第一篇:钢筋砼屋面梁温度裂缝的分析与处理
钢筋砼屋面梁温度裂缝的分析与处理
摘要:本文着重探讨在本实例中,钢筋砼屋面梁温度裂缝产生的原因,并具体予以分析与处理,希望能够为设计及施工人员提供一点经验教训,引起大家在生产中对温度裂缝的重视。
关键词: 钢筋砼屋面梁、裂缝、梁体的室内外温差、裂缝宽度。
一、工程概况
某综合楼建筑面积1500m,为钢筋砼框架结构建筑,基础为锤击沉管灌注桩基础。工程于1999年
12~○5轴天面横向框架梁及次梁月开工,1999年6月完成框架并开始做室内砌体及粉刷。2000年1月发现○2在支座处梁面及梁两侧出现垂直裂缝。裂缝宽度在0.2~0.5mm。裂缝位置和情况如图
1、图2所示。选择几条较宽的裂缝,在清除表面批荡层后,发现裂缝沿梁截面高度呈上宽下窄状。为表面裂缝,基本未贯穿梁底。
图1图2
二、设计的验算复核
现以开裂的横向框架梁进行裂缝宽度验算。夏季,横向框架梁梁面与梁底的温差为20°C,梁顶受热变形大于梁底。此时,温度效应产生的弯矩与屋面荷截效应产生的弯矩在梁支座处同向,为不利组合。
查阅设计计算结果,该处梁支座的弯矩(恒载+活载)标准值为Mk=-27.085kN·m。设定两端嵌固计,由梁上、下表面温差造成的梁支座弯矩:
Mt=-аttoEI/h=1×10-5×20×2.55×104×200×6003/(12×600)=-30.6 kN·m 其中аt为砼线膨胀系数,取1×10/C;E为砼弹性模量,C20取2.55×10 N/mm;to=t1-t2,其中
-5 o
42t1为梁底温度,t2为梁顶温度,to取20oC;矩形梁惯性矩为 I=bh3/12,其中b为梁宽200mm,h为梁高度600mm。
梁支座弯矩Ms=Mk +Mt=27.08+30.6=57.68 kN·m 为尊重历史现实,裂缝开展仍采用原设计当时的执行规范,即GBJ10-89规范的公式计算。使用阶段的钢筋应力 бss=Ms/0.87hoAs=57。68×10
6/(0.87×565×308)=381N/mm
2配筋率 ρte=As/0.5bh=308/0.5×200×600=0.0051 砼抗拉ftk=1.5N/mm,钢筋不均匀系数 2 ψ=1.1-0.65ftk/ρ裂缝宽度 teбss=1.1-0.65×1.5/0.0051×381=0.598 wmax=2.1ψбss(2.7c+0.1d/ρte)ν/Es
=2.1×0.598×381×(2.7×25+0.1×14/0.0051)×0.7/(2.0×10)=0.573mm 其中Es为Ⅱ级钢筋弹性模量, 取2×10;c为钢筋砼保护层厚度,取25mm ;ν为纵向钢筋表面特
5征系数,Ⅱ级钢筋取ν=0.7。
三、裂缝产生的原因分析及处理措施
1、根据天面砼试件资料及对天面砼梁进行现场回弹,砼强度等级均超过C20,符合设计要求,故可排除因梁身砼强度等级不足而引起梁开裂的可能。
2、该工程采用锤击沉管砼灌注桩基础,复打法施工,质监部门对50%的桩做了小应变检测,并未发现断桩,桩成形大致良好。查阅测沉记录,该楼共设9个沉降观测点,最大沉降量是7mm,最小沉降量为3mm,最大沉降差为4mm,整体沉降均匀。故亦可排除由于桩基础沉降过大而引起梁开裂的可能。
3、研究施工单位实际操作,当时由于资金问题,工程在完成顶层粉刷,天面未铺隔热砖的情况下暂停了下来。屋面仅做了水泥砂浆找平。江门地处亚热带地区,夏季气候炎热。笔者曾用温度计测量楼面阳光直射处,温度可达50°C以上,而室内梁底温度则为30°C左右。因屋面仅有一层2cm厚的水泥砂浆,故屋面的隔热性很差,梁体的室内外温差在炎热的夏日中午至少在20°C以上。
4、根据该综合楼的结构施工图,当时按六度四级抗震设计,出现裂缝的横向框架梁截面为20×60,支座钢筋为2Ф14。
由以上计算可知,本工程横向屋面梁产生温度裂缝的原因是在长时间未铺隔热砖的情况下,梁顶、梁底温差造成温度弯矩与梁支座处由荷载引起的弯矩同向叠加。而设计时,未有考虑温差作用,钢筋配置不足,从而产生裂缝。
发现裂缝后,为了观察裂缝的发展趋向,设计让施工单位对裂缝用石膏和红油作上标记,并立即铺上架空隔热砖,经过三个月观测,裂缝末有发展,已趋于稳定。鉴于裂缝宽度较小,其处理方法为:凿去裂缝两侧各5cm宽的批荡层及找平层,用水冲洗裂缝,再刷掺有107胶的水泥浆,最后用1:2水泥砂浆抹平凿出的凹槽。再经过一年的跟踪观测,无发现新裂缝产生,故此认为以上分析及处理是正确的。
四、结束语
砼结构一般不计算由于温度、收缩产生的内力。温度应力对结构的影响是很复杂的问题,并非凭计算就能完全解决的,一方面建筑物温度场分布和收缩参数等都很难准确地决定;另一方面砼又不是弹性材料,它既有塑性变形,还有徐变和应力松弛,实际的内力要远小于按弹性结构的计算值。
因此钢筋砼框架结构的温度收缩问题,由构造措施来解决。
实际上在设计中也没有都进行温度应力计算,但并不因此而出事。我看关键是在设计思想上重视温度热胀冷缩应力的影响,从多方面采用措施,避免构件表面长期暴晒,减少构件表面温度剧烈变化,设置屋面隔热层是行之有效的办法。结构设计中,利用概念设计,对可能受温度应力影响的构件,部分进行加强处理,也是可行的。
经验不多,不当之处,望大家指正。
参考文献:
1.GB 50010—2002 混凝土结构设计规范。
2.郭继武,建筑结构教学丛书《砼结构与砌体结构》,北京:高等教育出版社
第二篇:大体积砼温度裂缝控制措施及其
大体积砼温度裂缝控制措施及其
在工程施工中的运用
[摘 要]在实际工程施工中,根据现有的理论和实践经验总结出来的具体措施,可以控制和减少大体积砼温度裂缝的发生。由于各种客观条件的限制,采取哪些控制措施,要根据具体的实际情况决定取舍。[关键词] 大体积砼 裂缝 控制措施 运用
