大体积很凝土温度裂缝的成因及其控制措施

时间:2019-05-14 21:56:39下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《大体积很凝土温度裂缝的成因及其控制措施》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《大体积很凝土温度裂缝的成因及其控制措施》。

第一篇:大体积很凝土温度裂缝的成因及其控制措施

大体积混凝土温度裂缝的成因及其控制措施

土木071 杨 棣 杨 娟 张 宏 余波

1.概述

近年来,随着我国国民经济的高速发展和人民生活水平不断提高。国家对基础建设的投资逐年递增,国内建筑业形势一片大好。各种建筑物、构筑物的形体规模也不断扩大,大体积混凝土在建筑工程中的应用也越来越广。但是,由于大体积混凝土具有结构厚、体积大、数量多、工程条件复杂和施工技术要求高等特点,因而在施工过程中若控制不当极易产生纵横交错的温度裂缝。不仅影响了混凝土的观感质量,严重者会出现深入和贯穿性的裂缝,从而降低结构耐久性,削弱构件承载力,甚至影响建筑物的安全使用,造成人员伤亡和巨大的财产损失。所以,如何采取有效措施防止大体积混凝土由于温度应力引起的开裂,是工程界普遍关注的问题。2.大体积混凝土的定义

结构断面最小厚度在80cm以上,同时水化热引起混凝土内部的最高温度与外界气温之差预计超过25℃的混凝土,称为大体积混凝土。3.大体积混凝土裂缝产生的原因

原因有两个:大体积混凝土浇筑初期,积聚在内部的水泥水化热不易散发,导致混凝土内部温度显著升高,内外温差变大,混凝土内部产生压应力,外部产生拉应力。此时由于混凝土强度低,便会产生裂纹;浇筑后期,混凝土内部逐渐散热冷却产生收缩,由于受到基底或已浇筑混凝土的约束,接触处将产生很大的剪应力,在混凝土正截面形成拉应力。当拉应力超过当时龄期混凝土的极限抗拉强度时,也会产生裂缝,甚至会贯穿整个混凝土截面,造成严重后果。4.裂缝分类

大体积混凝土产生的裂缝基本分为两类:

(1)表面裂缝:混凝土浇筑后,水泥水化产生大量的水化热,使混凝土内部温度不断上升,从而形成中心温度高,表面温度低的状况,这种内外温差使混凝土内部产生压应力,表面产生拉应力,当这个拉应力超过混凝土的抗拉强度时,混凝土表面就会产生裂缝。

(2)贯穿裂缝:大体积混凝土降温时,由降温产生降温差引起的变形,再加上混凝土多余水分蒸发时引起的体积收缩变形,受到地基或结构边界条件的约束时又引起拉应力,当此拉应力超过混凝土抗拉强度时,混凝土整个截面就会产生贯穿裂缝。5.大体积混凝土裂缝控制措施 5.1选用合适的原材料 5.1.1选择低水化热水泥

混凝土内外温差主要是水化热产生的,为减小内外温差,就要降低水化热,要用早期水化热低的水泥,选择适宜的矿物组成,调整水泥的细度模数。一般选用矿渣水泥、火山灰水泥、粉煤灰水泥等。

5.1.2 为了减少水泥用量,降低水灰比,降低水化热,应采取部分水泥用粉煤灰代替。掺入粉煤灰有以下作用:粉煤灰中含有大量的硅、铝氧化物,这些硅铝氧化物能够与水泥的水化产物进行二次反应,是其活性的来源,可以取代部分水泥,降低混凝土的热胀;粉煤灰颗粒较细,能够参加二次反应的界面相应增多,在混凝土中分散更加均匀;同时,粉煤灰反应进一步改善了混凝土内部的空结构,使混凝土中总的孔隙率降低,空结构进一步细化,分布更加合理。使硬化后的混凝土更加致密,相应收缩率也减小。5.1.3骨料选择要合理

尽量扩大粗骨料粒径,因为粗骨料越大,级配越好,空隙率越小,比表面积越小,每立方米混凝乳的水泥用量越少,水化热随之降低,对防止裂缝越有利。细骨料宜采用级配良好的中粗砂。其孔隙率小,比表面积小,混凝土的水泥和水用量相应减小,水化热降低。5.1.4掺入外加剂

掺入减水剂、缓凝剂和引气剂等外加剂可以减小开裂。减水剂的主要作用是改善混凝土的和易性,降低水灰化,提高混凝土强度或在保持混凝土一定强度时减少水泥用量。而水灰比的降低,水泥用量的减少对防止开裂有利。缓凝剂的作用:一是延缓混凝土放热峰值出现的时间,由于混凝土的强度会随龄期的增长而增大,所以等放热峰值出现时,混凝土强度已经增大了,从而减小裂缝出现的机率。5.2完善大体积混凝土的施工工艺 5.2.1浇注要点

大体积混凝土浇筑,应根据整体连续浇筑的要求及现场实际情况适当选用全面层、分段分层、斜面分层等浇筑方案。浇筑温度宜控制在25℃以下。因此,必须合理安排施工时间,尽量避免在高温时段进行混凝土浇筑。同时要尽量加快施工速度、缩短浇筑时间,降低混凝土的浇筑温度,减少结构物的内外温差,并延长混凝土的初凝时间。必要时需采用二次振捣。其能够减少混凝土的内部裂缝,增强混凝土的密实性,从而提高混凝土的抗裂性。5.2.2采取温控措施

在大体积混凝土内部安设温度传感器,检测指导温控。内部混凝土的最高温度应<55℃.最大水化热温升<30℃。混凝土体内布置适量的温控管道,通过不问断地循环冷却水,吸收混凝土的热量。冷却水管应在每层混凝土中布设,深度位于厚层的l/2处,设定位架固定。冷却水在混凝土浇至水管高程后立即循环,冷却水与混凝土的温差限制在25℃以内,流量及水温2h监测一次,量测进、出水口温度,一般出水口温度较进水口高5~6℃。冷却水应持续到混凝土浇筑完后7d以上。冷却完毕后,冷却管中压入同强度的水泥浆,水泥浆中加入微膨胀剂。5.2.3混凝土拌和、浇筑、拆模时注意事项

大体积混凝土宜采用强制搅拌,根据环境温度条件采用相应的措施,使新拌混凝土的温度控制在6-13℃。浇筑混凝土尽量避开太阳辐射较强的时间,若工程在夏季施工时,则避开正午,尽量安排在夜间浇筑。采用大功率插入式振捣器振捣,振捣以表面泛浆不再下沉为宜,间距要均匀,以振捣范围重叠二分之一为宜,保证振捣密实,上层混凝土在下层混凝土初凝前浇筑完,表面压实、抹平,防止表面裂缝。混凝土在实际温度养护的条件下,强度达到设计强度的75%以上、混凝土中心温度与最低温度之差在25~C以内、拆模时混凝土表面温度不超过9℃方可拆模。5.2.4大体积混凝土养护

