第一篇:苏占彪:大体积混凝土裂缝成因及施工控制(本站推荐)
大体积混凝土裂缝成因及施工控制
苏占彪
(作者简介,苏占彪,男,1972年11月2日出生,山西省朔州市平鲁区人,朔州路桥建设有限责任公司工程师,研究方向:道路、桥梁施工)
摘要:通过对工程施工中大体积混凝土施工裂缝问题产生原因进行分析,提出了降低混凝土温度应力、防止混凝土产生裂缝的施工控制措施,以及在构造设计上对大体积混凝土应采取的防裂措施,供大家参考。
关键词:大体积混凝土 水化热 裂缝 前言
随着施工技术的突飞猛进,大体积混凝土在结构中应用的越来越多。我国普通混凝土配合比设计规范规定:混凝土结构物中实体最小尺寸不小于1 m的部位所用的混凝土即为大体积混凝土;美国则规定为:任何现浇混凝土,只要有可能产生温度影响的混凝土均称为大体积混凝土。目前,国内外对机械荷载引起的开裂问题研究得较为透彻。而对温度荷载引起的有关裂缝的研究尚不充分。我们应对此加以重视,防止危害结构的裂缝产生。
1.大体积混凝土裂缝产生的主要原因
大体积混凝土结构裂缝的发生是由多种因素引起的,各类裂缝产生的主要影响因素如下:
2.1 水泥水化热的影响
水泥水化过程中放出大量的热,且主要集中在浇筑后的7d左右,一般每克水泥可以放出500J左右的热量,如果以水泥用量350kg/m³ ~550kg/m³来计算,每立方米混凝土将释放出17500KJ~27500的热量,从而使混凝土内部温度升高(可达70℃左右,甚至更高)尤其对大体积混凝土来讲,这种现象更加严重 因为混凝土内部和表面的散热条件不同,故混凝土中心温度很高,就会形成温度梯度,使混凝土内部产生压应力,表面产生拉应力,当拉应力超过混凝土的极限抗拉强度时混凝土表面就会产生裂缝。
2.2 混凝土的收缩
混凝土在空气中硬结时体积减小的现象称为混凝土收缩。混凝土在不受外力的情况下的这种自发变形,受到外部约束时(支撑条件、钢筋等),将在混凝土中产生拉应力,使得混凝土开裂。引起混凝土的裂缝主要有塑性收缩、干燥收缩和温度收缩等三种。在硬化初期主要是水泥石在水化凝固结硬过程中产生的体积变化,后期主要是混凝土内部自由水分蒸发而引起的干缩变形。
2.3 外界气温湿度变化的影响
大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。
2.4 其他因素的影响
构筑物基础的不均匀沉降也会产生裂缝,这种裂缝会随着基础沉降而不断的增大,待地基下沉稳定后,将不会变化。超荷载使用或未达到设计过早加荷载导致结构出现裂缝,这种裂缝称之为荷载裂缝。混凝土配合比不良会造成混凝土塑性沉降裂缝,一般是混凝土配合比中,粗骨料级配不连续、数量不够,砂率及水灰比不当所造成的裂缝。
3.大体积混凝土施工质量控制措施 3.1 大体积混凝土配合比设计
3.1.1 原材料选用 由于水泥的用量直接影响着水化热的多少,大体积混凝土应选用水化热较低的水泥,如低热矿渣硅酸盐水泥、中热硅酸盐水泥等,并尽可能减少水泥用量。细骨料宜采用2区中砂,因为使用中砂比用细砂可减少水及水泥的用量。在可泵送情况下粗骨料,选用粒径5—20 mm连续级配石子,以减少混凝土收缩变形。使用掺合料,应用添加粉煤灰技术。在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,推移温升峰值出现时间。
3.1.2 外加剂的使用。采用减水剂,如缓凝高效减水剂;采用膨胀剂,如广泛使用u型膨胀剂无水硫铝酸钙或硫酸铝。试验表明,在混凝土添加了膨胀剂之后混凝土内部产生的膨胀应力,可以抵消一部分混凝土的收缩应力,这样,相应地提高混凝土抗裂强度。
3.2 温控措施及施工现场控制
3.2.1 温度预测分析。根据现场混凝土配合比和施工中的气温气候情况及各种养护方案,采用计算机仿真技术对混凝土施工期温度场和温差进行计算机模拟动态预测,提供结构沿厚度方向的温度分布及随混凝土龄期变化情况,制定混凝土在施工期内不产生温度裂缝的温控标准,进行保温养护优化选择。
3.2.2混凝土浇筑方案。采用延缓温差梯度和降温梯度的措施,在浇筑前经详细计算安排分块、分层浇筑次序、流向、浇筑厚度、宽度、长度、前后浇筑的搭接时间;控制混凝土温度并加强振捣,严格控制振捣时间,移动距离和插入深度,保证振捣密实,严防漏振和过振,确保混凝土均匀密实;做好现场协调 组织管理,要有充足的人力、物力、保证施工按计划顺利进行,保证混凝土供应,确保不留冷缝;浇筑后对大体积混凝土表面较厚的水泥浆进行必要的处理,一般浇筑后3~4h内初步用木长刮尺刮平,初凝前用铁滚筒碾压2遍,再用木抹子搓平压实,以控制表面龟裂;混凝土浇灌完后,立即采取有效的保温措施并按规定覆盖养护。
3.2.3混凝土温度监测。在混凝土内部外部设置温度测点,设置保温材料温度测点及养护水温度测点,现场温度监测数据由数据采集仪自动采集并进行整理分析。每一测点的温度值、各测位中心测点与表层测点的温差值,作为研究调整控温措施的依据,防止混凝土出现温度裂缝。
3.2.4为反映温控效果可在少数混凝土层中埋设应变计进行温度应力检测,应变计沿水平方向布置检测水平方向应力分量。
3.2.5通水冷却。采用薄壁钢管在一些混凝土浇筑分层中埋冷却水管,冷却水管使用前进行试水,防止管道漏水和阻塞,根据混凝土内部温度监测,控制冷却水管进水流量及温度。
3.3 构造设计上对大体积混凝土采取防裂措施
3.3.1设计合理的结构形式,可以减少工程数量,减低水化热。如可根据悬索桥锚碇受力特点,设计挖空非关键受力部分混凝土体积,利用土方压重方案,来减少混凝土结构体积。
3.3.2充分利用混凝土在基坑有侧限条件,在混凝土中掺加微膨胀剂,使其在基坑约束下形成一定的预压力,补偿混凝土内部温度 收缩产生的拉应力,从而有效的避免混凝土裂缝的产生。
3.3.3大体积混凝土体积庞大,施工周期一般较长,依据结构受力情况可合理地确定混凝土评定验收龄期,打破正常标准28d的评定验收龄期,改为60d或更多天,评定验收龄期充分考虑混凝土的后期强度,从而降低设计标号,达到减少混凝土水泥用量降低水化热的目的。
3.3.4于边界存在约束才会产生温度应力,采用改善边界约束的构造设计,如遇有约束强的岩石类地基、较厚的混凝土垫层等时,可在接触面上设滑动层来减少温度应力。在外约
束的接触面上全部设滑动层,则可大大减弱外约束。
3.3.5还应重视合理有益作用,可采取增配构造钢筋。配筋应尽可能采用小直径、小间距,全截面含筋率控制在0.3%~0.5%之间。在混凝土表面增设金属扩张网等有效措施,有效地提高混凝土抗裂性能。
4.结束语
在控制大体积混凝土温度裂缝时既要控制混凝土的内外温差又要防止混凝土表面温度的突然变化。重视温度监测,实际施工中应随时监测混凝土内部温度和内外温差的变化趋势,并据此来调整温控措施,确保混凝土不开裂。影响大体积混凝土开裂的因素很多,应从造成裂缝的各种原因着手,采取全面防治措施,并根据工程具体情况确定防裂重点。
参考文献:
1.《普通混凝土配合比设计规程》 JGJ55-2002 2.《大体积混凝土施工规范》GB50496—2009 3.《通用硅酸盐水泥》GB175—2007 4.《水泥标准稠度用水量、凝结时间、安定性检验方法》GB/T1346—2001 5.《混凝土结构工程施工及验收规程》GB50204—2002 6.《混凝土质量控制标准》GB50164—92 7.《混凝土强度检验评定标准》GBJ107—87 8.《普通混凝土拌合物性能试验方法标准》GB/T50080—2002 9.《预拌混凝土》GB/T14902—2003
第二篇:浅析大体积混凝土裂缝施工的控制
浅析大体积混凝土裂缝施工的控制
[摘 要]由于其体积大,表面小,水泥水化热释放比较集中,内部温升比较快,当混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用,所以必须从根本上分析控制它,来保证施工的质量。
[关键词]大体积混凝土 温度裂缝 施工措施
一、大体积混凝土的裂缝
大体积混凝土内出现的裂缝按深度的不同,分为贯穿裂缝、深层裂缝及表面裂缝三种。贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝。它切断了结构的断面,可能破坏结构的整体性和稳定性,其危害性是较严重的;而深层裂缝部分地切断了结构断面,也有一定危害性;表面裂缝一般危害性较小。