在现代工业与民用建筑中,超长、超厚的大体积砼基础已屡见不鲜,但其裂缝的产生时有发生。如何控制大体积砼裂缝的产生,是一项国际性的技术问题。根据现有的理论和实践经验,在实际工程中,也可以控制和减少大体积砼裂缝的发生。一 大体积砼结构温度、收缩裂缝产生的原因
大体积砼裂缝主要分为两大类:一类是荷载引起的裂缝(约占20%),一类是变形(温度、收缩、不均匀沉陷)引起的裂缝(约占80%)。由于荷载引起的裂缝通过常规的应力计算可以得到很好控制,这里着重探讨由于温度、收缩引起的变形裂缝。
在大体积砼浇筑后,由于其表面系数小,体积大,水泥的水化热量较高,水化热聚积在内部不易散发,砼内部温度将逐渐增高,而表面散热很快,形成较大的内外温差,内部产生压应力,外部产生拉应力。若在砼表面附近存在较大的温度梯度,就会引起较大的表面拉应力,由于此时的砼的龄期很短,抗拉强度很低,如果温差产生的拉应力超过此时砼的极限抗拉强度,就会在砼表面形成表面裂缝。这种裂缝一般多发生在砼浇灌后的升温阶段,如果此时砼的表面不能保持潮湿的养护条件,则砼表面由于水分蒸发较快而使初期的砼产生干缩,将加剧裂缝的产生。砼浇灌后,由于温升影响产生的表面裂缝也叫第一种裂缝。2 温升影响产生的第二种裂缝是收缩裂缝。它产生在砼的降温阶段,即当砼降温时,由于逐渐散热而产生收缩,再加上砼硬化过程中,由于砼内部拌合水的水化和蒸发,以及胶质体的胶凝等作用,促使砼硬化时收缩。这两种收缩,在收缩时受到基底或结构本身的约束,会产生很大的收缩应力(拉应力),如果产生的收缩应力超过当时的砼极限抗拉强度,就会在砼中产生收缩裂缝,这种裂缝有时会贯穿全断面而成为结构性裂缝。
大体积砼,升温阶段内外温差过大,会造成表面裂缝;降温速率过大,会造成贯穿性冷缩缝。表面裂缝虽不属于结构性裂缝,但在砼收缩时,由于表面裂缝处断面被削弱且存在应力集中,促使砼收缩裂缝的开展,所以大体积砼施工中既要防止表面裂缝的产生,又要防止收缩裂缝的出现。
因此,控制砼结构浇筑实体因水泥水化热引起的温升、砼浇筑块体里外温差及降温速度,防止砼实体出现有害的温度裂缝(包括砼收缩)是施工技术的关键问题。4 在长期的实践中,人们发现一些规律:
① 砼强度等级越高,越易出现裂缝。② 泵送砼比半干性砼易出现裂缝,因其用水量大,粗骨料粒径较小,水泥用量大。
③ 温差和收缩越大越容易开裂,裂缝越宽、越密; ④ 收缩和温度变化的速度越快,越容易开裂; ⑤ 基底对结构的约束作用越大,越容易开裂:
⑥ 温度梯度越大、承受均匀温差收缩的厚度越小,越容易开裂;
⑦ 在一般情况下,结构的几何尺寸越大,越容易开裂,但这也不是绝对的。二 在工程施工中控制温度、收缩裂缝的措施
实践证明,一方面,如果将砼内部与其表面的温差、温降速度控制在一定范围内,砼就不至于产生表面裂缝(我国规范确定的这个温差限值为25℃、温降速度为1.5℃/d);另 一方面,减小每次施工面积(设置后浇带),减小基底对结构的约束作用(设置可滑移垫层),加大加密配筋,均可增强砼结构对砼收缩的抵抗作用。前一方面是施工技术人员应解决的问题,后一方面主要由设计师根据实际情况决定。在工程施工中,温度、收缩裂缝控制的主要任务
降低砼内部最高温升,减少总降温差;提高砼表面温度,降低砼内外温差,减小温度梯度;延缓砼的降温速率,充分发挥砼的徐变特性;减少用水量,控制原材料质量。具体措施
2.1 选用中低热的水泥品种,从根本上减小水化热。选择中低热品种水泥(普通硅酸盐水泥、矿渣硅酸盐水泥),优先选用矿渣硅酸盐水泥。水泥越细,标号越高,其活性与强度随之增高,带来的副作用是砼自身收缩越大。能用低标号的水泥,尽量不用高标号水泥。
2.2 减少单位体积砼的水泥用量,也是减小水化热和砼收缩的根本途径。一般地,水泥量每增加10kg,水化热将升高1℃。可以通过以下措施减小单方砼水泥用量:
① 可以不采用泵送砼时,尽量不采用泵送。
② 在工期许可的情况下,经设计人员同意,充分利用砼后期强度,用R60或R90代R28作为设计强度。
③ 掺入一定比例的掺合料。砼中掺入磨细粉煤灰、矿渣粉、沸石粉、硅粉等掺合料,可以改善砼的工作性,提高可泵性,降低水化热,增加密实度,提高砼强度和耐久性,减少砼收缩。
④ 掺入高效减水剂,减少用水量,从而减少单方砼水泥用量。砼掺入减水剂,可以减少用水量,在保证水灰比不变的情况下,可以减少水泥用量,降低砼收缩。同时可减少砼中的自由水蒸发引起的收缩。
⑤ 控制粗细骨料质量。粗骨料粒径增大,可以减少用水量和水泥用量,从而可以减少砼的自身收缩。粗骨料必须是连续级配,针片状含量不超标,不仅能提高砼的可泵性,还可以减少砂率及细粉料含量,达到减少砼自身收缩的目的。但粗骨料最大粒径应满足结构钢筋净间距和砼泵送管径要求。细骨料级配合理,采用中砂比用细砂可降低用水量,从而降低砼的收缩值。粗细骨料含泥量必须控制在标准以内,含泥量增大,不仅增加砼收缩,还会降低砼抗拉强度,对砼抗裂十分有害。
2.3 降低砼的浇筑温度,减少总降温差。
① 降低进入搅拌机的温度。夏季在水箱内加冰块降低水温;粗骨料遮阳防晒,并洒冷水降温;细骨料遮阳防晒;散装水泥提前储备,避免新出厂水泥温度过高。
② 夏季,砼运输车加隔热套或对罐体喷淋冷水降温,砼泵送管道遮阳防晒。③ 砼浇灌作业面遮阳,减少砼冷量损失。
2.4 掺加缓凝剂,降低水化热峰值。掺加缓凝剂,能延缓水泥水化热的释放,延迟水化热的峰期,削减水化热的峰值。
2.5 掺UEA 膨胀剂。掺入UEA膨胀剂,在最初14d潮湿养护中,使砼体积微膨胀,补 偿砼早期失水收缩产生的收缩裂缝。
2.6 砼内部埋冷却水管进行强制降温。砼内部埋冷却水管进行强制降温,这也是有效的措施。一般地,这种方案较少采用,只有在砼厚度较大(≥2.5m),内部水化热温升偏高、内表温差和降温速率不易控制的情况下,才有必要采用。