在每次混凝土浇筑完毕后,应及时按温控技术措施的要求进行保温养护。不同施工季节应选择不同的混凝土养护方法。夏季施工时,要采用草帘覆盖、浇水等降温方法进行养护保持混凝土表面湿润,从而促进混凝土强度的稳定增长;正常气温时,可喷刷养生液养护;冬季施工时,可使用保温材料来提高混凝土的表面温度。混凝土的养护时间根据水泥的品种确定,一般普通水泥的养护时间为14d,矿渣水泥、粉煤灰水泥、火山灰水泥及掺加掺和料后的混凝土的养护时间为21d。5.2.5做好表面隔热保护

大体积混凝土的温度裂缝,主要是由内外温差过大引起的。混凝土浇筑后,由于表面较内部散热快,会形成内外温差,表面收缩受内部约束产生拉应力,如果此时受到冷空气的袭击,或者过分通风散热,使表面温度降温过快就很容易导致裂缝的产生,所以在低温季节,混凝土拆模后立即采取表面保温措施,防止表面降温过快,引起裂缝。6.结束语

综上所述,大体积混凝土内部的温度应力是由水化热和外界气温变化等各种因素引起的叠加应力。由于混凝土是一种脆性材料抗拉强度只相当于抗压强度的1/10左右,当混凝土内温度应力超过混凝土极限抗拉强度时,混凝土就会产生裂缝。实际工作中,只有从原材料、施工、设计等方面加强质量控制,才能最大限度的防止混凝土裂缝的产生,使混凝土结构工程能够满足适用性、安全性及耐久性要求。

第二篇:大体积混凝土温度裂缝控制措施

大体积混凝土温度裂缝控制措施

1、概述

此次拟浇筑砼系华荣xx城D区基础筏板。D区基础砼等级为为C35P8,板的一般厚度为2.0m,集水井处最厚区域为4.35m;本区域一次浇筑砼方量约为2980m3;板内配筋情况是:板上下部均为φ28@150双向双层网筋,第二层配有φ18@150双向网筋一层,板中间配置构造抗裂钢筋网片φ16@200,D区柱下配置φ22@150。由此可见,该筏板确具有体形大、结构厚、砼方量多,钢筋密而工程条件较复杂和施工技术要求高等特点。

大体积混凝土是指最小断面尺寸大于1m以上的混凝土结构。与普通钢筋砼相比,具有结构厚,体形大、混凝土数量多、工程条件复杂和施工技术要求高的特点。

大体积混凝土在硬化期间,一方面由于水泥水化过程中将释放出大量的水化热,使结构件具有“热涨”的特性;另一方面混凝土硬化时又具有“收缩”的特性,两者相互作用的结果将直接破坏混凝土结构,导致结构出现裂缝。因而在混凝土硬化过程中,必须采用相应的技术措施,以控制混凝土硬化时的温度,保持混凝土内部与外部的合理温差,使温度应力可控,避免混凝土出

现结构性裂缝。

2、大体积混凝土裂缝产生的原因

大体积混凝土墩台身或基础等结构裂缝的发生是由多种因素引起的,各类裂缝产生的主要影响

因素如下:

(1)收缩裂缝。混凝土的收缩引起收缩裂缝。收缩的主要影响因素是混凝土中的用水量和水泥用量,用水量和水泥用量越高,混凝土的收缩就越大。选用的水泥品种不同,其干缩、收缩的量也不同。

(2)温差裂缝。混凝土内外部温差过大会产生裂缝。主要影响因素是水泥水化热引起的混凝土内部和混凝土表面的温差过大。特别是大体积混凝土更易发生此类裂缝。

大体积混凝土结构要求一次性整体浇筑。浇筑后,水泥因水化热,由于混凝土体积大,聚集在内部的水泥水化热不易散发,混凝土内部温度将显著升高,而其表面则散热较快,形成了较大的温度差,使混凝土内部产生压应力,表面产生拉应力。此时,混凝土龄期短,抗拉强度很低。当温差产生的表面抗拉应力超过混凝土极限抗拉强度,则会在混凝土表面产生裂缝。(3)材料裂缝。材料裂缝表现为龟裂,主要是因水泥安定性不合格或骨料中含泥量过多而引起的。

3、大体积混凝土裂缝控制的理论计算

华荣.上海城D区,混凝土及其原材料各种原始数据及参数为:一是C35P8混凝土采用P.O42.5普通硅酸盐水泥,其配合比为:水:水泥:砂:石子:粉煤灰:矿粉(单位Kg)=172:285:716:1070:60:100(每立方米混凝土质量比),砂、石含水率分别为3%、0%,混凝土容重

为2390Kg/m3。

二是各种材料的温度及环境气温:水30℃,砂、石子35℃,水泥40℃,粉煤灰35℃,矿粉35℃,环境气温32℃。3.1混凝土温度计算

(1)混凝土拌和温度计算:公式TO=∑Timici/∑mici可转换为:TO=[0.9

(mcTc+msTs+mgTg+mfTf+mkTk)+4.2Tw(mw-Psms-Pgmg)+C1(PsmsTs+PgmgTg)-C2(Psms+Pgmg)÷[4.2mw+0.9(mc+ms+mg+mf+m

k)] 式中:TO为混凝土拌和温度;mw、mc、ms、mg、mf、mk—水、水泥、砂、石子、粉煤灰、矿粉单位用量(Kg);Tw、Tc、Ts、Tg、Tf、Tk—水、水泥、砂、石子、煤灰、矿粉的温度(℃);Ps、Pg—砂、石含水率(%);C1、C2—水的比热容(KJ/Kg.K)及溶解热(KJ/Kg)。

当骨料温度>0℃时,C1=4.2,C2=0;反之C1=2.1,C2=335.本实例中的混凝土拌和温度为:TO=[0.9(285*40+716*35+1070*35+60*35+100*35)+4.2*30(172-716*3%)+4.2*3%*716*35]÷4.2*

172+0.9(285+716+1070+60+100)]=34.3℃.(2)混凝土浇筑温度计算:按公式TJ=TO-(α.Tn+0.032n)*(TO-YQ)式中:TJ—混凝土浇筑温度(℃);TO—混凝土拌和温度(℃);TQ—混凝土运送、浇筑时环境气温(℃);Tn—混凝土自开始运输至浇筑完成时间(h);n—混凝土运转次数。

α--温度损失系数(/h)本例中,若Tn取1/3,n取1,α取0.25,则:

TJ=34.3-(0.25×1/3+0.032×1)×(34.3-32)=34.0℃

3.2混凝土的绝热温升计算

Th=WO.QO/(C.ρ)

式中:WO—每立方米混凝土中的水泥用量(Kg/m3);QO—每公斤水泥的累积最终热量(KJ/Kg);C—混凝土的比热容取0.97(KJ/Kg.k);ρ—混凝土的质量密度(Kg/m3)

Th=(285*375)/(0.97*2390)=55.8℃

3.3混凝土的内部实际温度

Tm=TJ+ξ•Th

式中:TJ—混凝土浇筑温度; Th—混凝土最终绝热温升;ξ—温将系数查建筑施工手册,若混凝土浇筑厚度4.0m,则:ξ3取0.74,ξ15取0.55,ξ21取0.37.Tm(3)=34.0+0.74*55.8=75.3℃;

Tm(15)=34.0+0.55*55.8=64.7℃;

