第一篇:2、500kV输电线路架空绝缘地线掉线原因分析及对策-王浩东
500kV输电线路架空绝缘地线掉线
原因分析及对策
王浩东
(中国南方电网超高压输电公司天生桥局,贵州兴义 562400)
摘要: 通过分析南方电网两起500 kV 输电线路架空绝缘地线掉线事故,认为其主要原因是线路设计间隙不足以及绝缘子老化导致掉线。对输电线路设计、运行的不足和潜在安全隐患,提出防止地线掉线、改进防雷性能的对策。
关键词:输电线路;感应电压;绝缘地线;掉线
前言:近几年南方电网500kV输电线路多次发生地线掉线事故,对事故原因进行深入分析,提出整改、预防措施已刻不容缓。通过总结发现主要有两类:一类是地线对塔身放电导致其强度降低,最终断线造成掉线;另一类是地线绝缘子铁帽和钢脚分离而掉线。现就两起典型事故进行分析,提出预防绝缘架空地线掉线的对策。1、500kV 来梧二线33#塔地线掉线事故分析 1.1事故经过
2007 年01月13日22:52,500kV 来梧二线C 相跳闸,重合不成功,23:46 汇报调度线路具备恢复运行条件。14日8:50,巡视发现#32-#34左侧GJ-70 地线从#33塔悬垂线夹处断裂,导致#32-#34 档的地线坠落地面。10:45 来梧二线紧急停运对#32小号侧10m 处至#33大号侧10m 处地线进行更换,将#33塔地线改为直接接地,对损伤导线进行修补。15 日12:00 完成抢修,13:58 来梧二线复电。1.2检查情况
500kV 来梧二线#33塔距离来宾变12.6km,一根地线为OPGW2(计算截面积121.87mm2),另外一根绝缘地线型号为GJ-70 钢绞线(通流容量为17.496kA2.s),#33塔附近绝缘地线的接地点为#02、#03、#20、#
38、#
48、#60。#33塔型为ZV-30,#32塔型为GM1-24,#34塔型GM1-33-1.5,#
32、#34塔架空地线水平间距为10.9m,#33塔架空地线水平间距为20.6m。现场检查发现:500kV 来梧二线#33塔C 相上方地线绝缘子间隙(间隙距离5.2mm)有放电痕迹,塔身对应地线悬垂线夹部位有电弧烧伤痕迹;断裂地线除1 股完整股和2 股的1/3 股为物理机械性拉断外,其余均为电弧烧伤溶化断裂;断裂点小号侧4m处地线被电弧烧断2 股,#32大号侧3m 处地线电弧烧伤4 股;C 相导线#33塔往小号侧距悬垂线夹20m 处导线有放电灼伤伤痕、第一个间隔棒处有损伤。检查发现#33塔地线绝缘子串往塔身倾斜,实测在无风情况下33#塔地线悬垂线夹与铁塔塔材最小距离约6cm。1.3原因分析
事故的主要原因是由于地线与塔身之间的最小净空距离仅为6cm(如图1所示),经计算在7.5m/s风速的情况下,地线风偏后可直接与塔身接触,因此地线与塔身之间的距离将长期的小于地线绝缘子的放电间隙(15.2mm),地线会长期对塔身放电,甚至直接与塔身摩擦,导致地线发热烧损或磨损,架空地线在线夹处应力最大,另外导线舞动、扭转振动对线夹处导线有一定疲劳累积效应,地线容易在线夹处发生断裂。当地线损伤到4 股或以上,剩余股线承受不了运行拉力而被拉断;当然运行中悬垂线夹部位的地线如有断股、散股、磨损,将降低地线机械强度和通流容量甚至地线有可能被拉断;GJ-70 地线截面积偏小,可能也是地线断裂原因之一。以上原因都是设计对小转角塔型考虑不周,导致地线与塔身的间隙不足而造成掉线,如果地线改成直接接地问题就迎刃而解了。
图1事故前塔身与地线相对位置
图2事故断裂地线 2、500kV天平II回线#09塔地线掉线事故分析
2.1事故经过
2003年07月28日16:56,500kV天平II回线(天生桥-广州第二回输电线路的天生桥-平果段)#09塔地线由于受力瓷质绝缘子铁帽和钢脚分离而掉线,导致A相故障,重合闸不成功,随后进行1次强送不成功,线路永久性故障。29日凌晨2:35完成抢修,2:56天平II回线复电。2.2检查情况