2.7 采用二次振捣、二次抹压技术。砼入模振捣,在振捣时间界限以前,进行二次振 捣,以排除砼因泌水在粗骨料、水平钢筋下部产生的水分和空隙,提高砼与钢筋的握裹力。表面刮平抹压1~2h后,即在砼初凝前在砼表面进行二次抹压,消除砼干缩、沉缩和塑性收缩产生的表面裂缝,增加砼内部的密实度。但是,二次抹压时间必须掌握恰当,过早抹压没有效果;过晚抹压砼已进入初凝状态,失去塑性,消除不了砼表面已出现的裂缝。
2.8 加强养护。针对所施工的工程,按照施工季节、环境条件、施工方法,先进行热工计算。施工中及时掌握砼水化热升降规律,不同位置和深度的温度变化情况,随时调整养护措施。
①保湿养护:砼表面经过二次抹压后,立即覆盖塑料布,防止表面水分蒸发,保持砼处于潮湿状态下养护。特别是对于掺入UEA膨胀剂的砼,在最初14d内,必须潮湿养护,方能促使膨胀剂充分发挥膨胀作用。
②保温养护:砼表面蓄热保温,降低内外温差,减小温度梯度,延缓砼的降温速率。根据砼绝热温升计算,确定中心最高温度,按温控技术措施,确定养护材料及覆盖厚度和养护时间。保温养护的目的:减少砼表面热扩散,减小内外温差;延缓散热时间,控制降温速率,有利于砼强度增长和应力松弛,避免产生贯穿裂缝。养护一般不少于15d。
③在常温季节,砼终凝后也可采用蓄水养护的办法,替代前两种保湿保温养护办法。根据砼内外温差数据,及时调整蓄水高度,也能收到预期效果。浇水的水温与砼表面温度之差不超过15℃。
三 控制措施在工程施工中的运用
在实际工程施工中,由于各种客观条件的限制,往往不能按上述的措施面面都能做到,也并不要求面面都做到。采取哪些措施,这要根据实际情况决定取舍。
3.1 工程实例一 3.1.1 工程概况
##热轧板带工程轧机设备基础,其先施工的中心区基础底板,长为28m,宽为1 7.5m,厚1.9m、2.2m,砼量1100m,为大体积砼。砼强度等级为C30(P8)。由于本工程工期短,为抢工期,砼采用泵送浇灌。该时段,平均气温为15℃。为降低砼水化热及其峰值,一方面采用32.5级矿渣硅酸盐水泥,降低水化热;另一方面掺II级粉煤灰,减少水泥用量;再一方面掺缓凝型减水剂,既可减少水泥用量又可降低水化热峰值。由于条件的限制,本地只有细山砂。为改善细骨料的级配,按1:0.82内掺石粉。砼配合比为——水泥:(山砂+石粉):石子:粉煤灰(II级):减水剂(缓凝型):水=437:(356+292):1094:46:1.09:190。
3.2 工程实例二 3.2.1 工程概况
**热轧板厂新增卷取机和钢卷运输链系统设备基础,也属大体积砼基础。为防止收缩限制产生拉裂纹,先按小于30m的间距划分了后浇带。其中最大的一块是卷取机基础(-8.5m~-10.15m)底板,其长为25.5m,宽为18.5m,砼量约为1400m,砼强度等级为C25(P6)。砼在8月份浇灌,本地8月气温在25~30℃(计算取27℃)。水泥为32.5级散装普通硅酸盐水泥,细骨料为中粗山砂,粗骨料为级配矿渣。经测定水泥(罐装)、砂(棚内堆放)、矿渣(棚内堆放)、水的温度分别为:34℃、25℃、24.5℃、23℃,砂、矿渣的含水率分别为:1.5%、1%(拌前湿水为4%),混凝土拌制好后采用砼运输罐车运至浇筑部位,从搅拌至浇灌成型约需一小时。如果采用泵送混凝土,其配合比为——水泥:砂:矿渣:II级粉煤灰:水:减水剂=400:687:1120:48:175:3.2。四 结束语
在实际工程施工中,根据现有的理论和实践经验总结出来的具体措施,可以控制和减少大体积砼温度裂缝的发生。由于各种客观条件的限制,采取哪些控制措施,要根据具体的实际情况决定取舍,但要经计算验证,确保满足规范要求。
第三篇:梁裂缝分析
混凝土开裂原因分析及解决方法
(2008-11-23 20:01:29)转载 标签: 分类: 施工技术
混凝土开裂
混凝土因其取材广泛、价格低廉、抗压强度高、可浇筑成各种形状,并且耐火性好、不易风化、养护费用低,成为当今世界建筑结构中使用最广泛的建筑材料。
混凝土最主要的缺点是抗拉能力差、脆性大、容易开裂。大量的工程实践和理论分析表明,几乎所有的混凝土构件均是带裂缝工作的,只是有些裂缝很细,甚至肉眼看不见(<0.05mm),一般对结构的使用无大的危害,可允许其存在;我国现行建筑、铁路、公路、水利等部门设计规范均采用限制构件裂缝宽度的办法来保障混凝土结构的正常使用。
有些裂缝在使用荷载或外界物理、化学因素的作用下,不断产生和扩展,引起混凝土碳化、保护层剥落、钢筋腐蚀,使混凝土的强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构的正常使用,必须加以控制。混凝土开裂可以说是“常发病”和“多发病”,经常困扰着工程技术人员。其实,如果采取一定的设计和施工措施,很多裂缝是可以克服和控制的。
实际上,混凝土裂缝的成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。本报告对混凝土裂缝的种类和产生的原因作较全面的分析并提出相应的防治措施,供同行、专家参考、探讨。混凝土裂缝的种类,就其产生的原因,大致可划分如下几种:
一、荷载引起的裂缝
混凝土构件在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。
(一)直接应力裂缝是指外荷载引起的直接应力产生的裂缝。裂缝产生的原因有:
1、设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。结构设计时不考虑施工的可能性;设计断面不足(宁波跨海大桥);钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。