Tm(21)=34.0+0.37*55.8=54.6℃.3.4混凝土表面温度计算

Tb(T)=Tq+4h,(H-h,)△T(T)/H2式中:Tb(T)—龄期T时混凝土表面温度(℃);Tq--龄期T时的大气温度(℃);H—混凝土结构的计算厚度(m)。

按公式H=2h+ h,计算,h—混凝土结构的实际厚度(m);h,--混凝土结构的虚厚度(m);h ,=K•λ/Βk=--计算折减系统取0.666,λ—混凝土的导热系数取2.33W/m•K

β—模板及保温层传热系数(W/m2•K);

β值按公式β=1/(∑δi/λi+1/βg)计算;δi—模板及各种保温材料厚度(m);λi—模板及各种保温材料的导热系数(W/m•K);βg—空气层传热系数可取23(W/m2•K).T(T)--龄期T时,混凝土中心温度与外界气温之差(℃):

T(T)= Tm(T)-Tq,若保护层厚度取0.04m,混凝土灌注厚度为4m,则:

β=1/(0.003/58+0.04/0.06+1/23)=1.4:1 h,=K•λ/β=0.666×2.33/1.41=1.1;

H=2h+ h,=4.0+2×1.1=6.2(m)

若Tq取32℃,则:

T(3)=75.3-32=43.3℃ T(15)=64.7-32=32.7℃ T(21)=54.6-32=22.6℃

则:Tb(3)=32+4×1.1(6.2-1.1)×43.3/6.22=57.3℃ Tb(15)=32+4×1.1(6.2-1.1)×32.7/6.22=51.1℃ Tb(21)=32+4×1.1(6.2-1.1)×22.6/6.22=45.2℃ 3.5混凝土内部与混凝土表面温差计算

本工程中: T(3)s=75.3-57.3=18℃ △ T(15)s=64.7-51.1=13.6℃ △ T(21)s=54.6-45.2=9.4℃

4、计算结果分析

从以上计算可以看出,混凝土3d龄期时内外温度差达到最大值18℃,符合混凝土内外温差小于25℃的技术要求。但必须看到计算结果是基于养护环境温度为32℃,表面保温措施得当,入模混凝土温度为34℃条件下得出的。实际施工养护中有可能无法满足以上条件要求。2008年8月19日实测C30混凝土拌和后温度未36℃,当时拌和水温度为30℃,环境温度为32℃,若养护环境温度为夜间较低时的情况,假设为23℃,则△T(3)s=22.6℃,加上保温措施有可能达不到要求,有产生温度裂缝的可能,因此有必要采取一丁的措施防止温度裂缝的产生。

5、大体积混凝土施工技术措施

(1)降低混凝土入模温度。包括:浇筑大体积混凝土时应选择较适宜的气温,尽量避开炎热天气浇筑。可采用温度较低的地下水搅拌混凝土,或在混凝土拌和水中加入冰块,同时对骨料进行遮阳保护、洒水降温等措施,以降低混凝土拌和物的入模温度,掺加相应的缓凝型减水剂。(2)加强施工中的温度控制。包括:在混凝土浇筑之后,做好混凝土的保温保湿养护,以使混凝土缓缓降温,充分发挥其徐变特性,减低温度应力。应坚决避免曝晒,注意温湿,采取长时间的养护,确定合理的拆模时间,以延缓降温速度,延长降温时间,充分发挥混凝土的“应力松弛效应”;加强测温和温度监测。可采用热敏温度计监测或专人多点监测,以随时掌握与控制混凝土内的温度变化。混凝土内外温差应控制在25℃以内,基面温差和基底面温差均控制在20℃以内,并及时调整保温及养护措施,使混凝土的温度梯度和湿度不致过大,以有效控制有害裂缝的出现(养护措施详见大体积砼浇筑方案)。

(3)提高混凝土的抗拉强度。包括:控制集料含泥量。砂、石含泥量过大,不仅增加混凝土的收缩而且降低混凝土的抗拉强度,对混凝土的抗裂十分不利,因此在混凝土拌制时必须严格控制砂、石的含泥量,将石子含泥量控制在1%以下,中砂含泥量控制在2%以下,减少因砂、石含泥量过大对混凝土抗裂的不利影响;改善混凝土施工工艺。加强早期养护,提高混凝土早期及相应龄期的抗拉强度和弹性模量;在大体积混凝土基础表面及内部设置必要的温度配筋,以

改善应力分部,防止裂缝的出现。

第三篇:大体积混凝土温度裂缝成因及控制措施范文

最新【精品】范文 参考文献

专业论文

大体积混凝土温度裂缝成因及控制措施

大体积混凝土温度裂缝成因及控制措施

摘要:裂缝是大体积混凝常见的质量通病之一,若不进行有效的控制,则会影响到大体积混凝土结构的稳定性及耐久性。本文结合笔者多年实践经验,重点就大体积混凝土温度裂缝原因进行分析,并提出一些切实可行的控制措施,旨在提高混凝土的质量,以供实践参考。

关键词:大体积混凝土;裂缝;控制措施;温度监测

中图分类号:TU37 文献标识码:A 文章编号:

随着我国社会经济建设的快速发展,城市建筑数量日益增加,对建筑的使用功能和质量安全提出了更高的要求。大体积混凝土是建筑施工中常见的一种施工材料,具有承载力高,适用范围广和耐久性强等优点。但在混凝土浇筑过程中,由于大体积混凝土单次浇筑方量大,加上混凝土自身放热量大,如果不能及时扩散,容易导致混凝土浇筑体产生了较大的内外温差,致使大体积混凝土产生温度裂缝。这些裂缝若没有得到有效的处理,不仅会影响到混凝土结构的稳定性及可靠性,而且对建筑物的质量安全构成极大的威胁。因此,施工管理人员有必要加强大体积混凝土裂缝控制工作的力度,采取合理有效的控制措施避免温度裂缝的产生,从而确保大体积混凝土的质量。

大体积混凝土温度裂缝原因分析

1.1 温度及温度效应

混凝土结构物的温度分布是指某一时刻混凝土结构内部及表面各点的温度状态。当混凝土结构浇筑后,由于混凝土内部的水化热、外界的太阳辐射以及气温变化等因素的影响,混凝土结构内部会处于不同的温度状态。影响混凝土结构温度分布的因素主要有内部和外部两大类。

1)外界温度的影响

自然环境中的混凝土结构物,受大气温度变化作用,而各种气象因素在一年四季、每天甚至每时每刻都在发生变化。混凝土结构的最大温差与不同季节的气候特征有密切关系。

最新【精品】范文 参考文献

专业论文

2)水化热

水泥水化释放的水化热会引起混凝土浇筑块内部温度剧烈变化,是影响混凝土温度分布的主要内部因素。

混凝土结构温度分布的不均匀性和复杂性,导致混凝土结构中温度效应的产生。混凝土结构的温度效应,主要是指由于混凝土结构中温度分布不均导致的在结构物中产生温度应力和温度变形等不良现象。

1.2 结构约束

大体积混凝土结构受到的约束,一般分为内约束和外约束两种。

1)内约束

一个物体或一个构件本身各质点之间的相互约束作用,称为“内约束”。

大体积混凝土在水泥水化时,会形成外低内高的温差,这种温差会使大体积混凝土内部温度分布不均匀,会引起质点发生的变形不一致,从而产生内约束。

2)外约束

一个物体的变形受到其他物体的阻碍,一个结构的变形受到另一个结构的阻碍,这种结构与结构之间、物体与物体之间、物体与构件之间、基础与地基之间的相互牵制作用,称作“外约束”。

