电磁兼容技术及应用

时间:2019-05-14 23:41:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《电磁兼容技术及应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《电磁兼容技术及应用》。

第一篇:电磁兼容技术及应用

电磁兼容技术及应用

摘 要:本文简要介绍电磁兼容相关的各项技术,通过对接地、屏蔽、滤波等技术的分析,说明产品如何实现良好的电磁兼容性,如何将电磁兼容技术融入产品研发流程。对实例分析,结合电磁兼容理论,说明实际测试中的处理

摘 要:本文简要介绍电磁兼容相关的各项技术,通过对接地、屏蔽、滤波等技术的分析,说明产品如何实现良好的电磁兼容性,如何将电磁兼容技术融入产品研发流程。对实例分析,结合电磁兼容理论,说明实际测试中的处理方法,从干扰源、耦合路径、敏感源方面逐步分析验证,提高产品可靠性。

关键词:电磁兼容 接地 屏蔽 滤波

目前,电磁兼容技术已经发展成为专门的针对电子产品抗电磁干扰和电磁辐射的技术,成为考察电子产品的安全可靠性的一个重要指标,覆盖所有电子产品。

各个电子设备在同一空间工作时,会在其周围产生一定强度的电磁场,这些电磁场通过一定的途径(辐射、传导)耦合给其他的电子设备,影响其他设备的正常工作,可能使通讯出错或者系统死机等,设备间相互干扰相互影响,这种影响不仅仅存在设备间,同时也存在元件与元件之间,系统与系统之间。甚至存在与集成芯片内部。

电磁兼容技术主要包括接地、滤波、屏蔽技术等,在特定场合需要注意的是不一样的,A、在结构方面,需要注意屏蔽和接地,B、在线缆方面注意接地和滤波,C、在PCB设计方面,需要注意信号布局布线、滤波等。

一、电磁兼容技术

首先从构成电磁干扰的三要素入手,即干扰源、敏感源、耦合路径,★干扰源是产生电磁干扰的设备,通过电缆、空间辐射等耦合路径影响干扰敏感源设备。高频电压/电流是产生干扰的根源,电磁能量在设备之间传播有两种方式:传导发射和辐射发射,传导发射是

以导线为媒体,以电流为现象,辐射发射是以空间辐射为媒体,以电磁波为现象。常见干扰源有雷电、无线通讯、脉冲电路、静电、感性负载通断、天线、电缆导线等。任何电路都可能成为敏感源,数字电路抗干扰性较好,但是风险大,大的脉冲尖峰可能是数字电路误动作,音频模拟电路对射频信号敏感。★耦合路径分为空间耦合和传导性耦合,空间耦合包括互感耦合、电容耦合、天线辐射,传导性耦合包括地线和电源线上的传导。

电磁兼容设计主要包括接地设计、屏蔽设计、滤波设计方面的知识。地线分为安全地、交流地、直流地、数字地、模拟地、机壳地、防雷地等,※地线从电压概念说是提供一个等电位体,从电流概念上说是提供一个电流通路。地线阻抗决定了线路的抗干扰性,其中导线阻抗决定了地线的电位差,回路阻抗决定了实际的地线电流,地环路的存在是电路受干扰的主要原因,减小地环路的面积,降低对线路的影响,使用屏蔽线或同轴电缆都可能减小信号回路的面积,从而达到降低干扰的影响。地线电流总是走地线阻抗比较小的路径,高频低频时线路的阻抗是不一样的,可以根据需要设计信号路径。多层板比双层板的抗干扰性要好,因为多层板有专门的地层和电源层,保证每个信号回路都具有最小的信号回路面积,如果是双层板,最好铺地线网格,来保证最小的回路面积。

单端接地是为了降低电场对设备的影响,两端接地是降低磁场对设备的影响,两端接地形成磁场环路,外界磁场在原来信号与地线构成的回路中产生感应电流的同时,也在屏蔽层与地线构成的回路中产生感应电流Is,Is也会感应出磁场,但是这个磁场与原来的磁场磁场方向相反,相互抵消,导致总磁场减小,减小了干扰。

屏蔽技术,主要是应用在系统的结构上的,也有对线路关键电路进行屏蔽的,如时钟电路、CPU等。考察系统的屏蔽效能可以利用静电测试,如果系统屏蔽做的好,静电会沿着屏蔽体进行泄放,不会对内部线路造成影响。良好的电磁屏蔽的关键因素是屏蔽体的导线连续性,如果必须开孔引导线,采用屏蔽电缆,屏蔽层一定要采用360度环接方式进行接地,保证屏蔽的完整性。根据不同屏蔽层传输阻抗的频率特性和信号工作频率,来选择屏蔽电缆。

滤波包括电源线滤波与信号滤波。电缆是一个很好的天线,有时候即使屏蔽做的很好,仍然不能通过辐射发射和辐射敏感度的试验,这是因为电缆产生的辐射远高于线路板本身及机箱屏蔽不完整发生泄漏所产生的辐射。解决这种问题的一个方法是在电缆的端口处安装滤波器,将干扰电流滤除掉。根据干扰的频率选择滤波器的截止频率,才能有效的滤除干扰。一个系统使用了二阶LC低通滤波器,做辐射试验还是过不去,将前级电容去掉,辐射发射就不超标了,说明了需要降低截止频率才能滤除一部分干扰,增加滤波器的级数增加了曲线的陡度,提高了在工作频率内的滤波性能,并不能将更低频率的干扰滤除。滤波电容引线要短,可以采用“V”形接法,减小高频时的回路阻抗,也可以在引线上增加安装磁珠,加大了引线上的电感,增强了滤波效果。薄膜电容的电阻成分大,应采用陶瓷电容来进行滤波,陶瓷电容的阻抗特性好。

电磁兼容技术应贯穿产品研发始终,包括产品的概要设计、详细设计、原理图印制板设计、结构、组装调试等每个环节,都应该考虑电磁兼容设计,概要设计中需要调研产品应用环境,分析现场干扰类型,评估干扰风险,详细设计中需要针对具体的干扰,采取相应的对策,需要全面设计。原理图印制板图设计需要将各项措施体现在原理图中,必要时进行仿真,印制板图设计时需要按照模块化设计,注意布局布线,敏感电路的电磁兼容防护。结构也是电磁兼容设计中主要的一部分,产品的结构对静电、群脉冲、辐射等有很大的关系,结构要求具有良好的屏蔽性和接地。装配调试环节需要注意信号完整性,保证接地的连续性,注意面板接触问题,在测试环节根据遇到的实际情况,采取相应的措施。

二、电磁兼容实例应用分析

学习电磁兼容技术的整体目标是系统地学习电磁兼容方面的知识,通过学习电磁兼容设计理论,使这些方法、规则、措施等融入实际工作中,来保证产品尽可能可靠。

1、接地问题

实例一:某系统设备在做422通讯串口的射频场感应传导测试,采用双绞屏蔽线,开始采用的是单端接地,测试时出现的误码率高,几乎没有正确的数据,后来采用双端可靠接地,通讯正常。

实例二:某系统设备在做视频鼠标线的射频场感应传导的试验时,在较低频段(3M以下)时显示器有波纹,上下闪动,后来将视频线的显示器侧可靠接地,干扰明显降低,几乎不影响显示。

分析:这两种现象都是在做射频场的感应传导试验时出现的,射频场的感应传导抗扰度试验实质是:设备引线变成被动天线,接受射频场的感应,变成传导干扰入侵设备内部,最终以射频电压电流形成的近场电磁场影响设备工作,以低频磁场为主。