但出现裂缝并不是绝对地影响结构安全,它都有一个最大允许值。处于室内正常环境的一般构件最大裂缝宽度≤0.3mm;处于露天或室内高湿度环境的构件最大裂缝宽度≤0.2mm。对于地下或半地下结构,混凝土的裂缝主要影响其防水性能。一般当裂缝宽度在0.1~0.2mm时,虽然早期有轻微渗水,但经过一段时间后,裂缝可以自愈。如超过0.2~0.3mm,则渗漏水量将随着裂缝宽度的增加而迅速加大。所以,在地下工程中应尽量避免超过0.3mm贯穿全断面的裂缝。如出现这种裂缝,将大大影响结构的使用,必须进行化学灌浆加固处理。
大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素:结构的外部约束和混凝土各质点间的约束,阻止混凝土收缩变形,混凝土抗压强度较大,但抗拉能力却很小,所以温度应力一旦超过混凝土能承受的抗拉强度时,即会出现裂缝。这种裂缝的宽度在允许限值内,一般不会影响结构的强度,但却对结构的耐久性有所影响,因此必须予以重视和加以控制。
产生裂缝的主要原因有以下几方面:
1.水泥水化热
水泥在水化过程中要释放出一定的热量,而大体积混凝土结构断面较厚,表面系数相对较小,所以水泥发生的热量聚集在结构内部不易散失。这样混凝土内部的水化热无法及时散发出去,以至于越积越高,使内外温差增大。单位时间混凝土释放的水泥水化热,与混凝土单位体积中水泥用量和水泥品种有关,并随混凝土的龄期而增长。由于混凝土结构表面可以自然散热,实际上内部的最高温度,多数发生在浇筑后的最初3~5天。
2.外界气温变化
大体积混凝土在施工阶段,它的浇筑温度随着外界气温变化而变化。特别是气温骤降,会大大增加内外层
凝土温差,这对大体积混凝土是极为不利的。温度应力是由于温差引起温度变形造成的,温差愈大,温度应力也愈大。同时,在高温条件下,大体积混凝土不易散热,混凝土内部的最高温度一般可达60~65℃,并且有较长的延续时间。因此,应采取温度控制措施,防止混凝土内外温差引起的温度应力。
3.混凝土的收缩
混凝土中约20%的水分是水泥硬化所必须的,而约80%的水分要蒸发。多余水分的蒸发会引起混凝土体积的收缩。混凝土收缩的主要原因是内部水蒸发引起混凝土收缩。如果混凝土收缩后,再处于水饱和状态,还可以恢复膨胀并几乎达到原有的体积。干湿交替会引起混凝土体积的交替变化,这对混凝土是很不利的。
影响混凝土收缩,主要是水泥品种、混凝土配合比、外加剂和掺合料的品种以及施工工艺、养护条件等。
二、大体积混凝土的配制
大体积混凝土所选用的原材料应注意以下几点:
1.粗骨料宜采用连续级配,细骨料宜采用中砂;
2.外加剂宜采用缓凝剂、减水剂;掺合料宜采用粉煤灰、矿渣粉等;
3.大体积混凝土在保证混凝土强度及坍落度要求的前提下,应提高掺合料及骨料的含量,以降低单方混凝土的水泥用量;
4.采用综合措施,控制混凝土初始温度。
5.加强混凝土的浇灌振捣,提高密实度。
6.水泥应尽量选用水化热低、凝结时间长的水泥,优先采用中热硅酸盐水泥、低热矿渣硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥等。
三、大体积混凝土的浇筑与振捣:
浇筑方案,除应满足每一处混凝土在初凝以前就被上一层新混凝土覆盖并捣实完毕外,还应考虑结构大小、钢筋疏密、预埋管道和地脚螺栓的留设、混凝土供应情况以及水化热等因素的影响,常采用的方法有以下几种:
(一)全面分层:
即在第一层全面浇筑全部浇筑完毕后,再回头浇筑第二层,此时应使第一层混凝土还未初凝,如此逐层连续浇筑,直至完工为止。采用这种方案,适用于结构的平面尺寸不宜太大,施工时从短边开始,沿长边推进比较合适。必要时可分成两段,从中间向两端或从两端向中间同时进行浇筑。
(二)分段分层:
混凝土浇筑时,先从底层开始,浇筑至一定距离后浇筑第二层,如此依次向前浇筑其他各层。由于总的层数较多,所以浇筑到顶后,第一层末端的混凝土还未初凝,又可以从第二段依次分层浇筑。这种方案适用于单位时 间内要求供应的混凝土较少,结构物厚度不太大而面积或长度较大的工程。
(三)斜面分层:
要求斜面的坡度不大于1/3,适用于结构的长度大大超过厚度3倍的情况。混凝土从浇筑层下端开始,逐渐上移。混凝土的振捣也要适应斜面分层浇筑工艺,一般在每个斜面层的上、下各布置一道振动器。上面的一道布置在混凝土卸料处,保证上部混凝土的捣实。下面一道振动器布置在近坡脚处,确保下部混凝土密实。随着混凝土浇筑的向前推进,震动器也相应跟上。
四、大体积混凝土养护时的温度控制
养护是大体积混凝土施工中一项十分关键的工作。养护主要是保持适宜的温度和湿度,以便控制混凝土内表温差,促进混凝土强度的正常发展及防止混凝土裂缝的产生和发展。根据工程的具体情况,应尽可能多养护一段时间,拆模后应立即回土或覆盖保护,同时预防近期骤冷气候影响,以控制内表温差,防止混凝土早期和中期裂缝。大体积混凝土的养护,不仅要满足强度增长的需要,还应通过人工的温度控制,防止因温度变形引起混凝土的开裂。
温度控制就是对混凝土的浇筑温度和混凝土内部的最高温度进行人为的控制。
在混凝土养护阶段的温度控制应遵循以下几点:
1. 混凝土的中心温度与表面温度之间、混凝土表面温度与室外最低气温之间的差值均应小于20℃;当结构混凝土具有足够的抗裂能力时,不大于25℃~30℃。
2. 混凝土拆模时,混凝土的温差不超过20℃。其温差应包括表面温度、中心温度和外界气温之间的温差。
3. 采用内部降温法来降低混凝土内外温差。内部降温法是在混凝土内部预埋水管,通入冷却水,降低混凝土内部最高温度。冷却在混凝土刚浇筑完时就开始进行,还有常见的投毛石法,均可以有效地控制因混凝土内外温差而引起的混凝土开裂。
4.保温法是在结构外露的混凝土表面以及模板外侧覆盖保温材料(如草袋、锯木、湿砂等),在缓慢的散热过程中,使混凝土获得必要的强度,以控制混凝土的内外温差小于20℃。
5. 混凝土表层布设抗裂钢筋网片,防止混凝土收缩时产生干裂。
五、结论
大体积混凝土结构的施工技术与措施直接关系到混凝土结构的使用性能,若不能很好的了解大体积混凝土结构开裂的原因以及掌握应对此类问题所采取的相应施工措施,那么实际生产当中就很难保证施工质量。由于自身实践知识相对缺乏,以上见解仍有很大一部分停留在理论层面,如何采取更好方法来降低混凝土的水化热?掺和料的用量该如何控制?混凝土原材料的温度是否可以再降低?以上是本人对大体积混凝土施工技术的一些拙见,希望能对工程建设起到一些积极的作用,另外,在具体施工中要靠我们多观察、多比较,出现问题后多分析、多总结,结合多种预防处理措施,大体积混凝土的裂缝是完全可以避免的。
第三篇:大体积混凝土温度裂缝成因及控制措施范文
最新【精品】范文 参考文献
专业论文
大体积混凝土温度裂缝成因及控制措施
大体积混凝土温度裂缝成因及控制措施
摘要:裂缝是大体积混凝常见的质量通病之一,若不进行有效的控制,则会影响到大体积混凝土结构的稳定性及耐久性。本文结合笔者多年实践经验,重点就大体积混凝土温度裂缝原因进行分析,并提出一些切实可行的控制措施,旨在提高混凝土的质量,以供实践参考。
关键词:大体积混凝土;裂缝;控制措施;温度监测
中图分类号:TU37 文献标识码:A 文章编号:
随着我国社会经济建设的快速发展,城市建筑数量日益增加,对建筑的使用功能和质量安全提出了更高的要求。大体积混凝土是建筑施工中常见的一种施工材料,具有承载力高,适用范围广和耐久性强等优点。但在混凝土浇筑过程中,由于大体积混凝土单次浇筑方量大,加上混凝土自身放热量大,如果不能及时扩散,容易导致混凝土浇筑体产生了较大的内外温差,致使大体积混凝土产生温度裂缝。这些裂缝若没有得到有效的处理,不仅会影响到混凝土结构的稳定性及可靠性,而且对建筑物的质量安全构成极大的威胁。因此,施工管理人员有必要加强大体积混凝土裂缝控制工作的力度,采取合理有效的控制措施避免温度裂缝的产生,从而确保大体积混凝土的质量。
大体积混凝土温度裂缝原因分析
1.1 温度及温度效应
混凝土结构物的温度分布是指某一时刻混凝土结构内部及表面各点的温度状态。当混凝土结构浇筑后,由于混凝土内部的水化热、外界的太阳辐射以及气温变化等因素的影响,混凝土结构内部会处于不同的温度状态。影响混凝土结构温度分布的因素主要有内部和外部两大类。
1)外界温度的影响
自然环境中的混凝土结构物,受大气温度变化作用,而各种气象因素在一年四季、每天甚至每时每刻都在发生变化。混凝土结构的最大温差与不同季节的气候特征有密切关系。
最新【精品】范文 参考文献
专业论文
2)水化热
水泥水化释放的水化热会引起混凝土浇筑块内部温度剧烈变化,是影响混凝土温度分布的主要内部因素。