大体积混凝土温度裂缝控制措施

大量工程实践经验都证明,结构物不可能不出现裂缝,裂缝是材料的一种固有缺陷、固有特征。如果对大体积混凝土的裂缝作过于严格的限制,则施工难度大,会带来成本的急剧上升。但可以采取措施,对裂缝进行控制。

2.1 设计

(1)改变约束条件,设置滑动层。基础垫层和基础之间采用三毡四油防水层作为滑动层减小地基对基础的约束,降低约束应力。

(2)设置构造钢筋。在大体积混凝土内设置必要的温度配筋,配筋宜选用小直径、小间距;在截面突变和转角处,孔洞转角及周边,增加斜向构造配筋,以改善应力集中,防止裂缝出现。

(3)在易裂的边缘部位设置暗梁,提高该部位的配筋率。

最新【精品】范文 参考文献

专业论文

(4)合理设置后浇带,保留时间大于60d;后浇带内梁中钢筋连续通过,板中钢筋可断开,在二次浇筑混凝土前,根据规范要求连接板中普通钢筋。

2.2 材料

1)水泥

针对大体积混凝土结构的特点,选择低水化热水泥。因为其在假定外部温度没有变化的情况下,可减少混凝土的内外温差T值,起到减少温度应力的作用。选择水泥时,还应合理控制好水泥的细度,这样,才能在减少温度应力的同时,确保水泥混凝土的早期强度,从而更有效地控制温度裂缝。

2)矿物掺合料

在施工中,掺入20%~40%的粉煤灰,可取代一部分水泥,从而消减水化热产生的高温峰值。另外,粉煤灰还可以优化水泥石内部结构,提高混凝土早期强度。

3)集料

集料在混凝土中的体积超过50%,在成型阶段是一种导热介质,因此,选择导热系数高、热传导能力强的集料,可有效降低混凝土的内外温差T值。另外,集料自身的温度对水化热的产生也有一定的影响,集料自身温度越高,水化热也就越大。因此,在制备混凝土时,应根据当日气候和集料温度,对集料进行必要的降温处理。

4)外加剂

在控制大体积混凝土温度裂缝时,外加剂应选择能调节混凝土凝结时间和硬化性能的缓凝剂、减水剂。

缓凝剂能在对混凝土的后期物理力学性能无不利影响的情况下,延缓混凝土的凝结时间,从而增加混凝土的降温散热时间,使混凝土内外温差T值减小。如缓凝剂JM-PCA,可使混凝土初凝时间加长3~8h左右。减水剂对混凝土强度的影响一般体现在降低水灰比上,低水灰比可使混凝土迅速硬化,提高混凝土早期强度;另外,在减少拌和水用量的同时,相应地减少了水泥的用量,从而达到降低水化热的目的。

2.3 施工

1)用分层连续浇筑或推移式连续浇筑混凝土采用分层连续浇筑

最新【精品】范文 参考文献

专业论文

或推移式连续浇筑,混凝土层间的间隔时间应尽量缩短,必须在前层混凝土初凝之前,将其次层混凝土浇筑完毕。层间最长的时间间隔不大于混凝土的初凝时间。当层间间隔时间超过混凝上的初凝时间,层面应按施工缝处理:

(1)消除浇筑表面的浮浆、软弱混凝土层及松动的石子,并均匀露出粗骨料;

(2)在上层混凝土浇筑前,应用压力水冲洗混凝土表面的污物,充分湿润,但不得有水;

(3)对非泵送及低流动度混凝土,在浇筑上层混凝土时,应采取接浆措施。

2)二次投料及二次振捣

大量的工程实践证明,采用二次投料水泥裹砂法和二次振捣法,可提高混凝土的极限抗拉强度。

所谓二次投料水泥裹砂法,即先将水和水泥拌成水泥浆,搅拌时间大约1min,然后加入砂子和石子,搅拌成混凝土。该法可改善混凝土内部结构,减少混凝土浇筑入模时的离析现象,节约水泥达20%,或提高强度15%。

所谓二次振捣,即对未初凝的混凝土在振动界限之前进行二次振捣。通过二次振捣可排除混凝土因泌水在粗骨料、水平钢筋下部生成的水分和空隙,提高水平钢筋的握裹力、竖向钢筋的抗拔力,增大水密性,提高混凝土抗压强度,减少混凝土内部裂缝,防止因混凝土下沉而出现的裂缝。有关资料证明,采用二次振捣可使水平钢筋的握裹力增加1/3,竖向钢筋初始抗拔能力提高100%,28d混凝土的抗压强度提高10%~15%。二次振捣关键要掌握好二次振捣的时间,该时间为混凝土经振捣后尚能恢复到塑性状态的时间,一般又称为振捣界限。振动界限的判断方法一般有两种:一种是将运转着的振动棒逐渐插入混凝土中时,混凝土仍能恢复到塑性状态,当振动棒拔出时,混凝土能自动填满形成的孔洞,而不会在混凝土中留下孔穴,此时施加二次振捣,时间最为合适;第二种是采用测定贯入阻力值的方法来判断,国外一般均采用这种方法,即当标准贯入阻力值达到3.5N/mm2以前进行二次振捣,此时不会损伤已成型的混凝土。

最新【精品】范文 参考文献

专业论文

二次振捣的具体适宜时间,需根据水泥品种、用量、混凝土的坍落度和气温等因素决定,一般应控制在混凝土浇筑后1~3h时间内。

3)埋设冷却水管,降低混凝土内部温度对施工要求比较高的工程,可以在混凝土内埋设水管,通过低温水循环,排出混凝土内部大量热量,以降低混凝土温度。

4)加强施工管理

提高混凝土的质量,以保证混凝上强度的均匀性;薄层、短间歇、均匀上升,以避免相邻浇筑块之间过大的高差及侧面的长期暴露;加强混凝土养护。

2.4 温度监测

温度监测技术是现代大体积混凝土施工的先进技术。通过对混凝土温度的监测,实时监控混凝土内部温度变化的情况,采取相应控制措施,可有效控制裂缝的产生。大体积混凝土温度控制的测试内容如下。

1)混凝土绝热温升的测试

混凝土绝热温升的测试有两种方法:间接法和直接法。间接法是用水泥的水化热、水泥用量、混凝土比热、混凝土密度来计算混凝土绝热温升;直接法是用混凝土绝热温升实验仪直接测定混凝土绝热温升。直接法测定结果准确,但是,实验设备和实验过程比较复杂,一般用于大型工程中。中小型工程常不具备这种条件,一般用间接法即可满足要求。

2)混凝土浇筑温度的监测

监测混凝土浇筑时的温度,保证浇筑温度不要超过控制标准,以便控制混凝土浇筑后的温度升高峰值。同时,也包括对混凝土搅拌、运输过程中温度的监测和混凝土原材料温度的监测。