2、施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。
3、使用阶段,超出设计载荷的作用于楼地面、墙面;工业厂房超负荷使用;发生大风、大雪、地震、爆炸等。
(二)次应力裂缝是指由外荷载引起的次生应力产生裂缝。
裂缝产生的原因有:
1、在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。
例如:两铰拱桥拱脚设计时常采用布置“X”形钢筋、同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。
2、工业建筑中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。
在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。
实际工程中,次应力裂缝是产生荷载裂缝的最常见原因。次应力裂缝多属张拉、劈裂、剪切性质。
次应力裂缝也是由荷载引起,仅是按常规一般不计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。例如现在对预应力、徐变等产生的二次应力,不少平面杆系有限元程序均可正确计算,但在40年前却比较困难。
在设计上,应注意避免结构突变(或断面突变),当不能回避时,应做局部处理,如转角处做圆角,突变处做成渐变过渡,同时加强构造配筋,转角处增配斜向钢筋,对于较大孔洞有条件时可在周边设置护边角钢。荷载裂缝特征依荷载不同而异呈现不同的特点。这类裂缝多出现在受拉区、受剪区或振动严重部位。但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。
(三)根据结构不同受力方式,产生的裂缝特征如下:
1、中心受拉:裂缝贯穿构件横截面,间距大体相等,且垂直于受力方向。
采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。
2、中心受压:沿构件出现平行于受力方向的短而密的平行裂缝。
3、受弯:弯矩最大截面附近从受拉区边沿开始出现与受拉方向垂直的裂缝,并逐渐向中和轴方向发展。采用螺纹钢筋时,裂缝间可见较短的次裂缝。当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。
4、大偏心受压:大偏心受压和受拉区配筋较少的小偏心受压构件,类似于受弯构件。
5、小偏心受压:小偏心受压和受拉区配筋较多的大偏心受压构件,类似于中心受压构件。
6、受剪:当箍筋太密时发生斜压破坏,沿梁端腹部出现大于45°方向的斜裂缝;当箍筋适当时发生剪压破坏,沿梁端中下部出现约45°方向相互平行的斜裂缝。
7、受扭:构件一侧腹部先出现多条约45°方向斜裂缝,并向相邻面以螺旋方向展开。
8、受冲切:沿柱头板内四侧发生约45°方向斜面拉裂,形成冲切面。
9、局部受压:在局部受压区出现与压力方向大致平行的多条短裂缝。
二、温度变化引起的裂缝
混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。引起温度变化主要因素有:、水化热
出现在施工过程中,大体积混凝土浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。
施工中应根据实际情况,尽量选择水化热低的水泥品种(矿渣水泥),限制水泥单位用量(使用减水剂),减少骨料入模温度(冰水搅拌),降低内外温差(通过表面保温),并缓慢降温,必要时可采用循环冷却系统(预埋)进行内部散热,或采用薄层连续浇筑以加快散热。
2、蒸汽养护或冬季施工时施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。
3、年温差
一年中四季温度不断变化,但变化相对缓慢,我国年温差一般以一月和七月月平均温度的作为变化幅度。考虑到混凝土的蠕变特性,年温差内力计算时混凝土弹性模量应考虑折减。
4、日照
屋面、墙面受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。日照和下述骤然降温是导致结构温度裂缝的最常见原因。
5、骤然降温
突降大雨、冷空气侵袭、日落等可导致结构外表面温度突然下降,但因内部温度变化相对较慢而产生温度梯度。日照和骤然降温内力计算时可采用设计规范或参考实际资料进行,混凝土弹性模量不考虑折减。
6、钢制预埋件与钢筋或其它钢制件联结时,若焊接措施不当,铁件附近混凝土容易烧伤开裂。采用电热张拉法张拉预应力构件时,预应力钢材温度可升高至350℃,混凝土构件也容易开裂。
试验研究表明,由火灾等原因引起高温烧伤的混凝土强度随温度的升高而明显降低,钢筋与混凝土的粘结力随之下降,混凝土温度达到300℃后抗拉强度下降50%,抗压强度下降60%,光圆钢筋与混凝土的粘结力下降80%;由于受热,混凝土体内游离水大量蒸发也可产生急剧收缩。
三、收缩引起的裂缝
在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和干缩是发生混凝土体积变形的主要原因,另外还有自生收缩和碳化收缩。
1、塑性收缩
发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。
塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。
为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。
2、干缩