双绞线能够有效地抑制磁场干扰,这不仅是因为双绞线的两根线之间具有很小的回路面积,而且因为双绞线的每两个相邻的回路上感应出的电流具有相反的方向,因此相互抵销。双绞线的绞节越密,则效果越明显。

屏蔽层两端接地时,外界磁场在原来信号与地线构成的回路中产生感应电流的同时,也在屏蔽层与地线构成的回路中产生感应电流Is,Is也会感应出磁场,但是这个磁场与原来的磁场磁场方向相反,相互抵消,导致总磁场减小,减小了干扰。

2、屏蔽问题

实例三:某系统为机柜、机箱式结构,其中控制部分为机箱结构,子板总线板结构,子板均安装面板。做静电试验时,接触放电+5.5kv时,对主板面板及左右相邻的面板进行静电试验时,控制板重启或死机,后来在控制板附近的面板之间安装指形簧片,系统在接触放电±6.6kv时运行正常。

实例四:某系统试验,用普通机柜,系统很敏感,对机柜引出线(通讯线)进行群脉冲试验,采用耦合夹耦合方式,干扰一加上去,系统就不正常,在通讯线两端增加磁环,效果不明显,后来没有办法了,更换了屏蔽机柜,进行试验,有明显效果,做几轮后,系统才会出现倒机想象,在通讯线进机柜处增加安装磁环后,系统工作正常,几轮试验后,没有出现倒机现象,系统工作都正常。

分析:现在很多系统都是机箱结构,即控制板、采集板、驱动板等都安装在同一机箱中,进行数据交换与控制。安装完成后各电路板会有一定的缝隙,静电脉冲通过面板缝隙,分布电容向主板耦合,使电源失真或控制发生故障系统重启、死机。在面板之间安装指形簧片,使机箱成为一个良好的屏蔽体,由于电荷的“趋肤效应”,当有静电干扰时,静电会沿着表面泄放至大地,对内部电路的影响减小或者消失。

屏蔽机柜对机柜的缝隙和门都进行了处理,缝隙处安装导电簧片,门与机柜接触位置安装导电布衬垫,提高机柜的屏蔽效能,提高机柜整体的抗干扰性,群脉冲干扰的实质是对线路分布电容能量的积累效应,当能量积累到一定程度时就可能引起线路(乃至设备)工作出错。通常测试设备一旦出错,就会连续不断的出错,即使把脉冲电压稍稍降低,出错情况依然不断的现象加以解释。脉冲成群出现,脉冲重复频率较高,波形上升时间短暂,能量较小,一般不会造成设备故障,使设备产生误动作的情况多见。

3、磁环的作用

实例五:对一个机箱结构系统做群脉冲实验,机箱内含有控制板、采集板、驱动板等,采集线、驱动线出机柜,需要做信号线群脉冲实验,当干扰施加在采集线上时,所有的采集板上指示灯都闪烁,对采集回路进行分析,采集输入有光电隔离器件,采集回线为动态的12V输出,当干扰施加时,可能造成采集回线上的电压失真,造成指示灯闪烁,找了一个闭合磁环,安装在采集回线上,进行实验,在某一极性下指示灯闪烁,说明磁环有作用,然后根据其阻抗特性,绕制2圈,实验效果不明显,后来试验一下绕制3圈,结果,采集指示灯显示正常,多次试验,系统均正常。

分析:磁环对群脉冲干扰有很好的抑制作用,根据实际情况安装在通讯线的两端或一端,磁环有不同的阻抗特性,对干扰信号进行频率分析,设计磁环的截止频率正好落在干扰信号频率附近,使磁环体现较大的阻抗性,来抑制干扰。

磁环的圈数影响磁环的阻抗特性,圈数越多,阻抗特性曲线向低频率方向移动,即较低频率下的阻抗越大,若此频率比较接近干扰频率时,就能起到很好的抑制干扰的作用。

电磁兼容技术融入电子产品开发设计中,可以提高产品的安全可靠性,如果在实际测试中,某一方面存在缺陷,可以从电磁干扰的方式上入手进行一步一步测试,电磁干扰有两种形式:传导发射和辐射发射,从各自的耦合路径进行查找。一个系统指标超标,可以先从辐射发射上解决,设备是否屏蔽良好,机壳上孔用导电布封住,导电布要与机壳良好接触,再进行试验,如果还超标,那就是干扰主要是传导发射引起的,在设备机壳出口处安装信号滤波器和电源滤波器,进行试验,如果还超标,那就是干扰是通过电缆辐射和传导发射出来,通过对屏蔽层的接地,减小地环路等措施必定能查找到原因并解决。

三、结语

产品需要逐步更新完善,才能达到一定的安全可靠,电磁兼容技术需要不断的积累,才能保证产品的安全可靠,产品应用场合不同,遇到的电磁干扰有所不同,产品的性能也不同,需要根据实际应用环境,分析干扰源,查找耦合路径,明确敏感源,对干扰源采取隔离措施,切断耦合路径或者疏导干扰,对敏感源采取屏蔽、滤波等措施,保证产品安全可靠工作。

第二篇:电磁兼容设计及其应用

电磁兼容设计及其应用

摘要:以实际工程中常遇到的电磁兼容问题为背景,简要地介绍了有关电磁干扰及有关抗干扰措施方面的内容。通过对接地方法、屏蔽思想和滤波手段的详细论述和独到见解,提出了系统电磁兼容的设计思想以及解决方法,并对实际工作中常见的干扰、滤波及接地等电磁兼容现象给出相应分析与解决建议。

关键词:电磁兼容;抗干扰措施;滤波手段;屏蔽;接地方法

0 引言

电磁兼容技术是一门迅速发展的交叉学科,涉及电子、计算机、通信、航空航天、铁路交通、电力、军事以至人民生活各个方面。在当今信息社会,随着电子技术、计算机技术的发展,一个系统中采用的电气及电子设备数量大大增加,而且电子设备的频带日益加宽,功率逐渐增大,灵敏度提高,联接各种设备的电缆网络也越来越复杂,因此,电磁兼容问题日显重要。基本概念和术语 1.1 电磁兼容性定义

所谓电磁兼容性(EMC)是指电子线路、系统相互不影响,在电磁方面相互兼容的状态。IEEE C63.12-1987规定的电磁兼容性是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰”。1.2 电磁干扰三要素

一个系统或系统内某一线路受电磁干扰程度可以表示为如下关系式:

式中:G为噪声源强度;C为噪声通过某种途径传到受干扰处的耦合因素;I为受干扰设备的敏感程度。

G,C,I这三者构成电磁干扰三要素。电磁干扰抑制技术就是围绕这三要素所采取的各种措施,归纳起来就是:抑制电磁干扰源。切断电磁干扰耦合途径;降低电磁敏感装置的敏感性。

1.3 地线的阻抗与地环流 1.3.1 地线的阻抗

电阻指的是在直流状态下导线对电流呈现的阻抗,而阻抗指的是交流状态下导线对电流的阻抗,这个阻抗主要是由导线的电感引起的。如果将10 Hz时的阻抗近似认为是直流电阻,当频率达到10 MHz时,它的阻抗是直流电阻的1 000~100 000倍。因此对于射频电流,当电流流过地线时,电压降是很大的。为了减小交流阻抗,一个有效的办法是多根导线并联,以减少和地线之间的电感。当两根导线并联时,其总电感L为:

1.3.2 地环流

由于地线阻抗的存在,当电流流过地线时,就会在地线上产生电压。这种干扰是由电缆与地线构成的环路电流产生的,因此成为地环路干扰,如图1所示。

式中:L1是单根导线的电感;M是两根导线之间的互感。

1.4 公共阻抗干扰 1.4.1 公共阻抗耦合定义

当两个电路共用一段地线时,由于地线的阻抗,一个电路的地电位会受另一个电路工作电流的影响。这样一个电路中的信号会耦合到另一个电路,这种耦合称为公共阻抗耦合,如图2所示。

1.4.2 消除公共阻抗耦合措施

消除公共阻抗耦合的途径有两个,一个是减小公共地线部分的阻抗,另一个方法是通过适当的接地方式避免容易相互干扰的电路共用地线,一般要避免强电电路和弱电电路共用地线,数字电路和模拟电路共用地线。电磁干扰的抑制方法

电磁干扰的抑制方法很多,基本方法有三种,即接地、屏蔽和滤波。每种方法在电路与系统的设计中各有独特作用,但在使用上又是相互关联。如良好的接地可降低设备对屏蔽和滤波的要求,而良好的屏蔽也能降低对滤波的要求。2.1 接地

接地从表面上看是十分简单的事情,实际上是最难的技术。造成这种情况的原因是对于接地没有一个很系统的理论或模型,因此接地设计在很大程度上依赖设计师的直觉,依赖他对“接地”这个概念的理解程度和经验。2.1.1 接地的分类

根据使用功能的不同,可以把接地分成如下几种形式:

(1)安全接地:使用交流电的设备必须通过黄绿色安全地线接地,否则当设备内的电源与机壳之间的绝缘电阻变小时,会因为漏电而导致电击伤害。

(2)雷电接地:设施的雷电保护系统是一个独立系统,由避雷针、下导体和与接地系统相连的接头组成。该接地系统通常与安全接地接在一起。雷电放电接地仅对设施而言,设备没有这个要求。

(3)电磁兼容接地:出于电磁兼容设计而要求的接地,包括:

屏蔽接地 为了防止由电路之间的寄生电容产生的相互干扰,必须进行隔离和屏蔽,用于隔离和屏蔽的金属必须接地。

滤波器接地 滤波器中一般都包含信号线或电源线到地的旁路电容,当滤波器不接地时,这些电容就处于悬浮状态,起不到旁路的作用。

噪声和干扰抑制 对内部噪声和外部干扰的控制,应将设备或系统上的某些点与地相连,从而为干扰信号提供“最低阻抗”通道。

电路参考 电路之间信号要正确传输,必须有一个公共电位参考点,这个公共电位参考点就是地。因此所有互相连接的电路必须接地。

一般在设计要求时仅明确安全和雷电防护接地的要求,其他均隐含在用户对系统或设备的电磁兼容要求中。2.1.2 设备的信号接地

设备的信号接地,是以设备中某一点或一块金属薄板来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。

实际应用中有几种基本的信号接地方式,即浮地、单点接地、多点接地和混合接地。

(1)浮地

采用浮地的目的是将设备与公共接地系统,或可能引起环流的公共导线隔离开。浮地的最大优点是抗干扰性能好。缺点是由于设备不与公共地相连,容易在两者间造成静电积累,当电荷积累到一定程度后,在设备地与公共地之间的电位差可能引起剧烈的静电放电,而成为破坏性很强的干扰源。一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积聚的电荷。实现设备的浮地可采用变压器隔离或光电隔离。

(2)单点接地

单点接地是指在一个电路或设备中只有一个物理点被定义为接地参考点,凡需要接地的点都被接至这一点,如图3所示。对一个系统,如采用单点接地,则系统中的每个设备都有自己的单点接地点,然后各设备的“地”再与系统中惟一指定的参考接地点相连。

单点接地的缺点是当系统工作频率很高时,以致信号的波长可与接地线长度相比拟时(如达到1/4波长),接地线就不能作为一根普通连接线考虑,它会呈现某种电抗效应,使接地效果不理想,此时可以采用多点接地的方法。

(3)多点接地

多点接地指设备中凡需要接地的点都直接接到距它最近的接地平面上,以便使接地线最短,如图4所示。这里说的接地平面可以是设备的底板、专用接地母线,甚至是设备的机架。

多点接地的优点是简单,凡需要接地的点都可以就近接地,由于接地电感的减小,使地线上的高频噪声大为减少。所以多点接地在高频下使用效果更佳。

单点接地与多点接地的分界常以流通信号波长λ的0.05倍为界,凡单点接地线长度达到0.05λ以上时,就应当用多点接地。2.1.3 设备的接大地

(1)设备的接大地

实际应用中,除认真考虑设备内部的信号接地外,通常还要将设备的信号地、机壳与大地连在一起,并以大地作为设备的接地参考点。设备接大地的目的有三个:

①设备的安全接地,保证了操作人员的安全;

②释放机箱上所积聚的电荷,避免因电荷积聚使机箱电位升高,造成电路工作的不稳定;

③避免设备在外界电磁环境的干扰下造成设备对大地的电位发生变化,引起设备工作的不稳定。

如能将接地与屏蔽、滤波等技术配合使用,对提高设备的电磁兼容性可起到事半功倍的作用。

(2)接大地的方法与接地电阻

判断接大地有效性的重要指标是接地电阻。接地电阻除与接地电极的制作方式有关外,也和大地自身的性质有关。

正确的接大地方法是用直径1~2 cm的铜棒(长2~4 m)打入地下,深度在2 m以上。一根铜棒的接地电阻在25 Ω左右,这对一些小功率电气设备已经够用。若要达到更小的接地电阻,可增加铜棒附近地域的盐分和水分,还可将几根铜棒互连成网。一般接地电阻以10 Ω为设计目标。2.2 屏蔽

用金属材料将设备内部产生噪声的区域封闭起来的方法称为屏蔽。屏蔽能有效抑制通过空间传播的电磁干扰。采用屏蔽的目的有两个:一是限制设备内部的辐射电磁能越出某一区域;二是防止外部的辐射电磁能进入设备内部。

按屏蔽所起的作用可分为电场屏蔽、磁场屏蔽和电磁场屏蔽三种。2.2.1 电场屏蔽

电场屏蔽就是用导体将噪声源(或被屏蔽物体)包围起来,然后接地,以达到屏蔽的目的。由于导体表面的反射损耗很大,很薄的材料(铝箔、铜箔)也有很好的屏蔽效果。另外,机箱上即使有缝隙,也不会产生太大的影响。2.2.2 磁场屏蔽

磁场屏蔽通常是指对直流或低频磁场的屏蔽,其屏蔽效果比电场的屏蔽要困难得多。

磁场屏蔽的主要原理是利用屏蔽体的高导磁率、低磁阻特性对磁通所起的磁分路作用,使屏蔽体内部的磁场大大削弱。当要屏蔽外部强磁场时,要求外层屏蔽体选用不易磁饱和的材料,如硅钢等;内层则用容易达到饱和的高导磁材料。反之,屏蔽体的材料使用次序也需颠倒过来。两层屏蔽体在安装时要注意彼此间的磁路绝缘。若屏蔽体无接地要求,可用绝缘材料作支撑;如要求接地,可用非铁磁材料的金属作支撑。2.2.3 电磁场屏蔽

电磁场屏蔽的目的是要阻止电磁场在空间传播。

电磁场屏蔽可采用如下方法:

反射 金属表面对电磁波的反射作用。

吸收 电磁波在进入屏蔽体内部时,会被屏蔽体金属所吸收。

反射和吸收 电磁波透过金属到达屏蔽体另一表层时,在金属与空气交界面上会再次形成反射,重返屏蔽体内部,结果在屏蔽体内部形成多次反射和吸收现象(当然最终还会有少量电磁波透过屏蔽体而进入被保护空间)。

因此,电磁屏蔽是基于金属材料对电磁波的反射和吸收两个作用来完成的。2.3 滤波

针对不同的干扰,应采取不同的抑制方法和器件,下面对不同的抑制器件分别作简要叙述。

2.3.1 专用供电线路

只要通过对供电线路进行简单处理就可以获得一定的干扰抑制效果。例如在三相供电系统中把一相作为干扰敏感设备的供电电源;把另一相作为外部设备的供电电源;再把第三相作为常用测试仪器或其他辅助设备的供电电源。这样可减少设备之间的相互干扰,同时也有利于三相平衡。在现代电子系统中,由于配电线路中非线性负载的使用,造成线路中谐波电流的存在,而谐波分量在中线里不能相互抵消,而是叠加,因此尽量采用较粗的中线,以减小线路阻抗,降低干扰。2.3.2 瞬变干扰抑制器件

瞬变干扰抑制器件包括气体放电管、金属氧化物压敏电阻、硅瞬变吸收二极管和固体放电管等多种。其中金属氧化物压敏电阻和硅瞬变吸收二极管的工作原理与普通的稳压管类似,是箝位型的干扰吸收器件;而气体放电管和固体放电管是能量转移型干扰吸收器件。结语

本文是在电磁兼容理论学习的基础和实际工程应用中积累的一些经验,是工程实践中的经验总结,所提出的一些观点,难免有一些不完善之处,恳请各位同行批评指正。

第三篇:电磁兼容与抗干扰技术

什么是《电磁兼容与抗干扰技术》(简述)

在各种工业控制系统中,随着变频器等电子电力装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成控制系统的硬件损坏,有时虽不致损坏系统的硬件,但常使智能化控制装置内微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动控制系统设计、制造和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。一.电磁兼容(EMC)概述

1.电磁兼容的定义

采用一定的技术手段,使同一电磁环境中的各种电子、电气设备都能正常工作,并且不干扰其它设备的正常工作,这就是电磁兼容(英文Electromagnetic Compatibility,缩写为ECM).国际电工委员会(IEC)对电磁兼容性的定义是“电磁兼容性是电子设备的一种功能,电子设备在电磁环境中能完成其功能而不产生不能容忍的干扰。”

在国家标准GB/T4365-1995中对电磁兼容严格的定义是:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承担的电磁骚扰的能力。电磁兼容有两方面的含义:

(1)设备对来自外部环境的电磁干扰必须具有一定的承受能力(抗扰度)。(2)设备在正常工作时产生的电磁干扰不超过一定的限值,不干扰其它设备的正常工作。

目前,随着我国经济的发展和科技的进步,工控设备的使用越来越广泛。特别是涉及到大的控制系统时,例如控制系统既有PLC、数控系统、变频器、又有智能化仪表控制系统。如果在系统设计和安装时,没有充分考虑电磁兼容的问题,小则造成设备不能稳定运行,大则造成设备的损坏。目前EMC已经成为系统故障的主要原因。

EMC的一条准则是“预防是最有效的,最经济的方案”。所以,EMC已经成为电气系统设计时必须重视的问题。

电磁兼容性学科涉及的理论基础包括电磁场理论、天线与电波传播、电路理论、通信技术、材料科学、生物医学等等,所以电磁兼容性学科是一门实用性很强的综合性的前沿学科。

为了实现仪器设备之间的电磁兼容,国家针对各种电子、电器产品已经颁布了一系列强制性的电磁兼容执行标准。电磁兼容技术贯穿于电子、电器产品设计、制造、检验、销售的全过程。电磁兼容问题解决的越早,投资效益越高。如果在产品的立项、设计阶段就解决了电磁兼容技术,电磁兼容措施的有效性最高,产品的成本最低。如果产品已经成批的制造出来了,才发现不符合国家的电磁兼容标准,在采取补救措施,产品的成本就会大大提高。

二.EMC设计的主要内容 A,电气设计: ① 各元器件的干扰控制和抗干扰措施:屏蔽技术、滤波技术、接地技术的应用。② 元器件的布局、导线的敷设等。B.结构设计:

机箱的屏蔽,包括通风口、缝隙、表头、显示器、指示灯等处的处理。

三.、抗干扰技术概述 A.接地技术 接地的作用和分类 几种常用的接地方法 浮点接地 单点接地 多点接地 混合接地技术 B.滤波技术 反射式滤波器 损耗滤波器 有缘滤波器 C.屏蔽技术

主动屏蔽、被动屏蔽;

静电屏蔽、磁场屏蔽、电磁屏蔽。

四.PLC控制系统的抗干扰。

五.变频器控制系统的抗干扰。

第四篇:电磁兼容测试

一、前言

自从麦克斯韦建立电磁理论、赫芝发现电磁波百余年来,电磁能得到了充分的利用。尤其在科学发达的今天,广播、电视、通信、导航、雷达、遥测遥控及计算机等领域得到了迅速的发展,给人类创造了巨大的物质财富,特别是信息、网络技术的爆炸性发展,使世界的对话距离和时间骤然缩短,世界的面貌焕然一新,地球村的梦想将成为现实。然而,伴随电磁能的利用,也带来了电磁干扰的产生。元用的电磁场,通过辐射和传导的途径,以场和电流(电压)的形式,侵人工作着的敏感的电子设备,使其无法正常工作。而且,如同生态环境污染一样,随着科学技术的发展.电磁环境的污染也越来越严重。它不仅对电子产品的安全与可靠性产生危害,还会对人类及生态产生不良影响。当然,这种污染不会滞留和积累电磁能量,一旦电磁骚扰源停止工作,干扰也即消失。

电磁环境的不断恶化,引起了世界各工业发达国家的重视,特别是二十世纪七十年代以来,进行了大量的理论研究及实验工作。进而提出了如何使电子设备或系统在其所处的电磁环境中,能够正常的运衍,而对在该环境中工作的其它设备或系统也不引人不能承受的电磁干扰的新课题。这就是所谓的电磁兼容。

电磁兼容学是一门新兴的跨学科的综合性应用学科。作为边缘技术,它以电气和元线电技术的基本理论为基础,并涉及许多新的技术领域,如微波技术、微电子技术、计算机技术、通信和网络技术、以及新材料等等。电磁兼容技术研究的范围很广,儿乎所有现代化工业领域,如电力、通信、交通、航天、军工、计算机和医疗等都必须解决电磁兼容问题。研究的热点内容主要有:

电磁干扰源的特性及其传输特性;

电磁干扰的危害效应;

电磁干扰的抑制技术;

电磁频谱的利用和管理;

电磁兼容性标准与规范;

电磁兼容性的测量与试验技术;

电磁泄漏与静电放电等。

电磁兼容学又是技术与管理并重的实用工程学。开展这样的工程,需要投入大量的人力和财力。国际标准化组织已经和正在制定EMC的有关标准和规范。我国在这方面的起步虽然较晚,但发展很快。随着市场经济的发展,我国要参与世界技术市场的竞争,进出口的电子产品都必须通过EMC检验。因此,我国政府和相关部门越来越关注EMC问题,不断制定了有关的强制性贯彻标准。各部门和军兵种也都开始研究并建立了不同规模的EMC实验室和检测中心。各种形式的技术研讨和交流,促进了EMC技术的普及、推广和应用。我国98年已立法强制对六类进口电子产品(计算机、显示器、打印机、开关电源、电视机和音响)及通信终端产品施行EMC检测。99年国家质量监督局发布了《EMC认证管理办法》。我国电子技术标准化研究所EMC测试实验室被美国联邦通信委员会通过了FCC认可。从2000年2月16日起,出口美国的信息技术设备和发射及接收设备,由该实验室出具的数据将被美国直接接受。目前,国内也正在审定和验收正式的EMC认证机构和实验室。

