开关电源适配器输出纹波和噪声电压的抑制措施

时间:2019-05-14 21:53:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《开关电源适配器输出纹波和噪声电压的抑制措施》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《开关电源适配器输出纹波和噪声电压的抑制措施》。

第一篇:开关电源适配器输出纹波和噪声电压的抑制措施

开关电源适配器输出纹波和噪声电压的抑制措施

一、在开关电源适配器输出端采用片式三端电容器与普通电解电容器组合改善滤波的高频特性。

开关电源适配器的输出端含有较大的噪声电压的峰-峰值,这是由于电解电容器在高频下的特性不完善所造成的。因为电解电容在高频下可以用电容、电阻和电感三者的串联来等效,所以在高频下电容对噪声的旁路作用不在明显。由于电阻和电感的存在,反而使噪声电压体现在开关电源适配器的输出端。

为了抑制开关电源适配器的输出噪声,通常有两个建议可供设计人员采用: 1)将输出端的电解电容一拆为几,即将一个大容量的电解电容采用几个小容量电解电容并联来替代。这一建议虽不能根本抑制噪声电压的产生,但用新办法所产生的信噪声电压的峰-峰值要比原来为小。

2)在电解电容旁边并联一个小容量的高频陶瓷电容器,利用高频电容在高频下所体现的低容抗,使输出噪声电压得到较大衰减(当然在印制电路板上的陶瓷电容也应该保持比较短的布线长度,保持尽可能小的线路阻抗)。

二、采用高性能的表面贴装滤波器。

采用表面贴装的高性能滤波器来改善输出电压噪声。贴装滤波器内部电路等效为一个π型滤波线路,在开关电源适配器的输出端串上一个贴装高性能滤波器。对比原来的输出噪声电压峰-峰值,会大幅减小,在示波器上,几乎显示为一条直线,说明输出电压的噪声已明显得到抑制,从而很好说明了表面贴装高性能滤波器在这个线路中的作用。

三、避免多个模块电源之间相互干扰。

当在同一块印制电路板上有多个模块电源一起工作,若两个模块靠得很近,模块电源本身是不屏蔽的,并且靠得很近,输出端也没有采用低阻抗的电容,而且两个模块离开实际的输出端子的距离又比较远时,则可能因为相互之间的干扰使输出噪声电压增加。为避免这种相互干扰,可采用屏蔽措施,或将它们的安装位置适当远离,以减小相互之间的影响。

四、在开关电源适配器的输出端增加一级低压差线性稳压电路。在开关电源或者模块电源输出后再加一个电压差线性稳压电路,能大幅度地降低输出噪声,以满足对噪声有特别要求的电路需要,输出噪声可达微伏级。

由于低压差线性稳压器的压差(输入与输出电压的差值)仅为几百毫伏,则在开关电源的输出略高于低压差线性稳压器几百毫伏就可以输出标准电压了,并且其损耗也不大。

五、通过屏蔽和加装电源滤波器来减小开关电源对外界电磁的敏感度。采用金属外壳作为开关电源的屏蔽,可以减小开关电源对外界辐射电磁场的敏感度。另外,为了减少从电源线引入的传导敏感度,在开关电源适配器输入端加装电源滤波器是一个很好的办法。这两个办法对减小开关电源因外界电磁干扰对输出端的影响也是有一定好处的。当然,这两个措施对于抑制开关电源工作时自身所产生的电磁辐射和传导骚扰同样也是有效的。备注:为了对开关电源适配器直流输出电压中的纹波电压进行测试,对探头要做一点改造,以减小对杂乱信号的拾取。在探头上要并联两只电容,分别时0.1uF/50V的瓷片电容和1.0uF/50V的铝电解电容。由于铝电解电容是有极性的,所以在电解电容焊接时,要注意它与被测电压的极性保持一致。

第二篇:开关电源噪声的产生与抑制措施

噪声的种类

开关电源无论在体积、重量和效率方面都有显著的优点,已得到广泛的应用。但开关电源最大缺点是容易产生噪声。噪声的产生一般可分为两大类:一是开关电源内部元件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰,这涉及到人为因素和自然界的因素。

1.1 输出脉动噪声

主要是在输出端出现的脉冲干扰,产生的原因有:由AC输入频率引起的低频脉动电压;开关电源频率引起的高次谐波脉动电压;开关接通、断开时的尖峰噪声;对上述噪声的振幅最大值可用同轴电缆接到示波器上来观察测定。

1.2 辐射电场强度

开关电源产生的噪声会辐射到空间。辐射噪声的测定方法是:接好天线,开启仪器(场强仪等),用天线接收直射波与反射波。被测电源放在非金属的实验台上以360°来回转动,天线以上下1~4m距离移动以检测最大值。测试以垂直与水平两个方向来测定。