混凝土结构温度分布的不均匀性和复杂性,导致混凝土结构中温度效应的产生。混凝土结构的温度效应,主要是指由于混凝土结构中温度分布不均导致的在结构物中产生温度应力和温度变形等不良现象。
1.2 结构约束
大体积混凝土结构受到的约束,一般分为内约束和外约束两种。
1)内约束
一个物体或一个构件本身各质点之间的相互约束作用,称为“内约束”。
大体积混凝土在水泥水化时,会形成外低内高的温差,这种温差会使大体积混凝土内部温度分布不均匀,会引起质点发生的变形不一致,从而产生内约束。
2)外约束
一个物体的变形受到其他物体的阻碍,一个结构的变形受到另一个结构的阻碍,这种结构与结构之间、物体与物体之间、物体与构件之间、基础与地基之间的相互牵制作用,称作“外约束”。
大体积混凝土温度裂缝控制措施
大量工程实践经验都证明,结构物不可能不出现裂缝,裂缝是材料的一种固有缺陷、固有特征。如果对大体积混凝土的裂缝作过于严格的限制,则施工难度大,会带来成本的急剧上升。但可以采取措施,对裂缝进行控制。
2.1 设计
(1)改变约束条件,设置滑动层。基础垫层和基础之间采用三毡四油防水层作为滑动层减小地基对基础的约束,降低约束应力。
(2)设置构造钢筋。在大体积混凝土内设置必要的温度配筋,配筋宜选用小直径、小间距;在截面突变和转角处,孔洞转角及周边,增加斜向构造配筋,以改善应力集中,防止裂缝出现。
(3)在易裂的边缘部位设置暗梁,提高该部位的配筋率。
最新【精品】范文 参考文献
专业论文
(4)合理设置后浇带,保留时间大于60d;后浇带内梁中钢筋连续通过,板中钢筋可断开,在二次浇筑混凝土前,根据规范要求连接板中普通钢筋。
2.2 材料
1)水泥
针对大体积混凝土结构的特点,选择低水化热水泥。因为其在假定外部温度没有变化的情况下,可减少混凝土的内外温差T值,起到减少温度应力的作用。选择水泥时,还应合理控制好水泥的细度,这样,才能在减少温度应力的同时,确保水泥混凝土的早期强度,从而更有效地控制温度裂缝。
2)矿物掺合料
在施工中,掺入20%~40%的粉煤灰,可取代一部分水泥,从而消减水化热产生的高温峰值。另外,粉煤灰还可以优化水泥石内部结构,提高混凝土早期强度。
3)集料
集料在混凝土中的体积超过50%,在成型阶段是一种导热介质,因此,选择导热系数高、热传导能力强的集料,可有效降低混凝土的内外温差T值。另外,集料自身的温度对水化热的产生也有一定的影响,集料自身温度越高,水化热也就越大。因此,在制备混凝土时,应根据当日气候和集料温度,对集料进行必要的降温处理。
4)外加剂
在控制大体积混凝土温度裂缝时,外加剂应选择能调节混凝土凝结时间和硬化性能的缓凝剂、减水剂。
缓凝剂能在对混凝土的后期物理力学性能无不利影响的情况下,延缓混凝土的凝结时间,从而增加混凝土的降温散热时间,使混凝土内外温差T值减小。如缓凝剂JM-PCA,可使混凝土初凝时间加长3~8h左右。减水剂对混凝土强度的影响一般体现在降低水灰比上,低水灰比可使混凝土迅速硬化,提高混凝土早期强度;另外,在减少拌和水用量的同时,相应地减少了水泥的用量,从而达到降低水化热的目的。
2.3 施工
1)用分层连续浇筑或推移式连续浇筑混凝土采用分层连续浇筑
最新【精品】范文 参考文献
专业论文
或推移式连续浇筑,混凝土层间的间隔时间应尽量缩短,必须在前层混凝土初凝之前,将其次层混凝土浇筑完毕。层间最长的时间间隔不大于混凝土的初凝时间。当层间间隔时间超过混凝上的初凝时间,层面应按施工缝处理:
(1)消除浇筑表面的浮浆、软弱混凝土层及松动的石子,并均匀露出粗骨料;
(2)在上层混凝土浇筑前,应用压力水冲洗混凝土表面的污物,充分湿润,但不得有水;
(3)对非泵送及低流动度混凝土,在浇筑上层混凝土时,应采取接浆措施。
2)二次投料及二次振捣
大量的工程实践证明,采用二次投料水泥裹砂法和二次振捣法,可提高混凝土的极限抗拉强度。
所谓二次投料水泥裹砂法,即先将水和水泥拌成水泥浆,搅拌时间大约1min,然后加入砂子和石子,搅拌成混凝土。该法可改善混凝土内部结构,减少混凝土浇筑入模时的离析现象,节约水泥达20%,或提高强度15%。
所谓二次振捣,即对未初凝的混凝土在振动界限之前进行二次振捣。通过二次振捣可排除混凝土因泌水在粗骨料、水平钢筋下部生成的水分和空隙,提高水平钢筋的握裹力、竖向钢筋的抗拔力,增大水密性,提高混凝土抗压强度,减少混凝土内部裂缝,防止因混凝土下沉而出现的裂缝。有关资料证明,采用二次振捣可使水平钢筋的握裹力增加1/3,竖向钢筋初始抗拔能力提高100%,28d混凝土的抗压强度提高10%~15%。二次振捣关键要掌握好二次振捣的时间,该时间为混凝土经振捣后尚能恢复到塑性状态的时间,一般又称为振捣界限。振动界限的判断方法一般有两种:一种是将运转着的振动棒逐渐插入混凝土中时,混凝土仍能恢复到塑性状态,当振动棒拔出时,混凝土能自动填满形成的孔洞,而不会在混凝土中留下孔穴,此时施加二次振捣,时间最为合适;第二种是采用测定贯入阻力值的方法来判断,国外一般均采用这种方法,即当标准贯入阻力值达到3.5N/mm2以前进行二次振捣,此时不会损伤已成型的混凝土。
最新【精品】范文 参考文献
专业论文
二次振捣的具体适宜时间,需根据水泥品种、用量、混凝土的坍落度和气温等因素决定,一般应控制在混凝土浇筑后1~3h时间内。
3)埋设冷却水管,降低混凝土内部温度对施工要求比较高的工程,可以在混凝土内埋设水管,通过低温水循环,排出混凝土内部大量热量,以降低混凝土温度。
4)加强施工管理
提高混凝土的质量,以保证混凝上强度的均匀性;薄层、短间歇、均匀上升,以避免相邻浇筑块之间过大的高差及侧面的长期暴露;加强混凝土养护。
2.4 温度监测
温度监测技术是现代大体积混凝土施工的先进技术。通过对混凝土温度的监测,实时监控混凝土内部温度变化的情况,采取相应控制措施,可有效控制裂缝的产生。大体积混凝土温度控制的测试内容如下。
1)混凝土绝热温升的测试
混凝土绝热温升的测试有两种方法:间接法和直接法。间接法是用水泥的水化热、水泥用量、混凝土比热、混凝土密度来计算混凝土绝热温升;直接法是用混凝土绝热温升实验仪直接测定混凝土绝热温升。直接法测定结果准确,但是,实验设备和实验过程比较复杂,一般用于大型工程中。中小型工程常不具备这种条件,一般用间接法即可满足要求。
2)混凝土浇筑温度的监测
监测混凝土浇筑时的温度,保证浇筑温度不要超过控制标准,以便控制混凝土浇筑后的温度升高峰值。同时,也包括对混凝土搅拌、运输过程中温度的监测和混凝土原材料温度的监测。
3)养护过程中的温度监测一般监测浇筑后混凝土内部、表面、底部的温度和环境气温的变化情况,用来控制混凝土的降温速度和内外部温差(一般要求温差ΔT≯25℃),也可用来进一步计算混凝土中的温度应力,确定混凝土的抗拉强度是否大于此时混凝土中产生的拉应力,保证对裂缝的控制。这些监测结果能及时反馈现场大体积混凝土浇筑块内温度变化的实际情况,以及所采用的施工技术措施的效果,最新【精品】范文 参考文献
专业论文
为工程技术人员及时采取温控对策提供科学依据。
混凝土的浇筑温度,系指混凝土振捣后位于混凝土上表面以下50~100mm深处的温度。混凝土浇筑温度的测试每工作班(8h)不应少于2次。
大体积混凝土浇筑块体内外温差、降温速度及环境温度的测试,一般在前期每2~4h测一次,后期每4~8h测一次。
大体积混凝土浇筑块体温度监测点的布置,以能真实反映出混凝土块体的内外温差、降温速度及环境温度为原则。
2.5 养护
混凝土浇筑完毕后,应及时按温控技术措施的要求进行保温养护,并应符合下列规定:
(1)保温养护措施,应使混凝土浇筑块体的内外温差及降温速度满足温控指标的要求;
(2)保温养护的持续时间应根据温度应力包括混凝土收缩产生的应力加以控制、确定,但不得少于15d,保温覆盖层的拆除应分层逐步进行;
(3)在保温养护过程中,应保持混凝土表面的湿润。
同时,在养护过程中,保持良好的湿度和抗风条件,使混凝土在良好的环境下养护。施工人员需根据事先确定的温控指标的要求,来确定大体积混凝土浇筑后的养护措施。结语
温度裂缝是影响大体积混凝土结构质量安全的重要因素。因此,施工管理人员应结合工程的特点,通过分析混凝土温度裂缝产生的原因,围绕设计、施工、材料和养护等方面制定出合理有效的控制措施,同时加强混凝土温度的监控力度,一旦发现问题应及时做出处理,以避免混凝土温度裂缝的产生。
参考文献
[1] 高冬.大体积混凝土裂缝产生原因及其预防控制措施[J].中国科技信息.2012年第03期
[2] 陈永涛.大体积混凝土裂缝控制措施研究[J].城市建设理论研究.2012年第23期