产品的EMC检测是实现电磁兼容不可缺少的技术手段,强制贯彻电磁兼容标准,则是保证产品质量和提高市场竞争力的先决条件。

二、电磁兼容基本概念

关于EMC的有关概念、定义和术语,在1995年颁布的国家标准GB/T4365“电磁兼容术语”中有详细的阐述。这里仅就几个主要概念作一些辅助说明。

1.电磁环境(Electromagnetic Environment)

指存在于给定场所的所有电磁现象的总和。

给定场所即空间。所有电磁现象包括全部时间与全部频谱。

2.电磁兼容性(Electmmagnetic Compatibiiity-EMC)

设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

对于EMC这一概念,作为一门学科,可译为“电磁兼容”,而作为一个设备或系统的电磁兼容能力,可称为“电磁兼容性”。

由定义可以看出,EMC包括两个方面的含义,即设备或系统产生的电磁发射,不致影响其它设备或系统的功能;而本设备或系统的抗干扰能力,又足以使本设备或系统的功能不受其它干扰的影响。这就又引出了另外两个概念——电磁干扰和电磁敏感度。

3.电磁干扰(Electromagnetic Interference-EMI)

电磁骚扰引起的设备、传输通道或系统性能的下降。

所谓电磁骚扰(Electmmagnetic Disturbance)是指任何可能引起装置、设备或系统性能降低或者对有生命或元生命物质产生损害作用的电磁现象。它可能是电磁噪声、无用信号或传播媒介自身的变化,它可能引起设备或系统降级或损害,但不一定会形成后果。而电磁干扰则是由电磁骚扰引起的后果。电磁干扰是由干扰源、藕合通道和接收器三部分构成的。通常称作干扰的三要素。

根据干扰传播的途径,电磁干扰可分为辐射干扰和传导干扰。

辐射干扰(Radiated Interference)是通过空间并以电磁波的特性和规律传播的。但不是任何装置都能辐射电磁波的。

传导干扰(Conducted Interference)是沿着导体传播的干扰。所以传导干扰的传播要求在干扰源和接收器之间有一完整的电路连接。

4.电磁敏感度(Electmmagnetic SuseeptibilkrEMS)

在存在电磁骚扰的情况下,装置、设备或系统不能避免性能降低的能力。敏感度高,抗扰度低。其实二者是一个问题的两个方面,即从不同角度反映装置、设备或系统的抗干扰能力。以电平来表示,敏感度电平(刚刚开始出现性能降低时的电平)越小,说明敏感度越高,抗扰度就越低;而抗扰度电平越高,说明抗扰度也越高,敏感度就越低。

电磁敏感度也分为辐射敏感度和传导敏感度。

三、电磁干扰的危害

人们常说的射频干扰(Radio Frequency Interference-RFI)是指元线电广播范围的干扰。1934年在巴黎举行的国际无线电干扰特别委员会(CISPR),就是第一次开始对电磁干扰及其控制技术的世界性有组织的研究。在人类进入信息化社会的今天,电磁波作为一种资源已在OHz~400GHz宽频范围内,广泛地用于信息技术产品中,如汽车、通信、计算机、家电等产品,大量地拥人社会和家庭。伴之而来的电磁干扰也就从甚低频到微波波段,无孔不入地辐射或传导至运行中的子设备或系统以及周围的环境。给设备或系统以及生态带来各种各样的危害。现就几个领域的电磁骚扰现象作简要介绍。

(一)信息技术设备的电磁干扰不容忽视

信息技术设备(Informatbn Technohgy Equipmem-ITE)是指用于以下目的的设备:

接收来自外部源的数据(如通过键盘、数据线输入);

对接收到的数据进行某些处理;

提供数据输出。

过去,人们往往认为,计算机是以逻辑为特征的数字系统,受自身和外来电磁干扰影响不会很大。尽管在系统设计和工程实现中,也自觉或不自觉地进行着防止和消除各种干扰的工作,然而,提到掌握和运用EMC技术上来认识和研究,其意识性还欠缺。然而,随着微电子技术的发展,计算机己朝高速度、高灵敏度、高集成和多功能方向发展,系统已是含有多种元器件和许多分系统的低压传输信息的复杂设备。高速和高密,会使系统的辐射加重,低压、高灵敏度会使系统的抗扰度降低。因此,由于电磁环境的干扰和系统内部的相互窜扰,严重地威胁着计算机和数字系统工作的稳定性、可靠性和安全性。如兼容机经常出现死机的现象就是典型一例。

(二)信息技术设备的电磁泄揭威胁着信息安全

计算机的键盘、显示屏等都会使信息辐射泄漏出去。如果泄漏的是有用信息,一旦被敌方截获,将会造成巨大损失。美国是最早利用电磁辐射泄漏获取情报和重视防信息泄漏的国家。美国曾有人在纽约做过试验,将辐射信号截获设备“数据扫描器”装在汽车上,从曼哈顿南端的贝特利公园,沿华尔街缓行,对沿途的海关大楼、联邦储备银行、世界贸易中心、市政厅、警察总局、纽约电话局以及联合国总部等单位正在工作的计算机进行辐射信号监测。惊奇地发现,纽约是一个巨大的信息库。如果截获者,对其有兴趣,便可通过放大、特征提取、解密、解码等技术或信息处理等,获得有用的情报。据资料介绍,当今的截获技术相当先进,可在1公里之内,获取清晰的屏幕图像。在通信方面,则往往是以传导波的方式泄漏和截获。因为,通信领域的信号传播方式主要是电缆、光缆和无线电波。所以,网络时代,传导形式的泄密更加严重。美国曾在20世纪70年代,一个潜水员在前苏联领海纵深内部的鄂霍次克海120米深的海底军事通信电缆上安装了一个6米长的窃听设备,它大量记录了所有经过电缆的通信信号。由于没有采取任何加密措施,而使大量军事通信情报轻易地落在了美国人手中。美国在信息泄漏的制技术方面也很高明。美国国家安全局和美国国防部从二十世纪六十年代就开始研究制定和逐步完善的防电磁泄漏标准,就是用于计算机及信息设备防信息泄漏的研究被称作Tempest技术。IBM开发的Tempest个人计算机、打印机、显示器等产品.就有明显的市场竞争力。在网络时代,信息泄漏被认为是对网络安全的最大威胁。所以,防信息泄漏已不再只是对军事领域才有意义,而在经济领域及各行各业都应引起足够的重视了。

(三)机载系统的EMI现象

我们都知道,在飞机上不允许使用笔记本电脑、手机和听CD片等。其原因就在于避免这些设备产生电磁骚扰。一旦电磁骚扰通过飞机上的电缆线藕合到机上的敏感设备,就可能形成干扰,使设备工作不稳,甚至失控。如果这些骚扰通过机舱的窗户向外辐射,使空间的电磁环境更加复杂,而机身上有大量的传感器和数十付天线,就会因干扰而增加飞机偏离航线或造成其它事故的可能性。本来飞机设计对电磁兼容性,尤其是抗扰性的要求就是非常高的。