1.3 外来突变电压

外来突变电压干扰可用噪声模拟器检测。在输入交流线上同时注入同相杂音(注入电压据开关电源种类而定)。两者相位以90°、270°为最合适。确认在这外来突变电压的作用下,输出直流电压有无变动,并观察保护装置等是否产生误动作。

1.4 雷电冲击耐压实验

使用雷电冲击发生器,以保险丝以外的元件不损坏为原则,看一看输出电压的变动是否超过附加电压的规定。噪声产生源 2.1 开关管

开关功率管及其散热器与外壳和电源内部的引线间存在分布电容。当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份。由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流。凡有短路电流的导线及这种脉冲电流流经的变压器和电感产生的电磁场形成噪声源。

2.2 二极管的恢复特性

PN型硅二极管用作高频整流时,正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过)。一旦这个反向电流恢复时的电流斜率过大,流过线圈的电感就产生了尖峰电压。

2.3 变压器

开关电源中的变压器,用作隔离和变压。但在高频的情况下,它的隔离是很不完全的,变压器层间的分布电容使开关电源中的高频噪声很容易在初次级之间传递。变压器对外壳的分布电容形成另一条高频通路,而使变压器周围产生的电磁场更容易在其它引线上耦合形成噪声。

2.4 电容、电感器和导线

开关电源由于工作在较高频率,会使低频的元器件特性发生变化,由此产生噪声。3 消除噪声的主要方法

消除噪声应主要从以下三个部位入手:产生噪声的部件、传播噪声部位、公共结合部分。3.1 控制,消除噪声源

(1)由整流二极管的反向恢复时间引起的电流尖峰,不仅增加了二极管本身的功耗,使开关功率管产生电流尖峰,增加导通时的损耗,而更重要的是容易产生噪声。所以必须尽量采用反向恢复时间短的整流二极管,如肖特基二极管,pin结低损耗高速整流管。

(2)为了提高开关电源的效率应尽可能减少开关功率管的导通时间和关断时间。但随着开关频率和开关速度的提高,电源的噪声也将随之增加。所以,必须适当控制开关功率管的开关时间来限制噪声。

①在开关管的基极与发射极或集电极与基极间并联小容量电容,减缓基极信号的变化速率。

②在开关管集射极间并联RCD网络,可增加集电极电压的上升时间。

③在开关管集电极回路串联LRCD网络,L可限制集电极电流的上升速度。并联于电感L两端的RCD回路能防止电路引起振荡。

3.2 不使噪声传播

滤波器的滤波、元件的屏蔽等使噪声不至溢出。

(1)线路滤波器

雷电冲击等的自然噪声,开关的关闭等引起的人为噪声,会从交流输入端侵入到开关电源。为了防止开关电源的误动作,以及发生在开关电源内部的噪声不从输入端泄漏出去,可在输入端接入线路滤

波器。电路中Cx电容一般取0.1~0.47μF,Cy电容取1000~4700pF,共模扼流圈的电感可选择2mH左右。

(2)屏蔽

(a)开关管的屏蔽

开关管及输出整流二极管常加上散热板或通过框架进行散热,从而使晶体管集电极,二极管的负极与散热板间产生较大的电容量。由于那里进行数百伏电压的变化,共模噪声就发生了。所以在开关管的集电极,二极管的负极与散热板间放置绝缘金属板,能取得防止噪声发生的效果。

(b)变压器的屏蔽

对于变压器,为了达到传送电力的目的,除了符合线路规定的指标以外,还要求泄漏的磁通小,线圈间的层间电容量小。为此,可减少空隙,选用理想衬垫,线圈间进行静电屏蔽。为了防止变压器磁通泄漏,还应在外围用铜箔带卷好,来进行电磁场屏蔽。

3.3 开关电源的接地

(1)接地方式

正确的接地可消除各路电流流经公共地线产生的噪声,避免受磁场和地电位差的影响。

(2)扭转线

1500W以上的电源中,印板引出线较多。由于这些导线的往复,回线内磁通的变化会导致噪声的变化。一旦把二根电缆线绞在一起,不仅使线的占积率减少,而且由于反向脉冲电流流过电缆,可防止磁通的变化。结束语

抑制开关电源的噪声是开发应用开关电源的一个重要课题,为了有效地抑制和降低开关电源的噪声干扰,除了上述措施外,还需在其它方面采取措施。如:在印刷电路板设计、元件安装位置与方向,系统整个电路的布局、接线的布置等方面都要有利于减少开关电源的噪声。随着人们对开关电源抗噪声技术的提高,这种电源将会得到更广泛的应用.