3)养护过程中的温度监测一般监测浇筑后混凝土内部、表面、底部的温度和环境气温的变化情况,用来控制混凝土的降温速度和内外部温差(一般要求温差ΔT≯25℃),也可用来进一步计算混凝土中的温度应力,确定混凝土的抗拉强度是否大于此时混凝土中产生的拉应力,保证对裂缝的控制。这些监测结果能及时反馈现场大体积混凝土浇筑块内温度变化的实际情况,以及所采用的施工技术措施的效果,最新【精品】范文 参考文献

专业论文

为工程技术人员及时采取温控对策提供科学依据。

混凝土的浇筑温度,系指混凝土振捣后位于混凝土上表面以下50~100mm深处的温度。混凝土浇筑温度的测试每工作班(8h)不应少于2次。

大体积混凝土浇筑块体内外温差、降温速度及环境温度的测试,一般在前期每2~4h测一次,后期每4~8h测一次。

大体积混凝土浇筑块体温度监测点的布置,以能真实反映出混凝土块体的内外温差、降温速度及环境温度为原则。

2.5 养护

混凝土浇筑完毕后,应及时按温控技术措施的要求进行保温养护,并应符合下列规定:

(1)保温养护措施,应使混凝土浇筑块体的内外温差及降温速度满足温控指标的要求;

(2)保温养护的持续时间应根据温度应力包括混凝土收缩产生的应力加以控制、确定,但不得少于15d,保温覆盖层的拆除应分层逐步进行;

(3)在保温养护过程中,应保持混凝土表面的湿润。

同时,在养护过程中,保持良好的湿度和抗风条件,使混凝土在良好的环境下养护。施工人员需根据事先确定的温控指标的要求,来确定大体积混凝土浇筑后的养护措施。结语

温度裂缝是影响大体积混凝土结构质量安全的重要因素。因此,施工管理人员应结合工程的特点,通过分析混凝土温度裂缝产生的原因,围绕设计、施工、材料和养护等方面制定出合理有效的控制措施,同时加强混凝土温度的监控力度,一旦发现问题应及时做出处理,以避免混凝土温度裂缝的产生。

参考文献

[1] 高冬.大体积混凝土裂缝产生原因及其预防控制措施[J].中国科技信息.2012年第03期

[2] 陈永涛.大体积混凝土裂缝控制措施研究[J].城市建设理论研究.2012年第23期

最新【精品】范文 参考文献

专业论文

------------最新【精品】范文

第四篇:大体积砼温度裂缝控制措施及其

大体积砼温度裂缝控制措施及其

在工程施工中的运用

[摘 要]在实际工程施工中,根据现有的理论和实践经验总结出来的具体措施,可以控制和减少大体积砼温度裂缝的发生。由于各种客观条件的限制,采取哪些控制措施,要根据具体的实际情况决定取舍。[关键词] 大体积砼 裂缝 控制措施 运用

在现代工业与民用建筑中,超长、超厚的大体积砼基础已屡见不鲜,但其裂缝的产生时有发生。如何控制大体积砼裂缝的产生,是一项国际性的技术问题。根据现有的理论和实践经验,在实际工程中,也可以控制和减少大体积砼裂缝的发生。一 大体积砼结构温度、收缩裂缝产生的原因

大体积砼裂缝主要分为两大类:一类是荷载引起的裂缝(约占20%),一类是变形(温度、收缩、不均匀沉陷)引起的裂缝(约占80%)。由于荷载引起的裂缝通过常规的应力计算可以得到很好控制,这里着重探讨由于温度、收缩引起的变形裂缝。

在大体积砼浇筑后,由于其表面系数小,体积大,水泥的水化热量较高,水化热聚积在内部不易散发,砼内部温度将逐渐增高,而表面散热很快,形成较大的内外温差,内部产生压应力,外部产生拉应力。若在砼表面附近存在较大的温度梯度,就会引起较大的表面拉应力,由于此时的砼的龄期很短,抗拉强度很低,如果温差产生的拉应力超过此时砼的极限抗拉强度,就会在砼表面形成表面裂缝。这种裂缝一般多发生在砼浇灌后的升温阶段,如果此时砼的表面不能保持潮湿的养护条件,则砼表面由于水分蒸发较快而使初期的砼产生干缩,将加剧裂缝的产生。砼浇灌后,由于温升影响产生的表面裂缝也叫第一种裂缝。2 温升影响产生的第二种裂缝是收缩裂缝。它产生在砼的降温阶段,即当砼降温时,由于逐渐散热而产生收缩,再加上砼硬化过程中,由于砼内部拌合水的水化和蒸发,以及胶质体的胶凝等作用,促使砼硬化时收缩。这两种收缩,在收缩时受到基底或结构本身的约束,会产生很大的收缩应力(拉应力),如果产生的收缩应力超过当时的砼极限抗拉强度,就会在砼中产生收缩裂缝,这种裂缝有时会贯穿全断面而成为结构性裂缝。

大体积砼,升温阶段内外温差过大,会造成表面裂缝;降温速率过大,会造成贯穿性冷缩缝。表面裂缝虽不属于结构性裂缝,但在砼收缩时,由于表面裂缝处断面被削弱且存在应力集中,促使砼收缩裂缝的开展,所以大体积砼施工中既要防止表面裂缝的产生,又要防止收缩裂缝的出现。

因此,控制砼结构浇筑实体因水泥水化热引起的温升、砼浇筑块体里外温差及降温速度,防止砼实体出现有害的温度裂缝(包括砼收缩)是施工技术的关键问题。4 在长期的实践中,人们发现一些规律:

① 砼强度等级越高,越易出现裂缝。② 泵送砼比半干性砼易出现裂缝,因其用水量大,粗骨料粒径较小,水泥用量大。

③ 温差和收缩越大越容易开裂,裂缝越宽、越密; ④ 收缩和温度变化的速度越快,越容易开裂; ⑤ 基底对结构的约束作用越大,越容易开裂:

⑥ 温度梯度越大、承受均匀温差收缩的厚度越小,越容易开裂;

⑦ 在一般情况下,结构的几何尺寸越大,越容易开裂,但这也不是绝对的。二 在工程施工中控制温度、收缩裂缝的措施

实践证明,一方面,如果将砼内部与其表面的温差、温降速度控制在一定范围内,砼就不至于产生表面裂缝(我国规范确定的这个温差限值为25℃、温降速度为1.5℃/d);另 一方面,减小每次施工面积(设置后浇带),减小基底对结构的约束作用(设置可滑移垫层),加大加密配筋,均可增强砼结构对砼收缩的抵抗作用。前一方面是施工技术人员应解决的问题,后一方面主要由设计师根据实际情况决定。在工程施工中,温度、收缩裂缝控制的主要任务

降低砼内部最高温升,减少总降温差;提高砼表面温度,降低砼内外温差,减小温度梯度;延缓砼的降温速率,充分发挥砼的徐变特性;减少用水量,控制原材料质量。具体措施

2.1 选用中低热的水泥品种,从根本上减小水化热。选择中低热品种水泥(普通硅酸盐水泥、矿渣硅酸盐水泥),优先选用矿渣硅酸盐水泥。水泥越细,标号越高,其活性与强度随之增高,带来的副作用是砼自身收缩越大。能用低标号的水泥,尽量不用高标号水泥。