最新【精品】范文 参考文献
专业论文
------------最新【精品】范文
第四篇:大体积混凝土温度裂缝浅析及控制方法
大体积混凝土温度裂缝浅析及控制方法
【摘 要】随着我国经济的发展,工程建设规模越来越大型化、复杂化,这使得工程建设中的大体积混凝土温度裂缝问题日益突出并成为具有相当普遍性的问题。文中通过分析大体积混凝土温度裂缝产生的原因,从中找到控制裂缝的措施及解决的方法,从而为保证建筑物和构件的安全奠定了基础。大体积混凝土温度裂缝的类型混凝土结构物的裂缝可分为微观裂缝和宏观裂缝。微观裂缝主要有三种,一是骨料和水泥石粘合面上的裂缝,称为粘着裂缝;第二是水泥石自身的裂缝,称为水泥石裂缝;三是骨料本身裂缝,称为骨料裂缝。微观裂缝在混凝土结构中的分布是不规则,不贯通的,并且肉眼看不见。宏观裂缝是由微观裂缝扩展而来的。温度,作为一种变形作用,在混凝土结构中引起的裂缝有表面裂缝和贯穿裂缝两种。这两种裂缝在不同程度上都属于有害裂缝。由于高层建筑、高耸结构物和大型设备基础大量的出现,大体积混凝土也被广泛采用,大体积混凝土结构的温度裂缝日益成为建筑工程技术人员面临的技术难题。
大体积混凝土温度裂缝的成因
2.1 概述
当混凝土结构产生变形时,在结构的内部、结构与结之间,都会受到约束。当混凝土结构截面较厚时,其内部温度分布不均匀,引起内部不同部位的变形相互约束,称之为内约束,当一个结构物的变形受到其他结构的阻碍时称之为外约束。建筑工程中的大体积混凝土结构所承受的变形,主要是由温差和收缩产生,其约束既有外约束又有内约束。大体积钢筋混凝土结构中,由于结构截面大,体积大,水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩膨胀作用,由此引起的温度应力是导致钢筋混凝土产生裂缝的主要原因。这种裂缝的起因是温度变化引起的变形,当变形得不到满足时才会引起应力,而且应力与结构的刚度大小有关,只有当应力超过一定数值才引起裂缝。
2.2 温度变化引起变形在大体积混凝土工程施工中,由于水泥水化热引起混凝土浇筑内部温度和温度应力剧烈变化。实际混凝土内部的最高温度多数发生在混凝土浇筑的最初3 到5 天,随着混凝土龄期的增长,温度逐渐下降,而弹性模量增高,因此混凝土内部降温收缩的约束也就愈来愈大,以致产生很大的拉应力,当混凝土的抗拉强度不足以抵抗这种应力时,开始出现温度裂缝。
2.3 变形受到约束,引起应力当大体积混凝土浇筑在基岩或老混凝土上时,由于基岩(或老混凝土)的压缩模量(或弹性模量)较高,混凝土温度变化所产生的变形受到基岩(或老混凝土)的约束,而在新浇混凝土内部形成温度应力,在升温阶段,约束阻止新浇混凝土的温度膨胀变形,在混凝土内形成压应力。而在降温阶段,新浇混凝土收缩(降温收缩与干缩)因存在较强大的地基或基础的约束而不能自由收缩,在新浇混凝土内形成拉应力。2.4 应力超过了混凝土的抗拉强度,导致裂缝的产生混凝土早期抗拉强度是很低的。值得注意的是随着水泥标号的提高,水泥用量的不断增加,抗拉强度也会相应增加。另外,由于水化热的影响,1 天龄期的小试件强度可比实际大尺寸构件中的强度低 50%,也就是说导致混凝土构件的早期强度降低;而28 天龄期的小试件强度则可比实际构件强度高30%;也就是说对设计而言不安全。因此这也是要限制最高温度的一个原因。
2.5 外界气温变化的影响大体积混凝土在施工期间,外界气温变化的影响也很大。混凝土的内部温度是浇筑温度、水化热的绝热温升和结构散热降温等各种温度的叠加之和,外界气温愈高,混凝土的结构温度也愈高,如外界温度下降,会增加混凝土的降温幅度,特别是在外界气温骤降时,会增加外层混凝土与内部混凝土的温度梯度。温度应力是由温差引起的变形造成的,温差愈大,温度应力也愈大。在高温条件下,大体积混凝土不易散热,混凝土内部的最高温度可达60ºC,并且有较大的延续时间。在这种情况下研究合理的温度控制措施,防止混凝土内外温差引起的过大温度应力显得更为重要。
2.6 混凝土的收缩变形混凝土收缩变形引起的温度应力大于混凝土的抗拉强度时,就会产生裂缝,因此混凝土的收缩也是引起裂缝不可忽视的因素。大体积混凝土温度裂缝控制及措施
在大体积混凝土工程施工中,由于水泥水化热引起混凝土浇筑内部温度和温度应力剧烈变化,从而导致混凝土发生裂缝。因此,控制混凝土浇筑块体因水化热引起的温升、混凝土浇筑块体的内外温差及降温速度,是防止混凝土出现有害的温度裂缝的关键问题。我们将大体积混凝土温度裂缝的基本控制措施分为设计措施、施工措施和监测措施。随着材料科学的发展和施工技术的完善,现场大体积混凝土的施工积累了不少经验,如留永久性变形缝或伸缩缝、用蛇形冷却水管来降低大体积混凝土内部温度、采用液态氮降低混凝土入模温度以及使用微膨胀混凝土减缓干缩等等。总上所述,为防止裂缝、减轻温度应力,我们主要是从控制温度和改善约束条件两个方面着手。
3.1 控制温度的措施
①采用改善骨料级配,用干硬性混凝土,掺混合料,加引气剂或塑化剂等措施以减少混凝土中的水泥用量;
②拌合混凝土时加水或用水将碎石冷却以降低混凝土的浇筑温度;
③热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热;
④在混凝土中埋设水管,通入冷水降温;
⑤规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发急剧的温度梯度;
⑥施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保护措施;
⑦使用低热或中热水泥。水泥的主要发热成分是铝酸三钙(C3A)和硅酸三钙(C3S),制造时适当降低这两种成分的含量即可降低其水化热。
3.2 改善约束条件的措施
①合理地分缝分块;
②避免基础过大起伏;
③合理的安排施工工序,避免过大的高差和侧面长期暴露;
此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。
根据以上述分析,大体积混凝土在三个阶段产生的温度应力均与内外部的温差有关,因此,有效的控制混凝土内外温差,就成为了有效控制温度应力的关键。对此,《混凝土结构工程施工及验收规范》曾作了如下要求“大体积混凝上表面和内部温差应控制在设计要求的范围内,当设计无具体要求时,温差不宜超过25ºC”,并对浇筑温度也作了“不宜超过28ºC”的规定。对于大体积混凝土的温差控制一般从三方面着手:第一是控制混凝土的绝对发热量;第二是采取有效措施降低混凝土内外温差;第三是改善周围的约束条件,改进配筋状况,减小裂缝宽度。所以,要真正实现大体积混凝土的质量控制,则应从原材料、设计、施工等各个环节抓起。
结束语
总之,大体积混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格,模板变形,基础不均匀沉降等。为了保证建筑物和构件的安全,我们一方面要从控制温度、改变约束、降低温度着手,另一方面应可能设法提高混凝土的抗裂性能。只有在施工中采取以上行之有效的措施,才能控制裂缝的出现或延伸,进而保证建筑物安全、稳定的工作。
第五篇:土木工程专业大体积混凝土裂缝控制毕业论文
河北农业大学
现代科技学院本科毕业论文
题 目:大体积混凝土结构裂缝控制与研究
学 部: 工程技术学部
学生姓名: 王宗盛 专 业:
土木工程
班级学号: 20*** 指导教师姓名: 刘京红 王印
指导教师职称: 教授 副教授
2015 年 5月 20日
大体积混凝土结构裂缝控制研究
土木工程1001班 李军辉 指导教师:刘京红 王印
摘要:随着我国经济的发展,工程建设规模也越来越大型化、复杂化。这使得工业与民用建筑中的大体积混凝土温度裂缝问题日益突出并成为具有相当普遍性的问题。大体积混凝土温度裂缝问题十分复杂,它涉及到和工程结构相关的方方面面。对大体积混凝土基础的温度裂缝控制更是涉及到岩土、结构、建筑材料、施工、环境等多专业、多学科。大体积混凝土在硬化过程释放的水化热会产生较大的温度变化,由此产生的温度应力是导致混凝土出现裂缝的主要因素,从而影响结构的整体性、防水性和耐久性,并成为结构的隐患。因此,大体积混凝土在施工中必须考虑裂缝控制。总结分析了大体积混凝土温度裂缝产生的原因以及控制措施,根据具体情况把这些措施灵活应用于具体大体积的基础工程施工,在施工中对材料选择、配合比、外加剂、施工布置、浇筑工艺、养护等几个环节采取了严格的控制措施,并同时对基础典型位置的内外温度差进行了监测。针对基础工程所采取的温控措施和监测结果,为同类工程的施工提供了参考,也为进一步的理论研究提供了依据。