第三篇:关于开关电源输出纹波问题

关于开关电源输出纹波问题

开关电源输出纹波主要来源于五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声

1、低频纹波是与输出电路的滤波电容容量相关.电容的容量不可能无限制地增加,导致输出低频纹波的残留.交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定.电流型控制DC / DC变换器的纹波抑制比电压型稍有提高.但其输出端的低频交流纹波仍较大.若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施.可采用前级预稳压和增大DC / DC变换器闭环增益来消除.低频纹波抑制的几种常用的方法:

a、加大输出低频滤波的电感,电容参数,使低频纹波降低到所需的指标.b、采用前馈控制方法,降低低频纹波分量.2、高频纹波噪声来源于高频功率开关变换电路,在电路中,通过功率器件对输入直流电压进行高频开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关,设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求.高频纹波抑制的目的是给高频纹波提供通路,常用的方法有以下几种:

a、提高开关电源工作频率,以提高高频纹波频率,有利于抑制输出高频纹波

b、加大输出高频滤波器,可以抑制输出高频纹波.C、采用多级滤波.3、由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生电感,因此当矩形波电压作用于功率器件时,开关电源的输出端因此会产生共模纹波噪声.减小与控制功率器件、变压器与机壳地之间的寄生电容,并在输出侧加共模抑制电感及电容,可减小输出的共模纹波噪声.减小输出共模纹波噪声的常用方法: a、输出采用专门设计的EMI滤波器.b、降低开关毛刺幅度.4、超高频谐振噪声主要来源于高频整流二极管反向恢复时二极管结电容、功率器件开关时功率器件结电容与线路寄生电感的谐振,频率一般为1-10MHz,通过选用软恢复特性二极管、结电容小的开关管和减少布线长度等措施可以减少超高频谐振噪声.开关电源都需对输出电压进行闭环控制,调节器参数设计的不适当也会引起纹波.当输出端波动时通过反馈网络进入调节器回路,可能导致调节器的自激振荡,引起附加纹波.此纹波电压一般没有固定的频率.在开关直流电源中,往往因调节器参数选择不适当会引起输出纹波的增大.这部分纹波可通过以下方法进行抑制:

a、在调节器输出增加对地的补偿网络,调节器的补偿可抑制调节器自激引起的纹波增大.b、合理选择闭环调节器的开环放大倍数和闭环调节器的参数,开环放大倍数过大有时会引起调节器的振荡或自激,使输出纹彼含量增加,过小的开环放大倍数使输出电压稳定性变差及纹波含量增加.所以调节器的开环放大倍数及闭环调节器的参数要合理选取,调试中要根据负载状况进行调节.c、在反馈通道中不增加纯滞后滤波环节.使延时滞后降到最小.以增加闭环调节的快速性和及时性,对抑制输出电压纹波是有益的.

第四篇:开关电源电压电流电磁骚扰的电磁噪声兼容性技术

引言

电磁兼容是一门新兴的跨学科的综合性应用学科。作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领域,如微波技术、微电子技术、计算机技术、通信和网络技术以及新材料等。电磁兼容技术应用的范围很广,几乎所有现代化工业领域,如电力、通信、交通、航天、军工、计算机和医疗等都必须解决电磁兼容问题。其研究的热点内容主要有:电磁干扰源的特性及其传输特性、电磁干扰的危害效应、电磁干扰的抑制技术、电磁频谱的利用和管理、电磁兼容性标准与规范、电磁兼容性的测量与试验技术、电磁泄漏与静电放电等。电磁兼容的英文名称为Electromagnetic Compatibility,简称EMC。所谓电磁兼容是指设备(分系统、系统)在共同的电磁环境中能一起执行各自功能的共存状态。这里包含两层意思,即它工作中产生的电磁辐射要限制在一定水平内,另外它本身要有一定的抗干扰能力。这便是设备研制中所必须解决的兼容问题。电磁兼容技术涉及的频率范围宽达0 GHz "400GHz,研究对象除传统设备外,还涉及芯片级,直到各种舰船、航天飞机、洲际导弹甚至整个地球的电磁环境。电磁兼容三要素是干扰源(骚扰源)、耦合通路和敏感体。切断以上任何一项都可解决电磁兼容问题,电磁兼容的解决常用的方法主要有屏蔽、接地和滤波。2 电磁兼容技术名词(1)电磁兼容性