混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为干缩(缩水收缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是干缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。
3、自生收缩
自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如掺膨胀剂的膨胀水泥混凝土)。
4、碳化收缩
大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。碳化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。碳化收缩一般不做计算。
混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。
但收缩值累积过大,也会造成混凝土的贯通裂缝(断板)。例如:大面积水泥混凝土楼地面,如果不及时切割伸缩缝,必然断板。研究表明,影响混凝土收缩裂缝的主要因素有:
① 水泥品种、标号及用量
矿渣水泥、快硬水泥、低热水泥混凝土收缩性较高,普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。另外水泥标号越低、单位体积用量越大、磨细度越大,则混凝土收缩越大,且发生收缩时间越长。例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。
② 骨料品种
骨料中石英、石灰岩、白云岩、花岗岩、长石等吸水率较小、收缩性较低;而砂岩、板岩、角闪岩等吸水率较大、收缩性较高。另外骨料粒径大收缩小,含水量大收缩越大。
③水灰比 用水量越大,水灰比越高,混凝土收缩越大。
④外掺剂 外掺剂保水性越好,则混凝土收缩越小。
⑤外掺料 外掺料的细度越高,混凝土收缩越大。外掺料的掺量越大,混凝土收缩越大。一般商品(泵送)混凝土都含有较大掺量(15%~30%)的粉煤灰,混凝土收缩较大,所以采用商品(泵送)混凝土的工程比较容易开裂。⑥养护方法
良好的养护可加速混凝土的水化反应,获得较高的混凝土强度。养护时保持湿度越高、气温越低、养护时间越长,则混凝土收缩越小。蒸汽养护方式比自然养护方式混凝土收缩要小。
⑦外界环境
大气中湿度小、空气干燥、温度高、风速大,则混凝土水分蒸发快,混凝土收缩越快。
⑧振捣方式及时间
机械振捣方式比手工捣固方式混凝土收缩性要小。振捣时间应根据机械性能决定,一般以5~15s/次为宜。时间太短,振捣不密实,形成混凝土强度不足或不均匀;时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝。对于温度和收缩引起的裂缝,增配构造钢筋可明显提高混凝土的抗裂性,尤其是薄壁结构(壁厚20~60cm)。构造上配筋宜优先采用小直径钢筋(φ8~φ14)、小间距布置(@10~@15cm),全截面构造配筋率不宜低于0.3%,一般可采用0.3%~0.5%。
四、地基础变形引起的裂缝
由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。基础不均匀沉降的主要原因有:
1、地质勘察精度不够、试验资料不准
在没有充分掌握地质情况就设计、施工,这是造成地基不均匀沉降的主要原因。比如丘陵区或山岭区桥梁,勘察时钻孔间距太远,而地基岩面起伏又大,勘察报告不能充分反映实际地质情况。
2、地基地质差异太大
建造在山区沟谷的建筑物,河沟处的地质与山坡处变化较大,河沟中甚至存在软弱地基,地基土由于不同压缩性引起不均匀沉降。
3、结构荷载差异太大
在地质情况比较一致条件下,各部分基础荷载差异太大时,有可能引起不均匀沉降,例如高层建筑的主楼比周边裙房的荷载要大,中部的沉降就要比周边大。
4、结构基础类型差别大
同一建筑群中,混合使用不同基础如条形基础和桩基础,或同时采用桩基础但桩径或桩长差别大时,也可能引起地基不均匀沉降。
5、分期建造的基础
老建筑物的扩建,新扩建建筑物或基础处理时引起地基土重新固结,均可能对原有建筑物的基础造成较大沉降。
6、地基冻胀
在低于零度的条件下含水率较高的地基土因冰冻膨胀;一旦温度回升,冻土融化,地基下沉。因此地基的冰冻或融化均可造成不均匀沉降。
五、钢筋锈蚀引起的裂缝
由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2~4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。
要防止钢筋锈蚀,设计时应根据规范要求控制裂缝宽度、采用足够的保护层厚度(当然保护层亦不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度);施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,防止氧气侵入,同时严格控制含氯盐的外加剂用量,沿海地区或其它存在腐蚀性强的空气、地下水地区尤其应慎重。
密实混凝土表面的防腐涂料----也是一种有效手段!
六、冻胀引起的裂缝 大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀9%,因而混凝土产生膨胀应力;同时混凝土凝胶孔中的过冷水在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,混凝土强度降低,并导致裂缝出现。尤其是混凝土初凝时受冻最严重,成龄后混凝土强度损失可达30%~50%。
温度低于零度和混凝土吸水饱和是发生冻胀破坏的必要条件。当混凝土中骨料空隙多、吸水性强;骨料中含泥土等杂质过多;混凝土水灰比偏大、振捣不密实;养护不力使混凝土早期受冻等,均可能导致混凝土冻胀裂缝。