输电线路巡视人员发现09#塔左侧地线由于受力瓷质绝缘子铁帽和钢脚分离而掉线,掉线的地线跌落到地面,分别在#08-#09塔和#09-#10塔与A相导线接触,造成A相永久短路。两侧地线均采用绝缘地线型号为GJ-70 钢绞线,在地线与导线接触部位有明显放电痕迹,在#08塔、#10塔地线绝缘子表面及放电间隙有明显放电痕迹。2.3、原因分析
2.3.1为了减少线损,500 kV 天平II回线采用架空绝缘形式。架空绝缘地线有较高的感应电势,其大小与线路电压、负荷、长度及地线与导线间距离有关。500 kV 天平II回线由于负荷重(在平果变电站加装串补后输送容量由600MW提高为1200MW,并且长时间满负荷运行),架空绝缘地线的感应电势可能达到10 kV 级。如此高的感应电压使地线绝缘子实际相当于被作为导线绝缘子(电压等级为几个10 kV 级的输电线路)使用,对绝缘子的电气和机械性能的损失极其不利。
2.3.2 由于所使用的瓷绝缘子为内胶装结构,胶装粘合剂水泥和钢脚、铁帽、瓷件的热膨胀系数各不相同,温度变化时各部件热胀系数的差异将使瓷件受到压应力和剪切应力;水泥的长期膨胀(俗称“水泥生长”)也使瓷件和铁帽受到局部应力和疲劳效应,其绝缘性能随着运行时间的延长会逐渐降低甚至完全丧失,此时瓷绝缘子处于击穿运行状态。运行中的瓷质绝缘子承受的感应电压越高,其电气性能丧失的时间越短。处于临界击穿或已击穿状态的绝缘子的电气性能大幅度下降或丧失,不能满足绝缘的要求,但其机械强度仍然可以满足设计的要求,此时地线不会马上掉线。由于胶装粘合剂水泥等填充物的存在,绝缘子有一定的电阻值,在10 kV 级感应电压的作用下,绝缘子出现了比正常接地感应电流大得多的“短路”感应电流。这个感应电流对绝缘子内部会有明显的热作用,大量的热积累导致绝缘子产生温升。长期机电负荷和温升变化进一步加速绝缘子的老化,而进一步老化的结果是导致热效应加剧,形成恶性循环。经过一段长时间或遭受雷击等强电流的作用,瓷件和铁帽受到局部应力和疲劳效应加剧,胶装粘合剂水泥等填充物因热效应局部融化而失去其支撑能力,或因瞬间骤热而发生爆炸,因而产生绝缘子断串。
2.4 掉线原因
500 kV 天平II回线的架空绝缘地线采用大连电瓷厂生产的XDP5-7C 地线专用绝缘子,带保护间隙,于1995 年投运。由于事故现场的地线绝缘子及附件都没有明显的放电痕迹,据了解当时气候情况是风雨交加,但基本没有雷电活动,因此绝缘子应该是因老化,绝缘子填充物局部融化而掉线的。现场取回的绝缘子与悬垂线夹连接的金属部分有严重锈蚀,上面还残留有泪滴状的绝缘子填充物,绝缘子头部填充物有局部融化的痕迹(见图3),这表明高感应电压及其产生的强泄漏电流是绝缘子的老化和掉线的重要原因。
图3铁帽和钢脚的绝缘子
3、预防绝缘架空地线掉线的对策
另外在南方电网的500kV线路上还发生了多起类似以上两起的绝缘地线掉线事故,通过总结发现主要是以上两类:一类是地线对塔身放电导致其强度降低,最终断线造成掉线;另一类是地线绝缘子铁帽和钢脚分离而掉线。针对以上分析现就预防绝缘架空地线掉线提出如下对策。
3.1加强绝缘架空地线的运行维护工作
3.1.1加强绝缘架空地线运行巡视、检测工作。
运行单位巡视时要注意观察地线有无断股、散股现象,观察地线及塔身有无电弧烧伤痕迹,观察线夹与地线的连接部位有无电弧烧伤和生锈现象,夜巡时注意观察地线绝缘子间隙有无放电冒火现象。发现问题及时进行处理。变电站出口15km 以内的绝缘地线,以及偏向塔身(主要是小转角塔型)的绝缘地线,应重点检查;地线绝缘子的检测工作应按规程2-3年要求的周期进行,以便及时发现地线绝缘子缺陷;另外对地线的金具除外观检查外还应配合红外成像技术进行检测。
3.1.2加强架空地线特别是连接金具、接续金具的维护工作。
严格按规程周期进行绝缘地线间隙检查,进行地线烧伤、振动断股和腐蚀检查,发现间隙距离超出设计范围、地线断股等缺陷及时处理,架空地线在线夹处应力最大,另外导线舞动、扭转振动对线夹处导线有一定疲劳累积效应,地线容易在线夹处发生断裂,地线悬垂线夹承重轴磨损断面超过1/4以上的应予以更换。线路检修时变电站出口15km 的绝缘地线,以及有较重锈蚀现象的地线,线夹必须打开检查。运行超过10 年的线路,检修时要加大地