关键词:
大体积混凝土;裂缝控制;水化热;温度应力
Research on Control to Cracks of Massive Concrete Structure
Abstract :With economic development of China, the scale of construction works is become more and more large and complicated.This makes the temperature cracks of massive concrete structure in industrial buildings become increasingly prominent with a universal problem.The problem of temperature cracks of Massive concrete is very complicated.It involves all aspects of the engineering structure.The control to massive concrete foundation temperature cracks is more related to rock, structure, building materials, construction, environmental, and other multi-disciplinary.The heat of hydration is released in the hardening process of massive concrete will cause a greater temperature changes.The resulting temperature stress is the main factors to cause concrete cracks, then it affect integrity, waterproof and durability of the structure, and it become a hidden danger of structure.Cracks control must be considered during the construction of massive concrete structure.The mechanism and control measures of temperature cracks of massive concrete foundation in this paper are analyzed.According to circumstances, these measures are applied in construction of the specific massive concrete foundation.Strict control measures are taken during the construction in the choice of materials, mix, additives, construction layout, pouring technology, conservation and other links, at the same time, temperature difference between the internal and external of the foundation in the typical locations are monitored.The monitoring results show that the temperature differences are all reasonable, cracks are avoided.In addition, control measures of temperature cracks are taken that are reasonable and effective.The temperature control measures and monitoring results not only provides a convenient for the similar construction projects, but also provides reference data for further theoretical research.Keywords: massive concrete;cracks control;hydration heat;temperature stress
目录
第 1 章
绪
论................................................................................................1
1.1 课题的背景与实际意义.........................................................................1
1.1.1 大体积混凝土的定义................................................................1 1.1.2 大体积混凝土在工程上的应用................................................1 1.2 国内外研究现状.....................................................................................2
1.2.1 国内情况......................................................................................2 1.2.2 国外情况......................................................................................2 1.3 本文研究的内容和研究方法.................................................................2
1.3.1 研究的内容..................................................................................2 1.3.2 研究的方法..................................................................................3
第 2 章 大体积混凝土裂缝产生的原因分析及预测........................................4
2.1 裂缝的种类.............................................................................................4
2.1.1 微观裂缝......................................................................................4 2.1.2 宏观裂缝......................................................................................4 2.2 大体积混凝土裂缝产生的原因分析.....................................................4