冬季施工时,采用电气加热法、暖棚法、地下蓄热法、蒸汽加热法养护以及在混凝土拌和水中掺入防冻剂(但氯盐不宜使用),可保证混凝土在低温或负温条件下硬化。
七、施工材料质量引起的裂缝
混凝土主要由水泥、砂、骨料、拌和水、掺合撩及外加剂组成。配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。
1、水泥
(1)、水泥安定性不合格,水泥中游离的氧化钙含量超标。氧化钙在凝结过程中水化很慢,在水泥混凝土凝结后仍然继续起水化作用,可破坏已硬化的水泥石,使混凝土抗拉强度下降。
(2)、水泥出厂时强度不足,水泥受潮或过期,可能使混凝土强度不足,从而导致混凝土开裂。
(3)、当水泥含碱量较高(例如超过0.6%),同时又使用含有碱活性的骨料,可能导致碱骨料反应。
2、砂、石骨料
(1)、砂石的粒径、级配、杂质含量
砂石粒径太小、级配不良、空隙率大,将导致水泥和拌和水用量加大,影响混凝土的强度,使混凝土收缩加大,如果使用超出规定的特细砂,后果更严重。
砂石中云母的含量较高,将削弱水泥与骨料的粘结力,降低混凝土强度。砂石中含泥量高,不仅将造成水泥和拌和水用量加大,而且还降低混凝土强度和抗冻性、抗渗性。
砂石中有机质和轻物质过多,将延缓水泥的硬化过程,降低混凝土强度,特别是早期强度。
砂石中硫化物可与水泥中的铝酸三钙发生化学反应,体积膨胀2.5倍。(2)、碱骨料反应
碱骨料反应有三种类型: ①、碱硅酸反应
参与这种反应的骨料有流纹岩、安山岩、凝灰岩、蛋白石、黑硅石、燧石、鳞石英、玻璃质火山岩、玉髓及微晶或变质石英等。反应发生于碱与微晶氧化硅之间,其生成物硅胶体遇水膨胀,在混凝土中产生很大的内应力,可导致混凝土突然爆裂。这类反应是碱骨料反应的主要形式。②、碱硅酸盐反应
参与这种反应的骨料有粘土质岩石、千枚岩、硬砂岩、粉砂岩等。此类反应的特点是膨胀速度非常缓慢,混凝土从膨胀到开裂,能渗出的凝胶很少。③、碱碳酸岩反应 多数碳酸岩石没有碱活性,有特定结构的泥质细粒白云质灰岩和泥质细粒灰质白云岩才具有与碱反应的碱活性,且还须高碱度、一定湿度环境下才能反应膨胀。
碱骨料反应裂缝的形状及分布与钢筋限制有关,当限制力小时,常出现地图状裂缝,并在缝中有白色或透明的浸出物;当限制力强时则出现顺筋裂缝。在工程实践中必须对骨料进行碱活性检验,采用对工程无害的材料,同时使用含碱量低的水泥品种。
3、掺合料
外掺料的细度越高,混凝土收缩越大。外掺料的掺量越大,混凝土收缩越大。一般商品(泵送)混凝土都含有较大掺量(15%~30%)的粉煤灰,混凝土收缩较大,所以采用商品(泵送)混凝土的工程比较容易开裂
4、拌和水及外加剂
拌和水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。采用海水或含碱泉水拌制混凝土,或采用含碱的外加剂,可能对碱骨料反应有影响。
八、施工工艺质量引起的裂缝
在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位和走向、裂缝宽度因产生的原因而异,比较典型常见的有:
1、混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护层加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的裂缝。
2、混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈蚀或其它荷载裂缝的起源点。
3、混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,即塑性收缩裂缝。
4、混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。
5、混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。
6、用泵送混凝土施工时,为保证混凝土的流动性,增加水和水泥用量,或因其它原因加大了水灰比,导致混凝土凝结硬化时收缩量增加,使得混凝土体积上出现不规则裂缝。
7、混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施工缝之间出现裂缝。如混凝土分层浇筑时,后浇混凝土因停电、下雨等原因未能在前浇混凝土初凝前浇筑,引起层面之间的水平裂缝;采用分段现浇时,先浇混凝土接触面凿毛、清洗不好,新旧混凝土之间粘结力小,或后浇混凝土养护不到位,导致混凝土收缩而引起裂缝。
8、混凝土早期受冻,使构件表面出现裂纹,或局部剥落,或脱模后出现空鼓现象。
9、施工时模板刚度不足,在浇筑混凝土时,由于侧向压力的作用使得模板变形,产生与模板变形一致的裂缝。
10、施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷载作用下产生裂缝。
11、施工前对支架压实不足或支架刚度不足,浇筑混凝土后支架不均匀下沉,导致混凝土出现裂缝。
12、装配式结构,在构件运输、堆放时,支承垫木不在一条垂直线上,或悬臂过长,或运输过程中剧烈颠撞;吊装时吊点位置不当,T梁等侧向刚度较小的构件,侧向无可靠的加固措施等,均可能产生裂缝。
13、安装顺序不正确,对产生的后果认识不足,导致产生裂缝。如钢筋混凝土连续梁满堂支架现浇施工时,钢筋混凝土墙式护栏若与主梁同时浇筑,拆架后墙式护栏往往产生裂缝;拆架后再浇筑护栏,则裂缝不易出现。
14、施工质量控制差。任意套用混凝土配合比,水、砂石、水泥材料计量不准,结果造成混凝土强度不足和其他性能(和易性、密实度)下降,导致结构开裂。