电磁兼容性是指设备或者系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。(2)电磁骚扰

电磁骚扰是指任何可能引起设备、装备或系统性能降低或者对有生命或者无生命物质产生损害作用的电磁现象。电磁骚扰可引起设备、传输通道或系统性能的下降。它的主要要素有自然和人为的骚扰源、通过公共地线阻抗/内阻的耦合、沿电源线传导的电磁骚扰和辐射干扰等。电子系统受干扰的路径为:经过电源。通过信号线或控制电缆、场渗透,经过天线直接进入;通过电缆耦合,从其他设备来的传导干扰;电子系统内部场耦合;其他设备的辐射干扰;电子设备外部耦合到内部场;宽带发射机天线系统;外部环境场等。(3)电磁环境

电磁环境是一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。

(4)电磁辐射

电磁辐射是指电磁波由源发射到空间的现象。“电磁辐射”一词的含义有时也可引申,将电磁感应现象也包含在内。RFI/EMI可以通过任何一种设备机壳的开口、通风孔、出入口、电缆、测量孔、门框、舱盖、抽屉和面板以及机壳的非理想连接面等进行辐射。RFI/EMI也可由进入敏感设备的导线和电缆进行辐射,任何一个良好的电磁能量辐射器也可以作为良好的接收器。(5)脉冲

脉冲是指在短时间内突变,随后又迅速返回至其初始值的物理量。(6)共模干扰和差模干扰

电源线上的干扰有共模干扰和差模干扰两种方式。共模干扰存在于电源任何一相对大地或电线对大地之间。共模干扰有时也称纵模干扰、不对称干扰或接地干扰。这是载流导体与大地之间的干扰。差模干扰存在于电源相线与中线及相线与相线之间。差模干扰也称常模干扰、横模干扰或对称干扰。这是载流导体之间的干扰。共模干扰提示了干扰是由辐射或串扰耦合到电路中的,而差模干扰则提示了干扰是源于同一条电源电路。通常这两种干扰是同时存在的,由于线路阻抗的不平衡,两种干扰在传输中还会相互转化,所以情况十分复杂。干扰经长距离传输后,差模分量的衰减要比共模大,这是因为线间阻抗与线-地阻抗不同的缘故。出于同一原因,共模干扰在线路传输中还会向邻近空间辐射,而差模则不会,因此共模干扰比差模更容易造成电磁干扰。不同的干扰方式要采取不同的干扰抑制方法才有效。判断干扰方法的简便方法是采用电流探头。电流探头先单独环绕每根导线,得出单根导线的感应值,然后再环绕两根导线(其中一根是地线),探测其感应情况。如感应值是增加的,则线路中干扰电流是共模的;反之则是差模的。(7)抗扰度电平和敏感性电平

抗扰度电平是指将某给定的电磁骚扰施加于某一装置、设备或者系统并使其仍然能够正常工作且保持所需性能等级时的最大骚扰电平。也就是说,超过此电平时该装置、设备或者系统就会出现性能降低。而敏感性电平是指刚刚开始出现性能降低的电平。所以,对某一装置、设备或者系统而言,抗扰度电平与敏感性电平是同一数值。(8)抗扰度裕量

抗扰度裕量是指装备、设备或者系统的抗扰度电平限值与电磁兼容电平之间的插值。开关电源的电磁兼容性

开关电源因工作在高电压大电流的开关工作状态下,引起电磁兼容性问题的原因是相当复杂的。从整机的电磁性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合及电磁波耦合几种。共阻耦合主要是骚扰源与受骚扰体在电气上存在的共同阻抗,通过该阻抗使骚扰信号进入受骚扰体。线间耦合主要是产生骚扰电压

及骚扰电流的导线或PCB线因并行布线而产生的相互耦合。电场耦合主要是由于电位差的存在,产生感应电场对受骚扰体产生的场耦合。磁场耦合主要是指在大电流的脉冲电源线附近,产生的低频磁场对骚扰对象产生的耦合。电磁场耦合主要是由于脉动的电压或电流产生的高频电磁波通过空间向外辐射,对相应的受骚扰体产生的耦合。实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。

在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流均接近方波,从频谱分析知。方波信号含有丰富的高次谐波。该高次谐波的频谱可达方波频率的1000次以上。同时,由于电源变压器的漏电感及分布电容以及主功率开关器件的工作状态非理想。在高频开或关时,常常产生高频高压的尖峰谐波震荡。该谐波震荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射。用于整流及续流的开关二极管,也是产生高频骚扰的一个重要原因。因整流及续流二极管工作在高频开关状态,二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频震荡。整流及续流二极管一般离电源输出线较近,其产生的高频骚扰最容易通过直流输出线传出。开关电源为了提高功率因数,均采用了有源功率因数校正电路。同时,为了提高电路的效率及可靠性,减少功率器件的电应力,大量采用了软开关技术。其中零电压、零电流或零电压/零电流开关技术应用最为广泛。该技术极大的降低了开关器件所产生的电磁骚扰。但是,软开关无损吸收电路多数利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因此,该谐振电路中的二极管成为电磁骚扰的一大骚扰源。