2.2.1 水化热的影响..............................................................................5 2.2.2 内外约束的影响..........................................................................5 2.2.3 外界气温变化的影响..................................................................5 2.2.4 混凝土的收缩变形影响..............................................................5
第 3 章 大体积混凝土裂缝控制措施................................................................6
3.1 大体积混凝土裂缝控制措施.................................................................6
3.1.1 设计措施......................................................................................7 3.1.2 材料控制措施..............................................................................7 3.1.3 施工措施......................................................................................8 3.1.4 监测措施....................................................................................9 3.2 混凝土结构裂缝处理.........................................................................10 参考文献..............................................................................................................1
1第 1 章
绪
论
1.1 课题的背景与实际意义
许多混凝土结构建筑物在建设工程中和使用工程中出现了不同程度、不同形式的裂缝,这是一个相当普遍的现象。它是长期困扰着建筑工程技术人员的技术难题。近代科学关于混凝土强度的细观研究以及大量工程实践所提供的经验都说明,结构物的裂缝是不可避免的,裂缝是一种人们可以接受的材料特征,如对建筑物抗裂要求过严, 必将付出巨大的经济代价; 科学的要求应是将其有害程度控制在允许范围内。这些关于裂缝的预测、预防和处理工作,统称之为“建筑物的裂缝控制”,这方面的科学研究工作是有重要的现实意义和技术经济意义,大体积混凝土结构裂缝主要是由于变形作用引起的。
1.1.1 大体积混凝土的定义
对于大体积混凝土的定义,美国混凝土学会有过这样的规定:“任何就地浇筑的大体积混凝土,其体积之大,必须要求采取措施解决水化热及随之引起的体积变形问题,以最大限度地减少开裂。”[1]日本建筑学会标准的定义是:“结构断面的最小尺寸在 800mm以上,同时水化热引起的混凝土内最高温度与外界气温之差预计超过 25℃的混凝土,称之为大体积混凝土。”[2]我国工程界认为当混凝土结构断面尺寸大于 1m 时,就称之为大体积混凝土。[3]文献指出:在工业与民用建筑结构中,一般现浇的连续墙结构、地下构筑物及设备基础等是容易由温度收缩应力引起裂缝的结构,通称为“大体积混凝土结构”。
从国内外对大体积混凝土的定义来看,大体积混凝土在几何尺寸上较大,同时考虑了水泥水化热引起的体积变化与裂缝问题。
1.1.2 大体积混凝土在工程上的应用
在水利工程中,大体积混凝土主要用于混凝土大坝的浇筑,如三峡大坝混凝土的浇筑,其混凝土浇筑规模之大举世瞩目;在桥梁工程中,主要用于桥墩的大体积混凝土浇筑;在工业与民用建筑结构中,大型设备基础、高层建筑箱形基础底板、筏式基础底板、连续墙以及地下隧道都属于大体积混凝土结构。随着经济实力的增强,我国高层或超高层建筑大量涌现,工程规模日趋扩大,结构形式也日趋复杂,大型工业与民用建筑中的一些基础,其体积达几千 m ³以上者屡见不鲜,而一些超高层的民用建筑的筏式基础混凝土的体积有的达 1 万 m 3以上,厚度达 2~4m,长度超过 100m。如上海金茂大厦大体积混凝土筏式基础,厚度达 4m,混凝土总量为 13500 m 3。
1.2 国内外研究现状
1.2.1 国内情况
我国对于混凝土开裂方面研究较多,而在建筑工程中,对于荷载作用下已硬化混凝土开裂方面有些成果外,随着大规模基本建设的进行,商品混凝土的应用所带来的新问题,国内对非荷载作用下混凝土开裂的研究主要集中在开裂的原因和控制措施上。
黄土元教授[4]从混凝土材料本身分析了早期混凝土开裂的原因,施工单位为了提高工期过渡地追求早强水泥,水泥生产厂商为了适应市场的需要也追求早强,甚至“超早强”。而对早强混凝土早期性能的研究相对不足。不少水泥的 3 天强度已超过国家标准很多,过高的早期强度容易产生早期裂缝。同时高早强容易引起混凝土后期性能的劣化。
1.2.2 国外情况
从国外有关规范及一些重大工程的实际设计看出,对待建筑结构变形作用引起的裂缝问题,客观上存在着两类学派:
第一类,设计规范规定得很灵活,没有验算裂缝的明确规定,设计方法留给设计人员自由处理。对伸缩缝和沉降缝的设置,没有严格规定,基本上按经验设置,有许多工程不留伸缩缝,不留沉降缝,基本上采取“裂了就堵,堵不住就排”的实际处理手法。一些有关的裂缝计算则只作为参考资料而不作为规定。
第二类,设计规范有明确规定,对于荷载裂缝有计算公式并有严格的允许宽度限制。对于变形引起的裂缝没有计算规定,只要按规范每隔一定距离留一条伸缩缝,荷载差别大,留沉降缝就认为问题不复存在了,即留缝就不裂的设计原则。
有关温度对混凝土结构变形的影响,各国也有相应的规定。对于大体积混凝土的浇筑温度,美国规定不超过 32℃;日本土木工程学会施工规范规定不超过 30℃,日本建筑学会规范规定不超过 35℃。前苏联规范规定:浇筑表面系数大于 3 的结构时,混凝土从搅拌站运出时的温度不超过 30~35℃;原西德规范规定:新拌混凝土卸车时的温度不得超过 30℃。在我国,《水工混凝土结构工程施工及验收规范》(SDJ207-82)规定:大体积混凝土浇筑温度不宜超过 28℃;而在《高层建筑混凝土结构技术规程》(JGJ3-2002)中仅规定:“基础大体积混凝土连续浇筑时,应实测内部温差”,但并无具体控制值。
1.3 本文研究的内容和研究方法
1.3.1 研究的内容
1).结合工程实践研究大体积混凝土裂缝产生的原因
大体积混凝土施工过程中,由于混凝土中水泥的水化作用是放热反应,大体积混凝土自身又具有一定的保温性能,因此其内部温升幅度较其表面的温升幅度要大得多,而在混凝土升温峰值过后的降温过程中,内部降温速度又比其表层慢得多,在这些过程中,混凝土各部分的热胀冷缩(称为温度变形)及由于其相互
约束及外界约束的作用而在混凝土内部产生的应力(称为温度应力),是相当复杂的。一旦温度应力超过混凝土所承受的拉力极限值时,混凝土就会出现裂缝。这是混凝土浇筑后由于温升影响产生的第一种裂缝。
由于温升影响产生的第二种裂缝是收缩裂缝。这种裂缝产生在混凝土的降温阶段,即当混凝土降温时,由于逐渐散热而产生收缩,再加上混凝土硬化过程中,由于混凝土内部拌合水的水化和蒸发,以及胶质体的胶凝等作用,促使混凝土硬化时收缩。这两种收缩,在收缩时由于受到基底或结构本身的约束,会产生很大的收缩应力(拉应力),如果产生的收缩应力超过当时的混凝土抗拉强度,就会在混凝土中产生收缩裂缝,这种收缩裂缝有时会贯穿全断面,成为结构性裂缝,带来严重的危害。
2).研究大体积混凝土裂缝控制的技术措施
设计方面:采用留永久变形缝作法或设置后浇带;合理的平面和立面设计,避免截面的突变,从而减少约束应力:合理布置分布钢筋,尽量采用小直径、密间距,变截面处加强分布筋;避免用高强混凝土,尽可能选用中低强度混凝土,采用 60 天或 90 天强度;采用滑动层来减小基础的约束。
材料方面:科学地选用材料配比,用较低的水灰比、水和水泥用量;选用中热或低热的水泥品种;掺加外加剂;掺加粉煤灰减少水泥用量;严格控制砂石骨料的含泥量。