第四篇:钢筋混凝土连续箱梁的裂缝分析与处理
钢筋混凝土连续箱梁的裂缝分析与处理 裂缝产生的原因分析
影响裂缝产生的原因很多,有地基沉降、支架系统变形、混凝土收缩、温差、材料质量和施工质量等原因,当然也有设计原因。
1.1 混凝土收缩裂缝
混凝土是由气、液、固三相组成的假固体(指浇注过程到保养),其中尚有未水化的水泥颗粒,还要吸收周围的水份。液固相间的胶凝体,因水份散失,体积会缩小,引起收缩裂缝:
①箱梁的体积与表面积比值小,混凝土收缩大,易产生裂缝。
②箱梁混凝土浇筑均采用泵送混凝土,由于泵送混凝土施工工艺要求坍落度大,混凝土用水量和水泥用量较大,湿润养护如不及时,混凝土中的水泥水化物因部分失水而干缩,导致水泥混凝土
表面的干缩裂缝。
③由于温差作用,混凝土顶部温度较高、底部温度较低,顶部混凝土收缩受到下部混凝土的约束产生裂缝;由于泵送混凝土时,温度较高,同时内部水化热进一步升温,而外部环境温度较低时,形成了较大的内外温差,从而使混凝土表面开裂。
1.2 地基基础沉降差异产生的裂缝
①因地基持力层或桩壁土层的变化,容许承载力的差异导致早期
或晚期裂缝。
②由于基础本身施工时处理不当,处理不均匀,致使箱梁浇筑后基础在外荷载作用下发生不均匀沉降导致早期或晚期裂缝。1.3 支架系统变形产生的裂缝
①由于支撑立杆(或立柱)不均匀分布,各部分刚度分布不一致,使其杆件的弹性变形不均匀,导致早期裂缝。
②支架的地基不均匀沉降引起现浇箱梁的早期裂缝。
1.4 施工管理不善产生裂缝
①拌制混凝土时不按配合比计量,任意加水,浇筑的质量不均匀,收缩不统一产生裂缝。
②混凝土从搅拌到浇筑的时间过长,致使大量网状不规则的裂缝
产生。
③混凝土养护差,混凝土在高温和大风的影响下,常产生早期裂缝,裂缝常发生在梁的薄弱处(据有关资料表明:周围温度高于30℃,水份蒸发很快,当风速增至11.1m/s的大风时,水份蒸
发速度快7倍)。
④有的施工处理不当,没有按规定处理就浇筑新混凝土,造成施工缝处新老结合处夹渣和裂缝。
⑤箱梁混凝土过早受力产生裂缝,由浇筑方法本身不够严密或者提早拆模或过早落架使梁过早受力,这种情况经常发生。
⑥野蛮施工,用重物撞击等造成裂缝。
1.5 材料差异造成的裂缝
①使用不合格水泥出现早期不规则的短缝。
②砂、石的含泥量超过规定,不仅降低混凝土的强度和抗渗性,还会使混凝土干燥时产生不规则的网状裂缝。③砂、石的级配差,有的砂粒过细,用这种材料拌制的混凝土常
造成梁侧面裂缝。
1.6 化学反应导致裂缝
①使用反应骨料或风化岩石引起裂缝。骨料中含有泥性硅物质与碱性物质相遇,则水、硅、碱反应生成膨胀的胶质,吸收水后造成局部膨胀和拉应力,则构件产生爆裂状裂缝,在潮湿的地方较
为多见。
②酸、盐类腐蚀。混凝土中含氯量超过规定后,一段时间后沿钢
筋方向产生裂缝。
③碳化收缩裂缝。空气中的CO2与水泥石中Ca(OH)2等分子相互作用生成碳酸钙(CaCO3),同时放出结合水,使混凝土体积缩小,引发细丝裂纹网。
1.7 设计原因(仅供参考)
①构件结构面积不足时,在扭曲或局部应力作用下,会导致在构
件较弱的部位产生裂缝。
②钢筋含筋量过大或保护层太小,会引起沿钢筋纵向方向的裂
缝。预防措施
2.1 施工管理不善产生的裂缝和混凝土收缩
①搅拌混凝土要先做配合比,施工时严格按照配合比计量,控制用水量,确保混凝土强度及坍落度一致。
②采用高效减水剂,在满足混凝土坍落度的前提下降低水泥用量
及含水量。
③浇筑混凝土时,前、后方配合好,设专人负责,随拌随用。
④混凝土浇筑好后要进行二次抹平压实,以消除沉缩裂缝。
⑤浇筑好的混凝土箱梁在12小时内加以覆盖和洒水,以保持混凝土的湿润状态,一般不小于7天,必要时采用养护液喷洒或用塑料膜覆盖封闭,防止水分蒸发,以利于混凝土的养护。
⑥严格按照《钢筋混凝土施工及验收规范》预留和处理施工缝,并尽量缩短施工缝上下两部分混凝土的施工时间差,以减少由于两部分不同量收缩而产生的相互作用力。已浇筑混凝土的抗压强度大于1.2MP后清除混凝土表面的水泥薄膜和松动石子及弱混凝土层,用水冲洗干净,且不积水,浇筑前,宜先铺一层水泥浆,将混凝土捣实,使新、老混凝土紧密结合。
⑦混凝土浇筑程序要充分论证,避免已初凝的混凝土过早受力造
成裂缝。
⑧在暑期昼夜温差较大,混凝土浇筑安排尽量避开高温阶段。
⑨在暑期使用砂、石料尽量遮阳、洒水等措施降低拌和时的温度。
⑩严格控制拆模和落架时间,避免使梁过早受力。并严禁在拆除
底模的梁上堆放重物。
2.2 地基沉降和支架原因产生的裂缝
①支架的地基要处理均匀,并对下卧层的不良土层进行处理。
②支架设计时应尽量分布均匀,其杆件的刚度应尽量保持一致。并进行预压,设计合理的预拱度。2.3 材料质量差异引起的裂缝
①水泥进场必须有出厂合格证,并对其抽样试验,以满足其抗压、抗折强度及安定性要求。应使用水化热较低的硅酸盐水泥,不应
使用水化热较高的水泥。
②砂必须选用材质坚硬、干净的中粗砂;粗骨料的最大粒径、级配、强度均要满足规范要求,并要严格控制含泥量。
2.4 化学反应导致的裂缝
①尽量不用碱集料反应性骨料。
②冬季施工时严格控制混凝土中的含氯量。
③提高外露部分混凝土的强度等级,加强混凝土表面的压实抹光
工序。裂缝的处理
本文介绍两种裂缝处理方法,一般来讲对混凝土收缩裂缝等这些对梁体结构本身受力影响并不大,为了防止钢筋生锈而进行的裂缝处理,或者裂缝较小,象这类裂缝一般采用压注环氧树脂进行粘合封闭;另一种则是因箱梁过早受力和部分设计原因等引起的裂缝,这种裂缝一般采用环氧砂浆进行封堵。
3.1 环氧树脂法
①首先对混凝土裂缝的基层表面进行处理,在裂缝表面用钢丝刷将其表面的灰尘、浮渣、油垢等清除,并沿缝用丙酮擦洗,晾晒干燥,且其含水率不能大于6%。