线线夹打开抽查的比例。近期检修的线路要充分利用停电机会登检杆塔,扩大打开地线线夹检查的范围以查找隐患。
3.1.3加强绝缘架空地线掉线的改造工作。
运行单位应根据最新的线路运行方式,进行地线通流容量的校验工作,确保地线具有足够的通流能力和机械强度。地线锈蚀严重或通流容量不满足最新运行要求的,要安排计划进行改造。一根地线为OPGW 时,另外一根绝缘地线靠近变电站10km范围在通信条件允许时应改造为逐塔接地方式。对于地线偏向塔身的可加装引流线或用金具直接代替绝缘子。经验表明玻璃绝缘子不易发生掉串事故,因此对于长距离输电的线路,为提高绝缘地线的可靠性和较少运行维护工作量,可将瓷质绝缘子更换成玻璃绝缘子。3.1.4落实地线掉线的反事故预案。
运行单位应认真分析地线掉线的原因,制定出有针对性的反事故预案,并在材料、抢修工具、照明器材、人员等方面落实到位,提高事故应急能力和速度,尽量减少事故造成损失。3.2加强绝缘架空地线的设计工作 3.2.1重视绝缘子选型。
瓷质绝缘子有多种不利于运行的因素。瓷质绝缘子属于可击穿型绝缘子,老化绝缘子的存在对线路的安全运行是一种潜在的威胁,不易发现,定期检测需要大量的人力物力。线路运行和维护人员较少时,就更难及时发现。长期以来,人们对应用于输电线路导线的瓷质绝缘子的潜在的威胁有着深刻的认识和研究,目前大多数导线瓷质绝缘子已经被更换为钢化玻璃绝缘子,但对应用于地线的瓷质绝缘子的可能存在的危害认识不足,认为地线瓷质绝缘子承受电压低,不易老化,未能及时变更设计或进行大修改造。线路投运和大修改造时,设计部门对此问题重视程度不足,过于注重成本控制和“静态”运行,未能充分考虑线路运行后的“动态”情况,不但导致运行部门工作量大增,容易出现错检、漏检,而且使线路存在先天安全隐患,不利于输电线路的长期安全、经济运行。瓷质绝缘子对降低线损的作用未必如预期理想线路地线采用绝缘子原本是要实现地线全线绝缘以降低线损,但由于采用了瓷质绝缘子,线路在运行一段时间后,瓷质绝缘子的电气绝缘性能逐渐丧失。由于丧失了电气绝缘性能的瓷质绝缘子的存在,架空绝缘地线实际已经处于单点接地状态,原本架空绝缘的地线也就出现了额外泄漏电流。只有单点接地的架空绝缘地线,其总体感应电压很高,由此产生的额外泄漏电流的值也很高,线路此时的线损大幅度增加。可见,线路降低线损过于依赖瓷质绝缘子的电气可靠性,而瓷质绝缘子易击穿的特性对不利于长期降低线损。因此应当重视绝缘子选型。
3.2.2灵活运行地线绝缘运行方式。
架空绝缘地线运行方式导致地线产生高感应电压。全线绝缘的方式虽然减少了线损,但必定导致地线上的高感应电压大增。高感应电压不但加速瓷质绝缘子老化进而击穿的速度,而且会在瓷质绝缘子击穿后进一步破坏瓷质绝缘子的机械性能,是导致掉线的主要诱因之一。因此在大跨越塔、转角塔、耐张塔的地线应尽可能直接接地或采用双串。另外对一回地线采用OPGW 光缆,另一回地线采用全线绝缘的情况时线路故障或遭受雷击时,OPGW光缆因全线接地而承受较大的雷击电流,其强度较低很容易发生雷击断股,近几年OPGW光缆雷击断股已经是屡见不鲜,因此在设计线路时应进行地线通流容量的校验,确保地线具有足够的通流能力和机械强度。对雷害严重地区及变电站进出口线路建议不要采用绝缘地线。
参考文献
[1] 电机工程手册编辑委员会.电机工程手册[K].北京:机械工业出版社, 1982.[2] 张殿生.电力工程高压输电线路设计手册[K].北京:中国电力出版社,1991.[3] 刘桂峰.高压输电线路几种常用绝缘子的性能比较[M].宁波:宁波出版社, 1996.[4] DL/T5092—1999, 110~500 kV 架空送电线路设计技术规程[S].[5] 樊灵孟.何宏明, 钟定珠, 等人工引雷试验中雷电流测量分析[J],高电压技术, 2000, 26(4):50-52.[6]顾洪连.谈输电线路绝缘子的可界性 〔 J 〕 .电力建设,1999(8)