施工方面:用保温隔热法对大体积混凝土进行养护;控制水化热温升,混凝土中心与表面的最大温差不高于 25℃;控制降温速度;用草袋和塑料薄膜进行保温和保湿;用冷却水管来降低水化热,或使用微膨胀混凝土;采用分层浇筑或跳仓浇筑方法。
1.3.2 研究的方法
本文结合大庆石化高压聚乙烯装置防爆坝承台施工实践,采取相应的裂缝控制措施,监控大体积混凝土温度,分析温度曲线,研究分析了大体积混凝土温度裂缝的产生机理,分析裂缝的主要影响因素。从设计、原材料、配合比、外加剂、施工工艺等几方面研究大体积混凝土的温度应力、开裂原因和裂缝控制措施,验证裂缝控制措施的效果。
第 2 章 大体积混凝土裂缝产生的原因分析及预测
2.1 裂缝的种类
文献[6]指出,按混凝土的裂缝宽度不同,可将混凝土裂缝分为“微观裂缝”和“宏观裂缝”两种。
2.1.1 微观裂缝 世纪 60 年代以来,通过混凝土的现代试验研究设备(如各种实体显微镜、X 光照相设备等),可以证实在尚未承受荷载的混凝土结构中存在着肉眼看不见的微观裂缝。其宽度为 0.05 m m 以下。微观裂缝主要有粘结裂缝,水泥石裂缝和骨料裂缝三种。
2.1.2 宏观裂缝
混凝土中宽度不小于 0.05 m m 的裂缝是肉眼可见裂缝,亦称宏观裂缝。宏观裂缝是微观裂缝不断扩展的结果。
宏观裂缝又可分为表面裂缝、深层裂缝和贯穿裂缝三种,见图2-1
2.2 大体积混凝土裂缝产生的原因分析
大体积混凝土施工阶段产生的温度裂缝,是其内部矛盾发展的结果。一方面是混凝土由于内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点的约束阻止了这种应变,一旦温度应力超过混凝土能承受的极限抗拉强度,就会产生不同程度的裂缝。
2.2.1 水化热的影响
水泥在水化反应过程中会产生大量的热量。这是大体积混凝土内部温升的主要热量来源。试验证明每克普通硅酸盐水泥放出的热量可达 500J。由于大体积混凝土截面厚度大,水化热聚集在结构内部不易散发,所以会引起混凝土结构内部急骤升温。在水利工程中一般为 15~25℃ [7]。而建筑工程中一般为 20~30℃,甚至更高。试验表明,水泥水化热在 1~3 天内放出的热量最多,大约占总热量的 50%左右,混凝土浇筑后的 3~5 天内,混凝土内部温度最高。
建筑结构混凝土强度等级日趋提高,但有许多结构不适当的选择了过高的强度等级。习惯上认为:“强度等级越高安全度越大,就高不就低,提高混凝土强度没坏处”。
2.2.2 内外约束的影响
各种混凝土结构在变形变化中,必然受到一定的约束,从而阻碍其自由变形,阻碍变形的因素称为约束条件。约束又分为内约束和外约束。
1).外约束
一个物体的变形受到其他物体的阻碍,一个结构的变形受到另一个结构的阻碍,这种结构与结构之间,物体与物体之间的相互牵制作用称作“外约束”。由于各种建筑结构所处的具体条件不同,便在结构之间产生不同程度的约束,按约束程度的大小,外约束又分为无约束(自由体)、弹性约束和全约束(嵌固体)三种。
2).内约束
一个物体或一个构件本身各质点之间的相互约束作用,称为“内约束”。沿着一个构件截面各点可能有不同的温度和收缩变形,引起连续介质各点间的内约束应力。结构物的裂缝中,非贯穿的表面裂缝占 60%~70%。其开裂原因主要是变形变化引起的自约束应力。当各种大体积混凝土厚度大于或等于 500mm时,就可能由于水化热的不均匀降温和不均匀收缩引起的显著的自约束应力,导致表面开裂。
2.2.3 外界气温变化的影响
大体积混凝土结构在施工阶段,外界气温的变化对防止大体积混凝土开裂有着重大影响。因为外界气温愈高,混凝土的浇筑温度也愈高;而如果外界温度下降,又增加混凝土的降温幅度,特别是气温骤降,会大大增加外层混凝土与内部混凝土的温度梯度,因而会造成过渡的温度应力,易使大体积混凝土出现裂缝。
混凝土的内部温度是由水化热的绝热温升、浇筑温度和结构物的散热温度等各种温度的叠加之和组成,而温度应力则是由温差所引起的温度变形造成的;温差愈大,温度应力也愈大。同时,在高温条件下,大体积混凝土由于厚度大,不易散热。
2.2.4 混凝土的收缩变形影响
1).混凝土的收缩
大部分混凝土结构裂缝的原因是由于变形作用引起的,而变形作用包括温度、湿度及不均匀沉降等。在几种变形中,湿度变化引起的裂缝又占主要部分。混凝土重要组成部分是水泥和水,通过水泥和水的水化作用,形成胶凝材料,将松散的砂石骨料胶合成为人工石体——混凝土。
混凝土中含有大量空隙、粗孔、及毛细孔,这些空隙中存在水分,水分的活动影响到混凝土的一系列性质,特别是产生“湿度变形”的性质对裂缝控制有重要作用。混凝土中的水分有化学结合水、物理—化学结合水和物理力学结合水三种。
2).收缩的种类
①自生收缩
混凝土硬化过程中由于化学作用引起的收缩,是化学结合水与水泥的化合结果,也称为硬化收缩,这种收缩与外界湿度变化无关。
②塑性收缩
混凝土浇筑后 4~15 小时左右,水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发现象,引起失水收缩,是在初凝过程中发生的收缩,也称之为凝缩,此时骨料与胶合料之间也产生不均匀的沉缩变形,都发生在混凝土终凝之前,即塑性阶段,故称为塑性收缩。
③碳化收缩
大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形称为碳化收缩。
④干缩(失水收缩)
水泥石在干燥和水湿的环境中要产生干缩和湿涨现象,最大的收缩是发生在第一次干燥之后,收缩和膨胀变形是部分可逆的。
3)、收缩的影响因素
水泥用量越大,用水量越大,表现为水泥浆量越大,塌落度大,收缩越大,因此避免雨中浇筑混凝土,遇小雨,应采取防雨措施(特别是下料部位)并调整水灰比。
4)、混凝土的体积变形
混凝土在水泥水化过程中要产生一定的体积变形,成为“自由体积变形”。混凝土的收缩机理比较复杂,其主要原因,可能是内部空隙水蒸发变化时引起的毛细管引力。收缩在很大程度上是有可逆现象的。如果混凝土收缩后,再处于水饱和状态,还可以回复膨胀并几年达到原有的体积。干湿交替将引起混凝土体积的交替变化,这对混凝土是很不利的。
第 3 章 大体积混凝土裂缝控制措施
3.1 大体积混凝土裂缝控制措施
实践经验表明,现有大体积混凝土结构的裂缝,绝大多数是由温度裂缝原因而产生的。防止产生温度裂缝是大体积混凝土研究的重要课题,我国自 20 世纪 60 年代开始进行研究,目前已积累了很多成功的经验。工程上常用的防止混凝土裂缝的措施主要有:①采用中、低热的水泥品种;②对混凝土结构进行合理的分缝分块;③在满足强度和其它性能要求的前提下,尽量降低水泥用量;④掺加适宜的外加剂;⑤控制混凝土的出机温度和浇筑温度;⑥选择适宜的集料;⑦预
埋水管、通水冷却、降低混凝土的出机温度和浇筑温度;⑧采用表面保护、保温隔热措施,降低内外温差;⑨采取防止大体积混凝土裂缝的结构措施。
3.1.1 设计措施
1).设置后浇带
在现浇整体式钢筋混凝土结构中,只在施工期间保留的临时性施工缝,称为“后浇带”。该“后浇带”根据具体条件,保留一定时间后,在进行填充封闭,后浇成连续整体的无伸缩缝结构。因为这种缝只在施工期间存在,所以是一种特殊的施工缝。但是,又因为它的目的是取消结构中的永久性变形缝,与结构的温度收缩应力和差异沉降有关,所以它又是一种设计中的伸缩缝和沉降缝,一种临时性的变形缝。它既是施工措施,又是设计手段。
2).合理配置钢筋
在常温和允许应力状态下,钢筋的性能是比较稳定的,其与混凝土的热膨胀系数相差不大。
3).设置滑动层
为了减小混凝土由于边界存在约束而产生温度应力,在与外约束的接触面上全部设置滑动层,则结构计算长度可折减约一半。
4).避免应力集中
在结构的孔洞周围,变断面转角部位,转交处等,由于温度变化和混凝土收缩,会产生应力集中而导致混凝土裂缝。为此,可在空洞四周增配斜向钢筋、钢筋网片;在变断面处避免断面突变,可作局部处理使断面逐渐过渡,同时增配一定量的抗裂钢筋,这对防止裂缝产生是有很大作用的。
5).设置缓冲层
设置缓冲层,即在高低底板交接处、底板地梁处等,用 30~50mm 厚的聚苯乙烯泡沫塑料作垂直隔离,以缓冲基础收缩时的侧向压力。
6).设置应力缓和沟
3.1.2 材料控制措施
1).水泥品种选择和用量控制
大体积混凝土结构引起裂缝的主要原因是:混凝土的导热性能较差,水泥水化热的大量积聚,使混凝土出现早期温升和后期温降现象。因此,控制水泥水化热引起的温升,即减少混凝土内外温差,对降低温度应力,防止产生温度裂缝将起到十分重要的作用。
2).掺加外加料