现代交通工具越来越多的依赖于电子系统。对车载接收、监控和定位等电子控制系统来说,如果电磁抗扰度不够,就很容易受空间电磁环境干扰而不能正常工作,甚至失控造成事故。如气囊的保护失灵、定位错误等。铁路道岔的信号自动控制,如果因电磁干扰造成误控,将会给列车的行驶带来不堪设想的灾难。

(四)微波领域的电磁干扰

卫星地面站和雷达装置都会受到诸如:特高频波段的电视信号、核电信号等干扰。如美国正在研制的新一代大功率徽波武器,其频率在l~100GHz范围,可想,强的微波辐射将会给电子设备或系统以及生物带来多么严重的破坏和杀伤。

移动电话正在我国蓬勃发展,可是它所产生的电磁干扰给持手机的人们带来许多困扰和惊恐。目前,国家尚无关于移动电话的电磁辐射卫生标准,也无手机电磁辐射测试方法的标准.但据有关部门的初步检测和分析,认为手机的电磁辐射为点频微波辐波。手机在使用过程中,其电磁辐射以手机与基站(网)取得联系时最大,第一声铃响后,辐射逐渐减小。所以,在手机接通后的最初几秒之内,最好不要马上将手机贴耳接听。因为人的大脑和眼睛对辐射是比较敏感的,以免造成伤害。当然,在通话过程中,声调的高低、声音的大小和快慢也会使辐射有所不同。另外,手机的类型不同,天线的内置或外置,其辐射都会有些差别。

(五)EMI对医疗卫生设备或系统的危害

当今,许多医疗设备都采用了先进的电子和信息技术。这些设备的抗扰度如何,直接关系到人们的生命安危。如心脏起膊器,往往就会受到来自计算机、手机等的电磁干扰,使其功能发生变化。据说,一付由生物电控制的假肢,在高压线下受到电磁干扰后人仰车翻。所以医疗设备的电磁兼容性设计尤为重要,医疗单位的电磁环境值得关注。

另外,雷电和静电放电的危害,也属电磁危害范畴,其危害的严重性是人们多有体会和认识的。

四、坚持电磁兼容设计,确保产品质量

EMC学科的建立和一系列电磁兼容标准的制定,为我们从理论与实践的结合上实现产品或系统的电磁兼容提供了指导。

EMC设计的目标是通过EMC测试和认证。

EMC设计的最终目的是为了使我们的设备或系统能在预定的电磁环境中正常、稳定的工作,并对该电磁环境中的任何事物不构成电磁骚扰,即实现电磁兼容。

EMC设计涉及的内容很多。从原理上讲,要研究 干扰的三要素(干扰源、干扰的藕合通道和接收器)和 抑制干扰措施等。从技术来说,主要是如何运用滤波、接地和屏蔽三大技术。

电磁兼容设计的基本原则和方法,首先是根据产品设计对EMC提出的要求和相应的指标,然后,依据电磁兼容的有关标准和规范,将设计产品的电磁兼容性指标要求分解成元器件级、电路级、模块级和产品级的指标要求,再按照各级要实现的功能要求,逐级分层次的进行设计。

电磁兼容性设计应考虑的问题很多,但从根据上讲,就是如何提高设备的抗扰度和防止电磁泄漏。通常采取的措施,一方面设备或系统本身应选用互相干扰最小的设备、电路和部件,并进行合理的布局。再就是通过接地、屏蔽及滤波技术,抑制与隔离电磁骚扰。对不同的设备或系统有不同的设计方法和措施。下面具体谈点粗浅认识。

(一)元器件的选择和电路的分析是EMC设计的基础

以计算机为例.它是以数字电路为主,以低电平传输信号的设备。所用的数字集成电路既是干扰源,又是干扰的敏感器件,以存储器为代表的MOS器件就是一个典型例子。存储器瞬间工作时能产生很大电流,加之工作频率可达百兆以上,因而易产生窜扰,造成误动作或通过公共阻抗干扰其它电路。但另一方面,MOS器件本身的抗扰性又很差。数字电路传送脉冲信号,产生的辐射频率范围很宽,如时钟产生器、高速逻辑电路等都会产生高频干扰和电磁泄漏,同时也会受通信、电视等频段的电磁骚扰。因此,在设计时要考虑选用抗干扰器件,合理确定指标和运用接地、屏蔽等技术。

(二)电珠系统的电磁兼容性设计

无论是信息技术设备还是无线电电子、电气产品都要有电源供电。电源有外电源和内电源,电源是典型的也是危害严重的电磁干扰源。如电网的冲击,尖峰电压可高达千伏以上,会给设备或系统带来毁灭性的破坏。另外,电源干线是多种干扰信号侵人设备的途径。因此,电源系统,特别是开关电源的EMC设计是部件级设计的重要环节。其措施多种多样,诸如供电电缆直接从电网总闸引出,电网引出的交流经稳压、低通滤波、电源变压器绕组间的隔离、屏蔽以及浪涌抑制和过压过流保护等。

(三)接地系统的抗干扰设计

良好的接地可以保护设备或系统的正常操作以及人身安全。可以消除各种电磁干扰和雷击等。所以接地设计是非常重要的,但也是难度较大的课题。地线的种类很多,有逻辑地、信号地、屏蔽地、保护地等。接地的方式也可分单点接地、多点接地、混合接地和悬浮地等。理想的接地面应为零电位,各接地点之间无电位差。但实际上,任何“地”或接地线都有电阻。当有电流通过时,就会产生压降,使地线上的电位不为零,两个接地点之间就会存在地电压。当电路多点接地,井有信号联系时,就将构成地环路干扰电压。因此,接地技术十分讲究,如信号接地与电源接地要分开,复杂电路采用多点接地和公共地等。

(四)印制电路板的EMC设计

元器件、电路和地线引起的骚扰都会在印制电路板上反映出来。因此,印制电路板的EMC工程设计非常关键。印制电路板的布线要合理,如采用多层板,电源线与地线靠近,时钟线、信号线与地线的臣离要近等,以减少电路工作时引起内部噪声。严格执行印制电路板的工艺标准和规范,模拟和数字电路分层布局,以达到板上各电路之间的相互兼容。

另外,值得注意的是在进行EMC设计时,一定不能忽略对静电放电(ESD)的防护。ESD防护的关键,一是防止静电核的产生和积累,再就是阻隔ESD效应的发生。阻止披电的方法和措施很多,这里不做赘述。

五、掌握并运用EMC测试技术

EMC设计与EMC测试是相辅相成的。EMC设计的好坏是要通过EMC测试来衡量的。只有在产品的EMC设计和研制的全过程中,进行EMC的相容性预测和评估,才能及早发现可能存在的电磁干扰,并采取必要的抑制和防护措施,从而确保系统的电磁兼容性。否则,当产品定型或系统建成后再发现不兼容的题,则需在人力、物力上花很大的代价去修改设计或采用补救的措施。然而,往往难以彻底的解决问题,而给系统的使用带来许多麻烦。

EMC测试包括测试方法、测量仪器和试验场所,测试方法以各类标准为依据,测量仪器以频域为基础,试验场地是进行EMC测试的先决条件,也是衡量EMC工作水平的重要因素。EMC检测受场地的影响很大,尤其以电磁辐射发射、辐射接收与辐射敏感度的测试对场地的要求最为严格。目前,国内外常用的试验场地有:开阔场、半电波暗室、屏蔽室和横电磁波小室等。