②环氧树脂胶料配制 称取定量的环氧树脂,按胶料配合比加入稀释剂二甲苯与环氧树脂均匀拌和,待温度降至常温后,再加入固化剂乙二胺充分搅拌就配制成了环氧树脂胶料。配制好的环氧树脂胶料,至加入固化剂起,必须在30分钟内处理完毕。
③环氧树脂胶料的配合比(重量比):
环氧树脂∶二甲苯∶乙二胺=100∶40∶8
④最后用玻璃布或嵌刀将环氧树脂胶泥仔细批嵌封闭。
⑤材料要求:
a.环氧树脂采用E-44#(旧称6101),其软化点为12~20℃、环氧值(当量/100g)为0.41~0.47,为淡黄色至棕黄色粘稠透明液体。
b.乙二胺:纯度大于70%,为无色透明液体。
3.2 环氧砂浆封堵法
①处理步骤
a.混凝土基层表面清理,沿缝凿宽8~10mm,深度大于10mm,用钢丝刷沿缝槽将灰尘、浮渣及松散层彻底清除,用丙酮将其油垢擦洗干净、晾晒,其含水率不大于6%。
b.在清洁的混凝土槽内,薄而均匀地涂刷环氧底胶料,不得有漏涂和留坠现象。
c.涂完底胶料后,自然固化12小时后,然后用玻璃布或嵌刀将环氧砂浆分层封堵,每层厚度不大于5mm,用沟缝条压平压实。
d.环氧砂浆自然固化24小时后,用环氧底胶料封闭,封闭宽度应大于环氧砂浆缝宽,且每边要超出2~3mm。
e.封堵后要保持干燥,用碘钨灯烘烤。
②配合比(重量比)
a.环氧底胶料
环氧树脂∶二甲苯∶乙二胺=100∶60∶8 b.环氧砂浆配合比
环氧树脂∶二甲苯∶乙二胺∶石英粉∶石英砂=100∶60∶8∶100∶150 ③配制方法
a.环氧底胶料的配制方法与环氧树脂胶料的配制方法一样,只不过配合比不同而已。
b.环氧砂浆的配制:先将石英粉、石英砂按比例拌匀,然后将前面拌制好的环氧底胶料倒入已好的混合料中充分搅拌均匀即可。
④注意要点:
a.配制好的环氧砂浆自加入固化剂起计时,必须要在40分钟内用完。
b.裂缝基层清理完成的缝或槽,必须经检查合格后方能进行封堵
第五篇:T梁裂缝分析
一、裂缝情况及分析:
裂缝是混凝土结构普遍会遇到的现象,一类是由外荷载引起的裂缝,也称结构性裂缝,表示结构承载力可能不足或存在严重问题;另一类裂缝是由变形引起的,也称非结构性裂缝,指变形得不到满足,在构件内部产生自应力,当该自应力超过混凝土允许应力时,引起混凝土开裂。在上述两类裂缝中,变形裂缝约占80%.引起该类裂缝的原因主要有:
(1)混凝土浇注后处于塑性阶段,由于混凝土骨料沉落及混凝土表面水分蒸发而产生
裂缝。
(2)混凝土凝固过程中因收缩而产生裂缝。
(3)由于温度变化产生的裂缝,结构随着温度古变化受到约束时,在混凝土内部产生应力,当此应力超过混凝土抗裂强度,混凝土便开裂,即产生温度裂缝。
(4)施工不当产生裂缝。从裂缝情况看,裂缝分布部位,裂缝方向、出现时间具有一定的规律性。裂缝分布在跨中处,只有腹板开裂,且两面对称,时间一般为拆模后两天左右。如果施工方案合理,施工工艺符合质量控制要求,混凝土配合比、坍落度满足要求,而现场地施工温度高达25℃以上,那么裂缝的主要原因是因温度应力引起的。温度应力包括内约束应力和外约束应力。内约束应力是指结构内部某一构件单元,在非线形温差作用下纤维间温度不同,引起的应变不同而受到约束引起的应力;外约束应力是指结构内部各构件因温度不同产生变形受到的约束后结构外部超静定约束,无法实现自用变形引起的应力。
二、防止裂缝产生及措施:
1、由混凝土质量引起的非结构裂缝,可以通过以下措施防止:控制及改善水灰比,减少砂率,增加骨料用量,严格控制坍落度,混凝土凝固时间不宜过短,下料不宜过快,高温季节注意采取缓凝措施,避免水分剧烈蒸发,混凝土振捣密实,改善现场混凝土的施工工艺,同时注意混凝土的施工防雨、养护及保温工作。一旦裂缝出现,可以用环氧树脂配固化剂、丙酮以1:05:0.25的比例配合进行修补,将裂缝周围5厘米内的混凝土用钢刷刷毛吹净,用酒精清洗后,再用丙酮擦洗一次,在涂环氧树脂,贴玻璃布,以后再涂一层环氧树脂。玻璃布要求经5%浓度的纯硷水煮沸脱脂,用清水冲洗干净并烘干。这种封闭处理,能保证日后运营过程中梁体内钢筋不受大气腐蚀,提高结构的使用寿命。
2、由温度应力引起的非结构裂缝,可以通过配置足够的温度应力钢筋、增加结构的安全储备等措施来防止裂缝的产生(在腹板加纵向钢筋);同时在施工时,应尽量选择温度低的时间浇注后半天(利用早、晚进行施工)、热天浇注混凝土时,应降低水温拌制,选用水化热小和收缩小的水泥灰比,合理使用减水剂,加强振捣以减少水化热,3、在施工中对38米预应力混凝土T梁裂缝的控制方案和已出现裂缝的处理办法是:
——裂缝的控制方案:
A:在腹板处两面对称增加通长纵向应力钢筋,根数为原设计的一倍。
B:控制好混凝土的浇注时间和浇注时的温度,安排在早、晚或温度低的时候进行混凝
土浇注。
C:及时掩护,并用塑料布进行覆盖,经常保持混凝土湿润。
D:及时拆模、及时张拉。当混凝土达到拆模强度时就即使拆模,当混凝土强度达到设计张拉强度时就及时张拉压浆。——裂缝的处置措施:用环氧树脂配固化剂、丙酮以1:0.5:0.25的配合比进行修补。将裂缝周围5厘米内的混凝土用钢刷刷干净,用酒精清洗后,再用丙酮擦洗一次,再涂环氧树脂,贴玻璃布,之后再涂一层环氧树脂。玻璃布要求经5%浓度的纯硷水煮沸脱脂,能保证日后运营过程中梁体内的钢筋不受大气腐蚀,提高结构的使用寿命。通过以上的控制方案和防处治措施,在以后的T梁预制过程中再没有出现裂缝,并通过对裂缝的处治也不影响梁体的正常使用。
结论:
预应力混凝土箱形结构产生裂缝很常见,但可避免或减少,关键是在设计时,认真验算,合理不止构造钢筋或预应力筋,对易出现裂缝的部位,通过施工过程的严格控制,尽可能地避免开裂或减少裂缝的数量,减少裂缝的长度和宽度,通过对裂缝的妥善处理,控制裂缝的发展,使裂缝不至于对结构产生危害,保证结构的正常使用。