开关电源一般利用储能电感及电容器组成L、C滤波电路,实现对差模及共模骚扰信号的滤波。由于电感线圈的分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频骚扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。滤波电容器随着骚扰信号频率的上升,引线电感的作用导致电容量及滤波效果不断的下降,甚至导致电容器参数改变,也是产生电磁骚扰的一个原因。4 电磁兼容性的解决方法

从电磁兼容的三要素讲,要解决开关电源的电磁兼容性问题,美白温补水滋润BB霜

可从三个方面入手:第一,减小骚扰源产生的骚扰信号;第二。切断骚扰信号的传播途径;第三,增强受骚扰体的抗骚扰能力。在解决开关电源内部的兼容性时,可以综合利用上述三个方法,以成本效益比及实施的难易性为前提。因而,开关电源产生的对外骚扰,如电源线谐波电流、电源线传导骚扰、电磁场辐射骚扰等只能用减小骚扰源的方法来解决。一方面,可以增强输入/输出滤波电路的设计,改善APFC电路的性能,减小开关管及整流、续流二极管的电压、电流变化率,采用各种软开关电路拓扑及控制方式等;另一方面。加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。而对外部的抗骚扰能力(如浪涌、雷击)应优化交流电输入及直流输出端口的防雷能力。通常,对1.2/50μs开路电压及8/20μs短路电流的组合雷击波形,因能量较小,通常采用氧化锌压

敏电阻与气体方电管等的组合方法来解决。对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离来解决或选用具有抗静电骚扰的器件。快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用与防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能。

减小开关电源的内部骚扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:①注意数字电路与模块电路PCB布线的正确分区;②数字电路与模拟电路电源的去耦;③数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻骚扰,减小地环地影响,布线时注意相邻线间的间距及信号性质,避免产生串扰,减小输出整流回路及续流二极管回路与支流滤波电路所包围的面积,减小变压器的漏电、滤波电感的分布电容。运用谐振频率高的滤波电容器等。5 滤波器结构

滤波是一种抑制传导干扰的方法。例如,在电源输入端接上滤波器,可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。它不仅可以抑制传输线上的传导干扰,同时对传输线上的辐射发射也具有显著的抑制效果。在滤波电路中,选用穿心电容、三端电容、铁氧体磁环,能够改善电路的滤波特性。进行适当的设计或选择合适的滤波器,并正确的安装滤波器是抗干扰技术的重要组成部分。在交流电输入端加装的电源滤波器电路如图1所示。图中Ld、Cd用于抑制差模噪声,一般取Ld为100 mH-700mH,Cd取1μF-10μF。Lc、Cc用于抑制共模噪声,可根据实际情况加以调整。

所有电源滤波器都必须接地(厂家特别说明允许不接地的除外),因为滤波器的共模旁路电容必须在接地时才起作用。一般的接地方法是除了将滤波器与金属外壳相接之外,还要用较粗的导线将滤波器外壳与设备的接地点相连。接地阻抗越低,滤波效果越好。

滤波器尽量安装在靠近电源入口处。滤波器的输入及输出端要尽量远离,避免干扰信号从输入端直接耦合到输出端。

如在电源输出端加输出滤波器、加装高频电容、加大输出滤波电感的电感量及滤波电容的容量,则可以抑制差模噪声。如果把多个电容并联,则效果会更好。

几种滤波器的构成如图2所示。在图2(a)中,阻抗Z=1/(ωC1),高频区域用陶瓷电容、聚酯薄膜电容并联,其滤波效果更好。图2(b)中,噪声能通过电容旁路到地线上,这种滤波器连接时应使接地阻抗尽量小。图2(c)中,C1、C2对不对称噪声有良好的滤波效果,C3对对称噪声有良好的滤波效果,连接时应使电容器的引线及接地线尽量短。图2(d)为常用的噪声滤波电路,L1、L2对噪声呈现高阻抗,而C1则对噪声呈现低阻抗。当L1、L2采用共模电感结构时,对对称和非对称噪声都有较好的滤波效果。图2(e)适用于共模噪声进行滤波,应注意的是其接地阻抗同样应尽量小。

图3是对共模噪声和差模噪声都有效的滤波器电路。其中,L1、L2、C1为抑制差模噪声回路,L3、C2、C3构成抑制共模噪声回路。L1、L2的铁心应选择不易磁饱和的材料及M-F特性优良的铁心材料。C1使用陶瓷电容或聚酯薄膜电容,应有足够的耐压值,其容量一般取0.22μF-0.47μF。L3为共模电感,对共模噪声具有较高的阻抗、较好的抑制效果。EMI滤波器选用与安装