作为EMC测试的实验室大体有两种类型:一种是经过EMC权威机构审定和质量体系认证而且具有法定测试资格的综合性设计与测试实验室。或称检测中心。它包括有进行传导干扰、传导敏感度及静电放电敏感度测试的屏蔽室,有进行辐射敏感度测试的消声屏蔽室,有用来进行辐射发射测试的开阔场地和配备齐全的测试与控制仪器设备。要建立这样一套完善的实验室需投入几百万甚至数千万元人民币。目前,国内已有数家已建成或正在投资兴建。

另一种类型就是根据本单位的实际需要和经费情况而建立的具有一定测试功能的EMC实验室。比起大型的综合实验室,这类测试实验室规模小,造价低。主要适用于预相容测试和EMC评估。也就是为了使产品在最后进行EMC认证之前,具有自测试和评估的手段。如有不足,还可充分利用社会成果,内外合作,相互比对和交流,以达节约开支,改进设计,不断提高产品的电磁兼容性之目的。

在测试仪器方面,以频谱分析仪为核心的自动检测系统,可以快捷、准确地提供EMC有关参数。新型的EMC扫描仪与频谱仪相结合,实现了电磁辐射的可视化。可对系统的单个元器件,PCB板、整机与电缆等进行全方位的三维测试,显示真实的电磁辐射状况。

EMC测试必须依据EMC标准和规范给出的测试方法进行,并以标准规定的极限值作为判据。对于预相容测试,尽管不可能保证产品通过所有项目的标准测试,但至少可以消除绝大部分的电磁干扰,从而提高产品的可信度。而且能够指出你如何改进设计、抑制EMI发射。

六、结束语

EMC作为一门多学科的高新技术,以其在质量保证体系中的重要作用而逐渐被人们所认识。坚持电磁兼容性设计,提高贯彻EMC标准的意识性。消除电磁干扰,实现电磁兼容,从根本上提高产品的质量与可靠性。

第五篇:电磁兼容作业

题目:电源电磁兼容原理及抑制方法电磁兼容原理作业

姓名:赵军

学号:S20060151

电源电磁兼容原理及抑制方法

随着电子设备的大量应用,电源在这些设备中的地位越来越重要,而开关变换器由于体积小、重量轻、效率高等特点,在电源中占的比重越来越大。开关电源大多工作在高频情况下,在开关器件的开关过程中,寄生元件(如寄生电容、寄生电感等)中能量的高频变化产生了大量的电磁干扰(Electromagnetic Interference,EMI)。

EMI信号占有很宽的频率范围,又有一定的幅度,经过在电路、空间中的传导和辐射,污染了周围的电磁环境,影响了与其它电子设备的电磁兼容(Electromagnetic Compatibility)性。随着近年来各国对电子设备的电磁干扰和电磁兼容性能要求的不断提高,对电磁干扰以及新的抑制方法的研究已成为开关电源研究中的热点。

本文对电磁干扰产生、传播的机理进行了简要的介绍,重点总结了几种近年来提出的抑制开关电源电磁干扰产生及传播的新方法。1 电磁干扰的产生和传播方式

开关电源中的电磁干扰分为传导干扰和辐射干扰两种。通常传导干扰比较好分析,可以将电路理论和数学知识结合起来,对电磁干扰中各种元器件的特性进行研究;但对辐射干扰而言,由于电路中存在不同干扰源的综合作用,又涉及到电磁场理论,分析起来比较困难。下面将对这两种干扰的机理作一简要的介绍。1.1 传导干扰的产生和传播

传导干扰可分为共模(Common Mode-CM)干扰和差模(Differential Mode-DM)干扰。由于寄生参数的存在以及开关电源中开关器件的高频开通与关断,使得开关电源在其输入端(即交流电网侧)产生较大的共模干扰和差模干扰。1.1.1 共模(CM)干扰

变换器工作在高频情况时,由于dv/dt很高,激发变压器线圈间、以及开关管与散热片间的寄生电容,从而产生了共模干扰。如图1所示,共模干扰电流从具有高dv/dt的开关管出发流经接地散热片和地线,再由高频LISN网络(由两个50Ω电阻等效)流回输入线路。

图1 典型开关变换器中共模、差模干扰的传播路径

根据共模干扰产生的原理,实际应用时常采用以下几种抑制方法: 1)优化电路器件布置,尽量减少寄生、耦合电容。

2)延缓开关的开通、关断时间。但是这与开关电源高频化的趋势不符。3)应用缓冲电路,减缓dv/dt的变化率。1.2.2 差模(DM)干扰

开关变换器中的电流在高频情况下作开关变化,从而在输入、输出的滤波电容上产生很高的di/dt,即在滤波电容的等效电感或阻抗上感应了干扰电压。这时就会产生差模干扰。故选用高质量的滤波电容(等效电感或阻抗很低)可以降低差模干扰。

1.2 辐射干扰的产生和传播

辐射干扰又可分为近场干扰〔测量点与场源距离<λ/6(λ为干扰电磁波波长)〕和远场干扰(测量点与场源距离>λ/6)。由麦克斯韦电磁场理论可知,导体中变化的电流会在其周围空间中产生变化的磁场,而变化的磁场又产生变化的电场,两者都遵循麦克斯韦方程式。而这一变化电流的幅值和频率决定了产生的电磁场的大小以及其作用范围。在辐射研究中天线是电磁辐射源,在开关电源电路中,主电路中的元器件、连线等都可认为是天线,可以应用电偶极子和磁偶极子理论来分析。分析时,二极管、开关管、电容等可看成电偶极子;电感线圈可以认为是磁偶极子,再以相关的电磁场理论进行综合分析就可以了。

图2是一个Boost电路的空间分布图,把元器件看成电偶极子或磁偶极子,应用相关电磁场理论进行分析,可以得出各元器件在空间的辐射电磁干扰,将这些干扰量迭加,就可以得到整个电路在空间产生的辐射干扰。关于电偶极子、磁偶极子,可参考相关的电磁场书籍,此处不再论述。

图2 Bosst电路在三维空间的分布

需要注意的是,不同支路的电流相位不一定相同,在磁场计算时这一点尤其重要。相位不同一是因为干扰从干扰源传播到测量点存在时延作用(也称迟滞效应);再一个原因是元器件本身的特性导致相位不同。如电感中电流相位比其它元器件要滞后。迟滞效应引起的相位滞后是信号频率作用的结果,仅在频率很高时作用才较明显(如GHz级或更高);对于功率电子器件而言,频率相对较低,故迟滞效应作用不是很大。2 几种新的电磁干扰抑制方法

在开关电源产生的两类干扰中,传导干扰由于经电网传播,会对其它电子设备产生严重的干扰,往往引起更严重的问题。常用的抑制方法有:缓冲器法,减少耦合路径法,减少寄生元件法等。近年来,随着对电子设备电磁干扰的限制越来越严格,又出现了一些新的抑制方法,主要集中在新的控制方法与新的无源缓冲电路的设计等几个方面。下面分别予以介绍。2.1 新的控制方法—调制频率控制

干扰是根据开关频率变化的,干扰的能量集中在这些离散的开关频率点上,所以很难满足抑制EMI的要求。通过将开关信号的能量调制分布在一个很宽的频带上,产生一系列的分立边频带,则干扰频谱可以展开,干扰能量被分成小份分布在这些分立频段上,从而更容易达到EMI的标准。调制频率(Modulated Frequency)控制就是根据这种原理实现对开关电源电磁干扰的抑制。最初人们采用随机频率(Randomized Frequency)控制[1],其主要思想是,在控制电路中加入一个随机扰动分量,使开关间隔进行不规则变化,则开关噪声频谱由原来离散的尖峰脉冲噪声变成连续分布噪声,其峰值大大下降。具体办法 是,由脉冲发生器产生两种不同占空比的脉冲,再与电压误差放大器产生的误差 信号进行采样选择产生最终的控制信号。其具体的控制波形如图3(a)所示。