2.2 减少单位体积砼的水泥用量,也是减小水化热和砼收缩的根本途径。一般地,水泥量每增加10kg,水化热将升高1℃。可以通过以下措施减小单方砼水泥用量:

① 可以不采用泵送砼时,尽量不采用泵送。

② 在工期许可的情况下,经设计人员同意,充分利用砼后期强度,用R60或R90代R28作为设计强度。

③ 掺入一定比例的掺合料。砼中掺入磨细粉煤灰、矿渣粉、沸石粉、硅粉等掺合料,可以改善砼的工作性,提高可泵性,降低水化热,增加密实度,提高砼强度和耐久性,减少砼收缩。

④ 掺入高效减水剂,减少用水量,从而减少单方砼水泥用量。砼掺入减水剂,可以减少用水量,在保证水灰比不变的情况下,可以减少水泥用量,降低砼收缩。同时可减少砼中的自由水蒸发引起的收缩。

⑤ 控制粗细骨料质量。粗骨料粒径增大,可以减少用水量和水泥用量,从而可以减少砼的自身收缩。粗骨料必须是连续级配,针片状含量不超标,不仅能提高砼的可泵性,还可以减少砂率及细粉料含量,达到减少砼自身收缩的目的。但粗骨料最大粒径应满足结构钢筋净间距和砼泵送管径要求。细骨料级配合理,采用中砂比用细砂可降低用水量,从而降低砼的收缩值。粗细骨料含泥量必须控制在标准以内,含泥量增大,不仅增加砼收缩,还会降低砼抗拉强度,对砼抗裂十分有害。

2.3 降低砼的浇筑温度,减少总降温差。

① 降低进入搅拌机的温度。夏季在水箱内加冰块降低水温;粗骨料遮阳防晒,并洒冷水降温;细骨料遮阳防晒;散装水泥提前储备,避免新出厂水泥温度过高。

② 夏季,砼运输车加隔热套或对罐体喷淋冷水降温,砼泵送管道遮阳防晒。③ 砼浇灌作业面遮阳,减少砼冷量损失。

2.4 掺加缓凝剂,降低水化热峰值。掺加缓凝剂,能延缓水泥水化热的释放,延迟水化热的峰期,削减水化热的峰值。

2.5 掺UEA 膨胀剂。掺入UEA膨胀剂,在最初14d潮湿养护中,使砼体积微膨胀,补 偿砼早期失水收缩产生的收缩裂缝。

2.6 砼内部埋冷却水管进行强制降温。砼内部埋冷却水管进行强制降温,这也是有效的措施。一般地,这种方案较少采用,只有在砼厚度较大(≥2.5m),内部水化热温升偏高、内表温差和降温速率不易控制的情况下,才有必要采用。

2.7 采用二次振捣、二次抹压技术。砼入模振捣,在振捣时间界限以前,进行二次振 捣,以排除砼因泌水在粗骨料、水平钢筋下部产生的水分和空隙,提高砼与钢筋的握裹力。表面刮平抹压1~2h后,即在砼初凝前在砼表面进行二次抹压,消除砼干缩、沉缩和塑性收缩产生的表面裂缝,增加砼内部的密实度。但是,二次抹压时间必须掌握恰当,过早抹压没有效果;过晚抹压砼已进入初凝状态,失去塑性,消除不了砼表面已出现的裂缝。

2.8 加强养护。针对所施工的工程,按照施工季节、环境条件、施工方法,先进行热工计算。施工中及时掌握砼水化热升降规律,不同位置和深度的温度变化情况,随时调整养护措施。

①保湿养护:砼表面经过二次抹压后,立即覆盖塑料布,防止表面水分蒸发,保持砼处于潮湿状态下养护。特别是对于掺入UEA膨胀剂的砼,在最初14d内,必须潮湿养护,方能促使膨胀剂充分发挥膨胀作用。

②保温养护:砼表面蓄热保温,降低内外温差,减小温度梯度,延缓砼的降温速率。根据砼绝热温升计算,确定中心最高温度,按温控技术措施,确定养护材料及覆盖厚度和养护时间。保温养护的目的:减少砼表面热扩散,减小内外温差;延缓散热时间,控制降温速率,有利于砼强度增长和应力松弛,避免产生贯穿裂缝。养护一般不少于15d。

③在常温季节,砼终凝后也可采用蓄水养护的办法,替代前两种保湿保温养护办法。根据砼内外温差数据,及时调整蓄水高度,也能收到预期效果。浇水的水温与砼表面温度之差不超过15℃。

三 控制措施在工程施工中的运用

在实际工程施工中,由于各种客观条件的限制,往往不能按上述的措施面面都能做到,也并不要求面面都做到。采取哪些措施,这要根据实际情况决定取舍。

3.1 工程实例一 3.1.1 工程概况

##热轧板带工程轧机设备基础,其先施工的中心区基础底板,长为28m,宽为1 7.5m,厚1.9m、2.2m,砼量1100m,为大体积砼。砼强度等级为C30(P8)。由于本工程工期短,为抢工期,砼采用泵送浇灌。该时段,平均气温为15℃。为降低砼水化热及其峰值,一方面采用32.5级矿渣硅酸盐水泥,降低水化热;另一方面掺II级粉煤灰,减少水泥用量;再一方面掺缓凝型减水剂,既可减少水泥用量又可降低水化热峰值。由于条件的限制,本地只有细山砂。为改善细骨料的级配,按1:0.82内掺石粉。砼配合比为——水泥:(山砂+石粉):石子:粉煤灰(II级):减水剂(缓凝型):水=437:(356+292):1094:46:1.09:190。

3.2 工程实例二 3.2.1 工程概况

**热轧板厂新增卷取机和钢卷运输链系统设备基础,也属大体积砼基础。为防止收缩限制产生拉裂纹,先按小于30m的间距划分了后浇带。其中最大的一块是卷取机基础(-8.5m~-10.15m)底板,其长为25.5m,宽为18.5m,砼量约为1400m,砼强度等级为C25(P6)。砼在8月份浇灌,本地8月气温在25~30℃(计算取27℃)。水泥为32.5级散装普通硅酸盐水泥,细骨料为中粗山砂,粗骨料为级配矿渣。经测定水泥(罐装)、砂(棚内堆放)、矿渣(棚内堆放)、水的温度分别为:34℃、25℃、24.5℃、23℃,砂、矿渣的含水率分别为:1.5%、1%(拌前湿水为4%),混凝土拌制好后采用砼运输罐车运至浇筑部位,从搅拌至浇灌成型约需一小时。如果采用泵送混凝土,其配合比为——水泥:砂:矿渣:II级粉煤灰:水:减水剂=400:687:1120:48:175:3.2。四 结束语

在实际工程施工中,根据现有的理论和实践经验总结出来的具体措施,可以控制和减少大体积砼温度裂缝的发生。由于各种客观条件的限制,采取哪些控制措施,要根据具体的实际情况决定取舍,但要经计算验证,确保满足规范要求。

第五篇:浅析大体积混凝土温度裂缝原因及控制措施

浅析大体积混凝土温度裂缝原因及控制措施

中图分类号:TV544+.91

文献标识码: A 文章编号:

摘要:随着我国社会经济的快速发展和城市化进程的不断加快,城市工程建设规模日趋大型化和复杂化,随之而来的混凝土温度裂缝问题逐渐成为了普遍性的问题。因此,文章结合工程实例,通过对混凝土的相关计算,针对混凝土裂缝产生的原因进行深入的分析,提出相关合理有效的控制措施。供工程技术人员参考。

关键词:大体积混凝土;温度裂缝;控制措施

Abstract: with the rapid development of economy of our country society and accelerating urbanization, the city engineering construction scale is large and complicated, with the temperature cracks of concrete problem gradually become the universal problems.Therefore, combining with engineering practice, by the related calculation of concrete, the causes of cracks in concrete thorough analysis, and put forward relevant reasonable and effective control measures.For reference of engineering technicians.Keywords: mass concrete;Temperature crack;Control measures

城市工程建筑业的快速发展使得高层建筑等大型设备基础大量的出现。大体积混凝土广泛应用于工程的施工当中,在现代建设当中占有重要的地位。但是,温度裂缝作为混凝土结构中常见的现象,逐渐成为建筑工程技术人员面临的技术难题,直接影响到整体工程建设的质量。因此,分析温度裂缝产生的原因,寻找合理有效的控制措施,从而预防和避免裂缝的产生是十分必要的。

1工程概况

某建筑项目为大型商住楼,占地总面积为75627?O,由地下室、商业裙房、商住楼组成。底盘平面尺寸为119.5m×81.1m,为满足建筑使用功能的要求,该工程结构没有设温度缝,采用了超长超宽大底盘多塔复杂结构方案。

2大体积混凝土温度裂缝的成因分析

在固结过程中,大体积混凝土常因温度下降引起开裂,裂缝出现过程基本上可分为3个活动期:

2.1初期裂缝

初期是指浇筑后的升温期。在此期间,由于水化热使混凝土浇筑后1~3d温度急剧上升,内热外冷引起“自约束应力”,超过混凝土抗拉强度即引起初期裂缝。

2.2中期裂缝

中期是指水化热降温期。当水化热温升达到峰值之后便逐渐下降,水化热散尽时结构物的温度接近于周围气温,在此期间结构物冷缩(另外还增加干缩)引起“外约束应力”,当超过混凝土抗拉强度便引起中期裂缝。

2.3后期裂缝

后期是指“准稳定期”。当混凝土接近周围气温之后即保持相对稳定,随季节温度和日温度而变化,如暴露在外面受到寒流袭击引起裂缝,混凝土干缩也会引起开裂,因其效果与降温引起的收缩变形相似,通常采用当量温度表示,并与温度变化共同考虑。这些称为后期裂缝。针对不同的混凝土厚度和外界条件,早期、中期与后期裂缝产生的大小程度有所不同。对于厚度较薄的大面积混凝土,由于水化热能较快的通过混凝土上下表面很快散去,其早期和中期裂缝问题可弱化,后期裂缝为主要问题;但对于大体积混凝土,其早中期裂缝问题比较突出。大体积混凝土温度裂缝控制验算分析

本工程地下室底板平面尺寸为119.5m×81.1m,面积为8877m2,混凝土总用量为12246m3。基础底板标高为-8.75m,设计混凝土强度等级为C40,抗渗等级S8。施工方式为泵送混凝土,采用52.5号普通水泥,内掺UEA,要求UEA补偿收缩混凝土的限制膨胀率ε,不低于2.5×104。混凝土线膨胀系数为1.0×10-5/℃。本工程基础底板超长超宽,且公寓楼、办公楼核心筒下基础桩筏承台及l#住宅楼桩筏承台均为大体积混凝土。为此,本文以公寓楼核心墙下桩筏基础承台大体积混凝土为例进行定量与定性分析。

3.1温度计算

3.1.1混凝土水化热最高温升值:

(1)

式(1)中:W1、W2、F分别为单方混凝土水泥用量、UEA用量、粉煤灰或矿粉用量(kg/m3);Q1、Q2分别为水泥、UEA的水化热,取Q1=461kJ/kg,Q2=260kJ/kg;混凝土密度ρc=2450kg/m3,混凝土比热Cc=0.97kJ/kg?℃。将上述参数代入式(1)得:

△Tmax=86.2℃

参照不同浇筑厚度大体积混凝土龄期绝热温升曲线图,混凝土浇捣施工时,散热影响系数ξ∈取0.65,则混凝土内部实际最高温升值△T1=△ξTmax=56.0℃。

3.1.2本工程公寓楼部分底板施工期在秋季11月初,混凝土浇筑温度△Tj=24℃,环境温度取22.0℃,混凝土内部最高温度值按(2)式计算:

Tmax=Tj+△T1(2)

则混凝土内部最高温度Tmax=24+56.0=80.0(℃)

混凝土内外温差:88.0-22.0=58.0(℃)?25℃

根据《块体基础大体积混凝土施工技术规程》(YBJ224-91)的要求规定:混凝土浇筑块体的里外温差不应超过25℃。因此需采取温控措施,当混凝土内部为最高温度时混凝土表面温度应控制在不小于53℃左右,以控制早期、中期裂缝。表面温度的控制可通过材料热工系数计算,采取调整保温层的厚度来解决。

3.2.2后浇带封闭后混凝土温度收缩应力

本工程负二层地下室气温:冬天取平均10℃,夏天取平均26℃,温差△=l6℃;根据有关资料,基础底板最终收缩量取2.0×10-4,本工程施工期理论计算已完成收缩1.48×10-4。则正常使用阶段最大收缩变形值ε'd=0.52×10-4,收缩当量温差△T'2=5.2℃;在正常使用阶段,地下室底板因直接接触地基土,混凝土表面始终处于湿润状态,UEA能保持微膨胀状态,UEA限制膨胀率取ε'y=6×10-5,UEA补偿当量温差△T'1=εy/a=6.0℃,则后浇带封闭后使用阶段最大综合温差:

△T'=△T'1+△T'2-△T'3=16+5.2-6=15.2℃

将底板直线总长度L=119.5m,底板均厚H=1500,S(t)=0.28,及有关参数代人式(3),得温度应力σ'2=0.97MPa

σ'2为119.5m长基础底板中心位置附近最大拉应力,则公寓楼处衰减为γσ'2,取γ=0.6,则公寓楼区域处温度收缩应力σ2=γσ'2=0.6×0.97=0.58MPa

按照上述假定条件,本工程采用中国建研院SAP2000程序进行有限元计算复核,得后浇带封闭后该区域底板中心位置附近X向较大拉应力为0.55MPa,Y向较大拉应力为0.45MPa。此数值与上述计算σ2值很接近。

综合考虑上述两种,可估算出收缩和温差引起的公寓楼部分基础底板的最大拉应力:

σ=σ1+σ2=1.38+0.58=1.96MPa<2.39MPa,抗裂安全度K=2.39/1.96=1.21>1.15,满足抗裂要求。

从上面温度-应力双控计算结果分析,降温和收缩产生的拉应力不会引起基础混凝土贯穿裂缝。在采取合适的混凝土浇筑方法及良好的构造措施的前提下,基础底板的裂缝问题能得到较好的解决。