大体积混凝土一般体积都较大,其主要特征:结构厚、混凝土量大,水泥水化热使结构产生温升和收缩变形,因此混凝土裂缝控制是一个十分关键的技术。为了保证混凝土的整体性,密实性和耐久性不受影响,在大体积混凝土中掺入外加剂和外掺料,充分利用它们各自的优点,相互补充并采取科学的施工工艺及合理的混凝土养护措施来控制裂缝,防止渗漏,从而保证大体积混凝土的施工质量。混凝土中常用的外加料主要是外加剂和掺合料。
3).集料的选择
大体积混凝土所需的强度并不是很高的,所以组成混凝土的砂石料比高强
混凝土要高,约占混凝土总质量的 85%左右,正确选用砂石料对保证混凝土质量、节约水泥用量、降低水化热量、降低工程成本是非常重要的。集料的选用应根据就地取材的原则,首先 考虑成本较低、质量优良、满足要求的天然砂石料。3.1.3 施工措施
1).控制混凝土出机温度和浇筑温度
为了降低大体积混凝土的总温升,减少结构物的内外温差,控制混凝土出机温度和浇筑温度同样非常重要。
① 控制混凝土的出机温度
根据搅拌前混凝土原材料总的热量与搅拌后混凝土总的热量相等的原理,可用下公式计算
T0=[(CS+CWQS)WSTS+(Cg+CwQg)WgTg+CcWcTc+Cw(WwQsWc-QgWs)Tw]/(CsWs+CgWg+CwWw+CcWc)
(3-1)
式中
CS,Cg,Cc,Cw—分别为砂、石、水泥、和水的比热,J/Kg·℃;
Ws,Wg,Wc,Ww—分别为每 m3砂、石、水泥、和水的用量,Kg;
TS,Tg,Tc,Tw—分别为砂、石、水泥、和水的拌合温度,℃;
QS,Qg—分别为砂、石的含水量,%。
计算时一般取 CS= Cg= Cc=800(J/Kg·℃);
Cw=4000(J/Kg·℃)。
由以上计算公式可以看出,在混凝土原材料中,砂石的比热比较小,但占混凝土总质量的 85%左右;水的比热较大,但它占混凝土总质量的 6%左右。因此,对混凝土出机温度影响最大的是石子的温度,砂的温度次之,水泥的温度影响最小。为了降低混凝土的出机温度,其最有效的办法就是降低砂、石的温度。如在气温较高时,为防止太阳的直接照射,可在砂石堆料场搭设简易的遮阳装置,砂石温度可降低 3~5℃。在拌合前用冷水冲洗粗集料,在储料仓中通冷风预冷,再加上冰屑拌合,可使混凝土的出机温度达到 7℃的要求。
② 控制混凝土的浇筑温度
混凝土从搅拌机出料后,经搅拌车或其它工具运输、卸料、浇筑、平仓、振捣等工序后的混凝土温度称为混凝土浇筑温度。
2).大体积混凝土配合比的控制
① 当大体积混凝土的强度等级为 C20 以上时,经设计单位同意,可利用混凝土 60天的后期强度作为混凝土强度评定、工程交工验收及混凝土配合比设计的依据。这样有利于降低大体积混凝土工程施工中因水泥水化热引起的温升,达到降低温度应力的目的,同时也节约施工及保温养护费用。
② 大体积混凝土配合比的选择,在保证基础工程设计所规定强度、耐久性等要求和满足施工工艺特性的前提下,应按照合理使用材料、减少水泥用量和降低混凝土的绝热温升的原则进行选择。
3).混凝土的浇筑与养护 ① 浇筑方案
混凝土的浇筑方法可用分层连续浇筑或推移式连续浇筑
对于工程量较大、浇筑面积也大、一次连续浇筑层厚度不大(一般不超过 3m),且浇筑能力不足时的混凝土工程,宜采用推移式连续浇筑法。
②
采取分层浇筑混凝土时,水平施工缝的处理 ③
混凝土的拌制、运输
4).大体积混凝土的冬期施工
在工业与民用建筑钢筋混凝土结构的冬期施工中,主要是防止早期混凝土被冻问题;而在大体积混凝土的冬期施工中,情况有所不同,除了防止早期混凝土被冻坏外,还存在着控制温差、防止裂缝的问题,而且防冻与防裂之间往往还存在着矛盾。在设计和施工中,必须妥善解决这个矛盾,兼顾防冻与防裂两方面的要求。这是大体积混凝土冬期施工的主要特点。
⑴ 大体积混凝土冬季施工的原则
连续 5 天日平均气温 5℃以下,即进入混凝土的冬期施工阶段。
大体积混凝土冬期施工应兼顾防冻与防裂两方面的要求,因此应遵循以下三条基本原则:
①砂、石等原材料中不能含有冻块,混凝土拌和物也应该具有一定的温度,以保证在运输和浇筑过程中不致冻结。
②混凝土在达到临界强度之前不能受冻,以免混凝土内部结构受到破坏,最终强度受到损失。
③混凝土的内外温差和最高温度均不能超过规定数值,以免发生裂缝,破坏结构的整体。
⑵ 大体积混凝土冬期施工的技术措施
为了使上述冬期施工的原则得到满足,必须采取一系列技术措施。
①混凝土出机温度与浇筑温度的选择
②基础及冷壁的预热
在浇筑混凝土以前,对基础、预埋铁件及与新混凝土接触的冷壁(老混凝土、预制混凝土模板等),应用蒸汽清除所有的冰、雪、霜冻,并使其表面温度上升。
③原材料加热
水的加热可用锅炉、电热或蒸汽,砂料加热可用封闭的蛇形管,石料加热使用蒸汽最方便。
④运输中的保温
运输中的热量损失与运输工具有关。如使用大型运输罐,热损失一般不大。⑤浇筑过程中减少热量损失
混凝土是分层浇筑的,每层厚度 200-500mm,由于厚度薄,散热面积大,浇筑过程中的热量损失是很大的。
⑥保温养护
混凝土浇筑完毕以后,应采取严格的保温养护措施,使混凝土强度得到充分发展。
3.1.4 监测措施
大体积混凝土的温控施工中,除应进行水泥水化热的测定外,在混凝土浇筑过程中还应进行混凝土浇筑温度的监测,在养护过程中应进行混凝土浇筑块体升降温、内外温差、降温速度及环境温度等监测。这些监测结果能及时反馈现场大体积混凝土浇筑块内温度变化的实际情况,以及所采用的施工技术措施的效果,为工程技术人员及时采取温控对策提供科学依据。
3.2 混凝土结构裂缝处理
尽管对大体积混凝土结构采取各种各样的防裂措施,但是工程实践证明,由于各种复杂因素的影响,在混凝土浇筑不久或在施工期间就会出现裂缝。裂缝的一般修补方法有:表面修补法、内部修补法、结构加固法。
参考文献
[1] 叶昌林,沈义.大体积混凝土施工〔M〕.北京:中国建筑工业出版社,1987.1-3.[2] 龚仕杰.混凝土工程施工新技术〔M〕.北京:中国环境科学出版社,1995.156.[3] 关柯.建筑施工手册〔M〕.中国建筑工业出版社, 1996.1.第二版,32.[4] 黄士元.混凝土早期裂缝的成因及防治〔J〕.混凝土, 2000,7: 3~5.[5] 王铁梦.工程结构裂缝控制的综合方法〔J〕.施工技术, 29(5):59.[6] 李继业 , 刘福臣.建筑施工质量问题与防治措施〔 M 〕.中国建材工业出版社,2003.26-28.[7] 朱伯芳,王同生.水工混凝土结构温度应力与温度控制〔M〕.北京: 水利电力出版社, 1976.45.[8] 王铁梦.工程结构裂缝控制〔M〕.北京: 中国建筑工业出版社,1997.136-137.[9] 安明,刘英明,娄林格.混凝土膨胀剂的研究与应用〔J〕.建筑技术开发, 2001.6.[10] 朱伯芳.大体积混凝土温度应力与温度控制〔M〕.北京: 中国电力出版社,1999.[11] 冯桂恒,等.工业建筑大体积混凝土结构施工〔J〕.建筑技术, 1988,2: 12.[12] 曹可之.大体积混凝土结构裂缝控制的综合措施〔J〕.建筑结构,2002,8: 21.[13] 沈旦申.粉煤灰混凝土〔M〕.中国铁道出版社, 1989.4-5.[14] 项霭行.冬季混凝土施工工艺学〔M〕.中国建筑工业出版社,1993.6.[15] 黄国兴, 惠荣炎.混凝土的收缩〔M〕.中国铁道出版社, 1990.31.[16] 吴照.泵送高强大体积混凝土施工的温度检测〔J〕.建筑技术, 1994,7: 9.[17] 冯浩等.混凝土外加剂工程应用手册〔M〕.中国建筑工业出版社,1999.67-68.[18] 肖祁林.基础大体积混凝土温度收缩裂缝控制〔J〕.甘肃科学学报,第 10 卷,4.[19] 邹仁华.大体积混凝土裂缝控制方法的研究〔J〕.西安科技学院学报,第 21 卷,1.[20] 普德术.大体积混凝土施工温度场及温度应力研究〔J〕.低温建筑技术,1997,1.[21] 蒋叶萍.大体积混凝土施工和质量控制〔J〕.西部探矿工程,2002,(001).[22] 王铁梦.抗放原理及其工程应用〔J〕.广东:土木与建筑,2001,3: 3~5.[23] 王铁梦.控制混凝土工程收缩裂缝的 18 个主要因素〔D〕.2003.11: 8.[24] 王铁梦.钢筋混凝土结构的裂缝控制〔D〕.2000.5.3~6
[25] 徐荣年,徐欣磊.工程结构裂缝控制〔M〕.中国建筑工业出版社,2005.6.[26] 许红等.混凝土结构施工〔M〕.东南大学出版社,2005.8.