开关电源EMI滤波器中的4只电容器用了两种不同的下标“x”和“y”,不仅说明了它们在滤波网络中的作用,还表明了它们在滤波网络中的安全等级。无论是选用还是设计EMI滤波器,都要认真的考虑Cx和Cy的安全等级。在实际应用中,Cx电容接在单相电源线的L和N之间,它上面除加有电源额定电压外,还会叠加L和N之间存在的EMI信号峰值电压。因此,要根据EMI滤波器的应用场合和可能存在的EMI信号峰值,正确选用适合安全等级的Cx电容器。Cy电容器是接在电源供电线L、N与金属外壳(E)之间的,对于220V、50Hz电源,它除符合250V峰值电压的耐压要求外,还要求这种电容器在电气和机械性能方面具有足够的安全裕量,以避免可能出现的击穿短路现象。

EMI滤波器是具有互异性的,即把负载接在电源端还是负载端均可。在实际应用中,为达到有效抑制EMI信号的目的,必须根据滤波器两端将要连接的EMI信号源阻抗和负载阻抗来选择该滤波器的网络结构和参数。当EMI滤波器两端阻抗都处于失配状态时,即图4中Zs≠Zin、ZL≠Zout时,EMI信号会在其输入和输出端产生反射,增加对EMI信号的衰减。其信号的衰减A与反射Γ的关系为:A=–10Lg(1-|Γ|2)。欢迎转载,本文来自电子发烧友网(http://www.xiexiebang.com)

在使用开关电源滤波器时,要注意滤波器在额定电流下的电源频率。在安装滤波器时,要特别注意滤波器的输入导线与输出导线的间隔距离,不能把它们捆在一起走线,否则EMI信号很容易从输入线上耦合到输出线上,这将大大降低滤波器的抑制效果。7 结语