4大体积混凝土温度裂缝的控制措施

上述中关于定量分析中取值的研究与很多因素相关,其在施工中的参数具有一定的离散性,如大体积混凝土温度计算中,混凝土内部最高温度值、水平阻力系数及收缩影响系数等参数的取值直接影响到计算结果,这些都可能引起偏差。因此本工程的裂缝控制要求从原材料、设计、施工等方面进行综合控制。

4.1设计方面

(1)UEA补偿收缩混凝土结构自防水技术要求底板的UEA限制膨胀率不低于0.025%,本工程实测值为0.034%。

(2)设置后浇膨胀加强带,将传统后浇带做法与UEA混凝土膨胀加强带技术结合起来。本工程在纵横方向各设两道后浇带,将整个底板分成9个混凝土浇筑区间,在该条件下最大限度地削弱温度收缩应力Ea、△t。

(3)在满足强度、刚度、整体性和耐久性等结构计算的前提下,尽量降低混凝土强度

等级。可利用混凝土后期强度,以减小水泥用量,降低水化热。本工程基础底板混凝土强度等级比墙、柱降低两级。

(4)对大体积混凝土浇筑块体的温度、温度应力及收缩应力进行验算,确定大体积混凝土浇筑块体的升温峰值、内外温差(不超过25℃)及降温速度(不超过1.5℃,d)的控制指标,制订温控施工的技术措施。

4.2构造方面

为提高基础底板混凝土表面抗裂性能,在表面配置双向构造钢筋。本工程大体积混凝土承台板四周侧面及大于2m厚混凝土中间均设置双向构造筋。超长结构梁侧面应加强构造腰筋。在结构突变(或断面突变)部位易产生应力集中,转角和孔洞处增设构造筋加强。

4.3材料方面

(1)选用中低水化热的水泥(本工程原设计要求采用矿渣水泥,后因材料来源供应不上而只好采用普通水泥)。

(2)粗骨料选用5mm~40mm连续级配的石子,细骨料采用中、粗砂,严格控制骨料含泥量在1.5%以下。

(3)采用双掺技术,即混凝土中掺人一定量的优质粉煤灰或矿粉以代替部分水泥并提高混凝土的和易性,同时掺人具有缓凝、减水、膨胀的混凝土外加剂,以改善泵送混凝土工作性能和可靠性。

(4)大体积混凝土的配制应优化配合比设计,本工程因条件限制,地下室底板混凝土的配合比见表1(注:JEA为UEA系列换代产品)。

表1

4.4施工措施

本工程施工浇筑方案采用连续薄层推移式浇筑,利用分层斜面充分散热。同时,层面最长时间间隔不大于初凝时间;当层间间隔时间超过混凝土的初凝时间时,层面应按施工缝处理。泵送混凝土摊铺厚度≤500mm,并在浇筑过程中及时清除混凝土表面泌水。

混凝土浇筑完毕后,应及时按温控技术措施进行养护。本工程500mm厚超长底板仅覆盖1层薄膜保湿和1层麻袋保温,可满足要求,但大体积混凝土的温控养护必须高度重视。公寓楼核心墙下承台2.2m厚大体积混凝土采用保温方案:表面采用覆盖2层塑料薄膜保湿、1层5cm厚泡沫塑料板和2层麻袋保温,该措施可满足温控指标要求1住宅楼、办公楼核心筒下2.5m厚桩筏基础平面尺寸较大,中心温升接近绝热温升,为降低浇筑块体在入模温度基础上的最大温升值,采用外保内降方案,除保温外,在混凝土内部还设置冷却水管。冷却水管沿长向排列,水平间距为1.0m,浇筑后1d开始通水,通水流量1.2m3/h,水管进水口设换向控制阀门,不断调换进、回水方向,水温与混凝土的温度差控制在20℃~25℃:

对筏板混凝土基础施工进行现场监测,随时关注温度场的变化,如果内部最高温度或内外温差、降温速率超过警戒值应立刻调整养护方案。结束语

综上所述,大体积混凝土温度控制是一项长期严峻的工作,其关键在于降低混凝土温度应力和提高混凝土本身抗拉性能。因此,在混凝土施工前,应对其温度和温度应力进行计算,加强施工过程中的监控,遇到突发问题应及时做好相应的控制措施,同时提高工程技术人员的综合技能,学习和引进国内外先进的技术和经验。最大限度地减少和避免温度裂缝的产生,从而保证工程建设的整体质量。

参考文献

[1] 周明荣;高层建筑大体积混凝土温度裂缝的形成与预防[J];广西质量监督导报;2009年11期

[2] 房进胜;韩新怀;大体积混凝土结构裂缝产生的原因及措施[A];土木建筑学术文库(第15卷)[C];2011年

下载大体积很凝土温度裂缝的成因及其控制措施word格式文档
下载大体积很凝土温度裂缝的成因及其控制措施.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    大体积混凝土的温度裂缝控制措施[精选多篇]

    大体积混凝土的温度裂缝控制措施 河南省第五建筑安装(集团)有限公司450000龚凯辉 毕超 张笑康 摘要:在现代建筑中如:高层建筑基础、大型设备基础、水利大坝等时常涉及......

    浅析大体积混凝土裂缝控制措施

    地下防水综合施工技术 摘要:淮南矿业集团顾北煤矿选煤厂—落煤筒地下通道防水等级为二级,为保证地下通道防水工程质量,从设计到施工采取了一系列综合防水技术,本文拟对此作一......

    大体积混凝土温度裂缝防治措施

    大体积混凝土温度裂缝防治措施 项目管理科 杜建豹 摘 要:大体积混凝土施工时产生的温度裂缝 ,破坏了结构的整体性、耐久性、防水性 ,影响结构安全和正常使用 ,危害严重。分析......

    大体积混凝土温度裂缝(范文模版)

    大体积混凝土温度裂缝 摘要:介绍了大体积混凝土概念的界定,从温度应力和内外约束两个方面浅析了大体积混凝土温度裂缝产生的机理,总结了混凝土开裂的三种方式。根据裂缝产生的......

    大体积混凝土温度裂缝产生的原因及控制措施[5篇模版]

    大体积混凝土温度裂缝产生的原因控制措施 一、大体积混凝土温度裂缝产生的原因 1、混凝土内部和外部的温差过大会产生裂缝。温差裂缝的主要影响因素是水泥水化热引起的混凝......

    探析混凝土温度裂缝的成因及控制措施(推荐5篇)

    摘 要:温度控制在混凝土施工和养护中都是之分重要的部分。本文就混凝土温度裂缝的类型以及成因进行了分析,并对温度裂缝的控制对策进行了探讨。 混凝土在现代工程建设中占有......

    大体积混凝土温度裂缝浅析及控制方法

    大体积混凝土温度裂缝浅析及控制方法 【摘 要】随着我国经济的发展,工程建设规模越来越大型化、复杂化,这使得工程建设中的大体积混凝土温度裂缝问题日益突出并成为具有相当普......

    混凝土结构裂缝成因及控制措施

    混凝土结构裂缝成因及控制措施 一、内容摘要 现浇钢筋混凝土楼面板的裂缝,是目前较难克服的质量通病之一,住宅工程楼面出现裂缝,往往会引起投诉纠纷及索赔。建筑物钢筋混凝土结......