M=0.0726*11810.773=0,即M=858.088N〃M
§3.4刨头的运动简图
§3.5飞轮设计
1.环取取曲柄AB为等效构件,根据机构位置和切削阻力Fr确定一个运动循的等效阻力矩根据个位置时
值,采用数值积分中的梯形法,计算曲柄处于各的功
。因为驱动力矩可视为
,确定等效驱动力常数,所以按照
矩Md。
2.估算飞轮转动惯量 由
确定等效力矩。
§3.6凸轮机构设计
1.已知:摆杆为等加速等减速运动规律,其推程运动角o=10o,回程运动角0'=70o,摆杆长度=70远休止角001lo9D=135mm,最大摆角max=15o,许用压力角[]=38.2.要求:(1)计算从动件位移、速度、加速度并绘制线图。(2)确定凸轮机构的基本尺寸,选取滚子半径,划出凸轮实际轮廓线,并按比例绘出机构运动简图。
3.设计步骤:
1、取任意一点O2为圆心,以作r0=45mm基圆;
2、再以O2为圆心,以lO2O9/μl=150mm为半径作转轴圆;
3、在转轴圆上O2右下方任取一点O9;
4、以O9为圆心,以lOqD/μl=135mm为半径画弧与基圆交于D点。O9D即为摆动从动件推程起始位置,再以逆时针方向旋转并在转轴圆上分别画出推程、远休、回程、近休,这四个阶段。再以11.6°对推程段等分、11.6°对回程段等分(对应的角位移如下表所示),并用A进行标记,于是得到了转轴圆山的一系列的点,这些点即为摆杆再反转过程中依次占据的点,然后以各个位置为起始位置,把摆杆的相应位置
画出来,这样就得到了凸轮理论廓线上的一系列点的位置,再用光滑曲
线把各个点连接起来即可得到凸轮的外轮廓。
5、凸轮曲线上最小曲率半径的确定及滚子半径的选择
(1)用图解法确定凸轮理论廓线上的最小曲率半径min:先用目测法估计凸轮理论廓线上的min的大致位置(可记为A点);以A点位圆心,任选较小的半径r 作圆交于廓线上的B、C点;分别以B、C为圆心,以同样的半径r画圆,三个小圆分别交于D、E、F、G四个点处,如下图9所示;过D、E两点作直线,再过F、G两点作直线,两直线交于O点,则O点近似为凸轮廓线上A点的曲率中心,曲率半径minOA;此次设计中,凸轮理论廓线的最小曲率半径min 26.7651mm。
凸轮最小曲率半径确定图(2)凸轮滚子半径的选择(rT)
凸轮滚子半径的确定可从两个方向考虑: 几何因素——应保证凸轮在各个点车的实际轮廓曲率半径不小于1~5mm。对于凸轮的凸曲线处CrT,对于凸轮的凹轮廓线CrT(这种情况可以不用考虑,因为它不会发生
失真现象);这次设计的轮廓曲线上,最
小的理论曲率半径所在之处恰为凸轮
上的凸曲线,则应用公式:minrT5rTmin521.7651mm;滚
子的尺寸还受到其强度、结构的限制,不能做的太小,通常取rT(0.10.5)r0
及4.5rT22.5mm。综合这两方面的考虑,选择滚子半径可取rT=15mm。
然后,再选取滚子半径rT,画出凸轮的实际廓线。设计过程 1.凸轮运动规律 推程0≤2φ≤δo /2时:
2max12204max120,0024max2 120
推程δo /2≤φ≤δo时:
2max1max(220)04max1(20)002,04max2120
回程δo+δs01≤φ≤δo+δs+δ'o/2时:
2max1max2'204max1'200,0'24max21'20
回程δo+δs+δ’o/2≤φ≤δo+δs+δ’o时:2max1(0')2'204max1('20')00'2,0'4max21'20
2.依据上述运动方程绘制角位移ψ、角速度ω、及角加速度β的曲线,由公式得出如下数据关系(1)角位移曲线:
(2)角速度ω曲线:
(3)角加速度曲线:
4)、求基圆半径ro及lO9O2
3.由所得数据画出从动杆运动线图
§3.7齿轮机构设计 1、设计要求:
计算该对齿轮传动的各部分尺寸,以2号图纸绘制齿轮传动的啮合图,整理说明书。
2.齿轮副Z1-Z2的变位系数的确定
齿轮2的齿数Z2确定:
io''2=40*Z2/16*13=n0''/no2=7.5
得Z2=39
取x1=-x2=0.5
x1min=17-13/17=0.236 x2min=17-39/17=-1.29
计算两齿轮的几何尺寸:
小齿轮
d1=m*Z1=6*13=78mm
ha1=(ha*+x1)*m=(1+0.5)*6=9mm
hf1=(ha*+c*-x1)*m=(1+0.25-0.5)*6=4.5mm
da1=d1+2*ha1=78+2*9=96
df1=d1-2*h f1=78-9=69
db1=d1*cosɑ=78*cos20˚=73.3
四 心得体会
机械原理课程设计是机械设计制造及其自动化专业教学活动中不可或缺的一个重要环节。作为一名机械设计制造及其自动化大三的学生,我觉得有这样的实训是十分有意义的。在已经度过的生活里我们大多数接触的不是专业课或几门专业基础课。在课堂上掌握的仅仅是专业基础理论面,如何去面对现实中的各种机械设计?如何把我们所学的专业理论知识运用到实践当中呢?我想这样的实训为我们提供了良好的实践平台。
一周的机械原理课程设计就这样结束了,在这次实践的过程中学到了很多东西,既巩固了上课时所学的知识,又学到了一些课堂内学不到的东西,还领略到了别人在处理专业技能问题时显示出的优秀品质,更深切的体会到人与人之间的那种相互协调合作的机制,最重要的还是自己对一些问题的看法产生了良性的变化。
其中在创新设计时感觉到自己的思维有一条线发散出了很多线,想到很多能够达到要求的执行机构,虽然有些设计由于制造工艺要求高等因素难以用于实际,但自己很欣慰能够想到独特之处。这个过程也锻炼了自己运用所学知识对设计的简单评价的技能。
五、参考文献
1、《机械原理教程》第7版
主编:孙桓
高等教育出版社
2.《机械原理课程设计指导书》主编:戴娟
高等教育出版社
3.《理论力学》主编:尹冠生
西北工业大学出版社