在开关电源设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后去进行抗干扰的补救措施。

第五篇:PWM变频器输出过电压和谐波对电动机的影响及抑制措施

PWM变频器输出过电压和谐波对电动机的影响及抑制措施

随着电力电子技术和现代控制理论在交流变频器调速驱动系统的应用,特别是近年来,IGBT等高开关速率的电力电子器件及PWM变频调速技术的进步,变频器(或逆变器)越来越广泛地应用于工业生产和日常生活中,并且有取代直流调速传动的趋势。从目前国内看,中小容量的变频器调速系统使用的比较广泛,研制和开发技术还比较成熟,在使用的变频器中,低压变频器和100kW 以下的变频器占绝大多数,其中70%以上应用在风机泵类负载及压缩机上,如供水与供暖系统、输液系统和通风系统。在我国拖动风机泵类负载的电动机中,虽然大功率在数量上仅占20 %,但在容量上却占80%以上。因此,大功率电动机的变频调速是现在节能措施中极为重要的手段。石化、化工、采矿、钢铁、发电及自来水厂等行业所拥有的大功率风机泵类负载节能改造对大功率变频器的需求很大,这对变频器行业来说是一急需开发的市场。但是,目前在我国变频器的生产厂家中,实际能生产大功率低压变频器的还不多,大多数厂家实际上仅能生产75kW甚至是37kW以下的变频器。研究PWM逆变器供电对异步电动机的影响,不仅可以对电机和大功率变频器的设计和应用具有现实意义,而且对电机绝缘寿命有重要意义。PWM供电对电动机的影响 PWM变频调速对异步电动机的影响有很多方面,我现在从PWM变频器对电网和对电动机这两端来看,谈以下主要两点: 1.机端过电压 PWM变频器输出的具有陡上升沿或下降沿的脉冲电压却在电动机接线端子及绕组上产生了过电压,造成电动机绕组绝缘的过早破坏,许多变频电动机寿命只有1~2年,甚至有些在试运行期间电动机绝缘就发生击穿破坏。文献[1]中试验研究表明,很高的电压上升率()在电动机绕组上产生不均匀的电压分布,随着变频器与电动机之间电缆长度的增加,在电动机接线端子上将产生近2倍高频振荡的过电压,而且电缆越长,过电压的峰值越大,长时间重复性的过电压应力的作用将致电动机绕组匝间绝缘的过早破坏。在文献[1]中,也表明变频器开关器件高的开关频率会造成上升沿时间很短,电力晶体管(GTR)和IGBT通常时间小于0.1μ,GTO常处于2-10μ,这样使电机在很短的时间内承受很高的峰值电压;有些电机制造商给出了可以接受的上升时间,一般希望上升时间大约为5μ,而且过电压和入射电压、反射电压都在tr上升时间内同时急剧增加,这对电机来讲,长时间的作用会损坏电机。在文献[2]中,PWM驱动电机的输出电压幅值和频率通过控制逆变器开关状态来改变的,高的开关频率最明显的优点是减少低次谐波,可以减少输出滤波器的容量,但过快的电压变化能够引起严重的绝缘问题,对于每个脉冲的前沿和后沿在短时间内都有高频衰减振荡,而且峰值电压的85%都降落在第一个线圈上的第一匝,易引起匝间故障。2.变频器电源的谐波 变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变输出回路中,输出电压信号是受PWM载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。谐波电压和电流对电动机影响更大,会增加电动机的铁耗和铜耗,使电动机温度上升,效率下降,并产生噪声,还会使电动机转子振动,甚至造成电机损坏,谐波还对通信以及电子设备产生严重干扰,影响周围设备的正常运行。同时,谐波引起电缆内耗加大,电缆发热,缩短电缆的使用寿命;而高次谐波对电容的影响更为突出,含有高次谐波的电压加至电容两端时,由于电容器对高次谐波的阻抗很小,所以电容器很容易发生过负荷导致损坏。高次谐波的干扰,往往还会导致电动机保护开关误动作,造成电网停电,严重影响用电设备的正常工作。同时,高次谐波电流还通过电缆向空间辐射,对通讯设备也产生干扰信号。文献[6]中,用傅立叶分析方法把PWM变频器输出脉冲进行频谱分析,由于PWM在三相桥式逆变电路情况下,根据晶体管V1-V6的导通和截止的不同组合,三相输出端U、V、W相对于直流回路的中点0的电位分别为+E/2或-E/2,而输出线电压为+E、-E、0。经过分析,得到三相变频器输出线电压的基波和谐波幅值,谐波含量和幅值比较高,对电动机的影响比较严重。解决方案初探 1抑制谐波常用的方法 逆变器是电力电子装置中的重要组成部分,是不间断电源、交流电气传动、中频电源等许多设备的核心,因而其研究工作倍受人们的关注,研究的焦点是如何方便地调节逆变电源的输出电压和频率,并降低谐波含量,改善输出波形。迄今为止,降低谐波含量和调节输出电压(大小或频率)的常用措施有:(1)对逆变电源的开关进行高频PWM调制,使逆变器输出为高频等幅的PWM波;(2)通过改变逆变电源主电路拓扑结构,在主电路上进行波形重构以实现阶梯波形输出,减小低阶高次谐波含量; 对于高频PWM调制来说,开关频率越高,谐波含量越小,但开关损耗也越大,故不宜用在大功率逆变电源中。而波形重构方式往往需要多个逆变器来实现电压的叠加。波形重构的级数越多,出现的最低谐波次数越高,但主电路和控制电路也越复杂,相应地控制难度也越大,输出电压的调节也不甚方便,因此这种方式通常只在大功率逆变电源中采用。理论分析表明,早在1973年提出的消谐控制策略能有效地克服上述问题,它只需要较少的开关脉冲数即可完全消除容量较大的低阶高次谐波,取得很好的滤波效果,具有开关频率低、开关损耗小、电压利用率高、滤波容量小等许多优点,是实现逆变电源PWM控制的理想方法。然而该方法经过近二十年的研究至今仍未实际应用,其主要原因是消谐模型的求解复杂,难以获得实时控制。文献[5]中,提出适当的调节输出电压调制比、载波频率和逆变电路开关滞时等参数,可以减少谐波对电机的影响。以上的消除谐波多是从变频器的逆变侧出发,通过各种有效措施来减少输出的谐波含量。从谐波对电网的影响来看,治理谐波问题基本思路是:第一,对电力电子装置本身进行有效地控制,改造本身的性能,使其功率因数可控制为1,不产生谐波;第二,装谐波补偿装置来补偿谐波源,使其注入电网的谐波几乎为0.传统装设谐波补偿装置的方法是采用LC调谐滤波器,它的基本原理是利用LC串联谐振,为滤除特定次谐波提供阻抗极低的通路,使其不注入电网,同时还可以补偿无功功率。如图(1)所示,这种消谐方式结构简单,不必要控制回路,运行费用低,造价相对也较低,一直被广泛使用。这种方法主要缺点是补偿特性受电网阻抗和运行状态影响,容易和系统发生并联谐振,导致谐波放大,使LC滤波器过载甚至烧毁。但是目前LC滤波器仍是补偿谐波的主要手段,而且常用单调谐和二阶高通滤波器组合来滤波,二阶高通其结构如图(1)。由于LC滤波器本身缺点,国内外都探索采用其他滤波方式来进行电网谐波抑制。有源滤波器(APF)就是一种能够弥补无源滤波器不足的新型滤波设备。它的基本原理是向系统电网注入补偿谐波电流,以抵消非线性负载所产生的谐波电流。如图(2)所示。有源滤波器基本原理可用如下一组公式来描述: , , ,,式中 表示为负载电流的基波分量; 但是有源滤波器的使用要求有较大的容量来提供足够的补偿电流。因此,文献[7]又提出了混合型有源滤波器,它的优点在于结合了无源滤波器和有源滤波器的优点,克服有源电力滤波器容量大、成本高的缺点,又可获得良好的补偿性能。无源LC滤波器典型组成可以滤除特征谐波,如5、7、9、11等,这样,绝大多数由谐波源产生的谐波已由LC滤波器滤除,有源滤波器只需要补偿LC滤波器未能补偿的谐波,因而,有源滤波器只需要提供很小的补偿电流,容量不需要很大。2.机端过电压的抑制 在电机端子上安装阻抗匹配器可以很大程度地消除过电压,最简单的是并联一个与电缆的波阻抗接近的电阻,但在电阻上功耗很大。采用阻抗匹配与滤波于一体低通滤波器,它是将电阻和电容串联后并联在电机接线端子相相之间,如图(2)要阻止机端过电压,必须正确地选择滤波器参数,对于任意容量或电压等级的变频调速系统,滤波器参数的选取应根据变频器的上升时间及幅值、电缆和电动机的波阻抗及电缆长度来确定。文献[3]中试验表明,一般来说,驱动系统的容量越大,变频器的上升时间就越长,电缆和电动机的波阻抗就越小,滤波器的参数Rf和Cf则相应减小。对于滤波电阻Rf的阻值应该与电缆的波阻抗Z0相等,而电动机的冲击阻抗(或波阻抗)远大于Z0,这样负载阻抗近似为电阻,电缆末端的负载阻抗与电缆的波阻抗相匹配,那末在电机机端就不会产生电压波的全反射,也不会形成过电压。滤波器的Rf和Cf与电动机端过电压的关系:(1)滤波器的电容值Cf越大,Rf越小,过电压倍率(上升沿处的电压峰值Vm与稳态值V之比)就越小;(2)过电压倍率随电容增加而变化幅度与Rf有关,Rf越大,过电压倍率随电容变化幅度越小,当Rf大于一定阻值时,过电压倍率随电容的增加,变化幅度很小; 滤波器的Rf与Cf与电动机端上升沿时间的关系:(1)Rf越小,上升沿时间tr就越大,且随Cf的增大而增加,但Cf超过一定值时,tr趋于饱和,与电容值无关;(2)电缆长度L越长,上升沿时间也相应增加,这样电压变化率就越小; 在文献[9]中,为了抑制电动机端电压反射现象,可采用RC一阶无源滤波器来显著减少电动机端的过电压,消除了高频阻尼震荡现象,从而避免电动机绝缘的快速老化甚至损坏。通过分析表明,电压反射现象与逆变器输出脉冲的上升时间以及电缆的长度有关,PWM上升时间越短,电缆长度越长,反射越明显。在文献[8]中提出使用新的逆变器输出滤波器的拓扑结构,能够有效减少高频谐波引起电动机轴承和绝缘损害。新的滤波器是由LC滤波器和RLC滤波网络串联构成,如图(3)LC滤波器由变频器开关频率来调谐,能够十分有效地滤掉开关频率出地电压谐波,在开关频率处阻抗为无穷大,滤波器的谐振角频率为,对于RLC滤波器而言,也要满足一定的条件。此种新的滤波器结构使输出波形比较平缓,可以降低输出脉冲的过电压和上升沿时间,相对于传统的并在电动机出口的RC滤波而言,如图(4),它能够很好的消除过电压对电机的影响。总结 从上述所讲,PWM变频器所产生的谐波和过电压对电网和对电机的影响是十分严重的,尽管目前已经提出了各种解决方法,但是对于谐波而言,所引起得一些基本概念还没有统一定义,谐波治理还停留在无源阶段,需要大量工作来使有源和混合型滤波器投入实际运行中,对于PWM输出脉冲所产生过电压问题,如何有效抑制,基本都用无源RC来抑制,对于参数的选取比较麻烦,如果寻求一种更高效防止过电压的电路,能够实时的检测PWM上升沿和下降沿,及时的补偿过电压来提高效率,减少电机的损坏和使用寿命。

下载开关电源适配器输出纹波和噪声电压的抑制措施word格式文档
下载开关电源适配器输出纹波和噪声电压的抑制措施.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