(a)随机频率控制原理波形图

(b)调制频率控制原理波形图 图3 两种不同的频率调制波形

但是,随机频率控制在开通时基本上采用PWM控制的方法,在关断时才采用随机频率,因而其调制干扰能量的效果不是很好,抑制干扰的效果不是很理想。而最新出现的调制频率控制则很好地解决了这些问题。其原理是,将主开关频率进行调制,在主频带周围产生一系列的边频带,从而将噪声能量分布在很宽的频带上,降低了干扰。这种控制方法的关键是对频率进行调制,使开关能量分布在边频带的范围,且幅值受调制系数β的影响(调制系数β=Δf/fm,Δf为相邻边频带间隔,fm为调制频率),一般β越大调制效果越好[2][3],其控制波形如图3(b)所示。

图4即为一个根据调制频率原理设计的控制电路。各种控制方法可以在不影响变换器工作特性的情况下,很好地抑制开通、关断时的干扰。

图4 一个典型的调制频率控制电路

2.2 新的无源缓冲电路设计

开关变换器中电磁干扰是在开关管开关时刻产生的。以整流二极管为例,在开通时,其导通电流不仅引起大量的开通损耗,还产生很大的di/dt,导致电磁干扰;而在关断时,其两端的电压快速升高,有很大的dv/dt,从而产生电磁干扰。缓冲电路不仅可以抑制开通时的di/dt、限制关断时的dv/dt,还具有电路简单、成本较低的特点,因而得到了广泛应用。但是传统的缓冲电路中往往采用有源辅助开关,电路复杂不易控制,并有可能导致更高的电压或电流应力,降低了可靠性。因此许多新的无源缓冲器应运而生,以下分别予以总结介绍。2.2.1 二极管反向恢复电流抑制电路

对于图5(a)的Boost电路,Q1开通后,D1将关断。但由于此前D1上的电流为工作电流,要降为零,其dv/dt将很高。D1的关断只能靠反向恢复电流尖峰,而现有的抑制二极管反向恢复电流的方法大多只适用于特定的变换器电路,而且只对应某一种的输入输出模式,适用性很差。国外有人提出了图5(b)的电路[6],可以较好地解决这一缺陷。

图5(b)的关键在于把一个辅助二极管(D2)、一个小的辅助电感(L2)与主功率电感(L1)的部分线圈串联,然后与主二极管(D1)并联。其工作原理是,在Q1开通时,利用辅助电感及辅助二极管构成的辅助电路进行分流,使主二极管D1上的电流降为零,并维持到Q1关断。由于电感L2的作用,辅助二极管D2上的反向恢复电流是很小的,可以忽略。

(a)Boost电路

(b)二极管反向恢复电路

图5 Boost电路及其二极管反向恢复电路

这种方法除了可用于一般的变换器电路,以限制主二极管的反向恢复电流,还可以用在输入输出整流二极管的恢复电流抑制上。图6是这种应用的举例。这种技术应用在一般的电源电路里,都可以获得有效抑制反向恢复尖峰电流、降低EMI、减少损耗提高效率的效果。

(a)输入整流电路

(b)输出整流电路 图6 输入输出整流二极管反向恢复电流抑制电路

2.2.2 无损缓冲电路

在变换器电路中,主二极管反向恢复时,会对开关管造成很大的电流、电压应力,引起很大的功耗,极易造成器件的损坏。为了抑制这种反向恢复电流,减少损耗,而提出了一种无损缓冲电路[5],如图7所示。

图7 无损缓冲电路

其主要工作原理是,主开关Q开通时的di/dt应力、关断时的dv/dt应力分别受L1、C1所限制,利用L1、C1、C2之间相互的谐振及能量转换,实现对主二极管D反向恢复电流的抑制,使开关损耗、EMI大大减少。不仅如此,由于开通时C1上的能量转移到C2,关断时C2和L1上的能量转移到负载,这种缓冲电路的损耗很低,效率很高。2.2.3 无源补偿技术

传统的共模干扰抑制电路如图8所示。为了使通过滤波电容Cy流入地的漏电流维持在安全范围,Cy的值都较小,相应的扼流线圈LCM就变大,特别是由于LCM要传输全部的功率,其损耗、体积和重量都会变大。应用无源补偿技术,则可以在不影响主电路工作的情况下,较好地抑制电路的共模干扰,并可减少LCM、节省成本。

图8 共模干扰滤波器 由于共模干扰是由开关器件的寄生电容在高频时的dv/dt产生的,因此,用一个额外的变压器绕组在补偿电容上产生一个180°的反向电压,产生的补偿电流再与寄生电容上的干扰电流迭加,从而消除干扰。这就是无源补偿的原理。

图9(a)为加入补偿电路的隔离式半桥电路。由于半桥、全桥电路常用于大功率场合,滤波电感LCM较大,所以补偿的效果会更明显。该电路在变压器上加了一个补偿线圈Nc,匝数与原边绕组一样;补偿电容CCOMP的大小则与寄生电容CPARA一样。这样一来,工作时的Nc使CCOMP产生一个与CPARA上干扰电流大小相同、方向相反的补偿电流,迭加后消除了干扰电流。补偿线圈不流过全部的功率,仅传输干扰电流,补偿电路十分简单。

同样,对于图9(b)中的正激式电路,利用其自身的磁复位线圈,可以更加方便地实现补偿。无源补偿技术还可以应用于非隔离式的变换器电路中,如图10所示,原理是一样的。

(b)带补偿电路的正激电路

(a)带补偿电路的隔离式半桥电路

图9 两种无源补偿电路

(a)Boost电路

(b)Buck电路

图10 带补偿电路的非隔离式Boost、Buck电路

需要注意的是,无源补偿技术有一定的应用条件,它受开关电流、电压的上升、下降时间,以及变压器结构等因素的影响,特别当变压器的线间耦合电容远大于寄生电容时,干扰电流不经补偿线圈而直接进入大地,此时抑制效果就不很理想。3 结语

产生噪声的来源很多,如外来干扰、机械振动、电路设计不当、元器件选择不当以及结构布局或布线不合理等。在开关变换器中,功率三极管和二极管在开-关过程中所产生的射频能量是干扰的主要来源之一。由于频率较高,或以电磁能的形式直接向空间辐射(辐射干扰),或以干扰电流的形式沿着输入、输出导线传送(传导干扰),其中后者的危害更为严重。

开关电源技术是一项综合性技术,可以利用先进的半导体电路设计技术、磁性材料、电感元件技术以及开关器件技术等来有效地减少和抑制EMI。目前,开关电源已日益广泛地应用到各种控制设备、通信设备以及家用电器中,其电磁干扰问题、及与其它电子设备的电磁兼容问题已日益成为人们关注的热点,未来电磁干扰及其相关问题必将得到更多的研究。

下载电磁兼容技术及应用word格式文档
下载电磁兼容技术及应用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    电磁兼容作业

    电磁兼容学习报告 姓名:时新淦 学号 : 201230210800 专业:电工理论及技术 1. 前言 这学期开设了电磁场理论这门课程,这门课程是一个基础,当上完这么课后感觉学得还不够,因此当老师......

    电磁兼容论文

    本学期,我选修了电磁兼容这门课程。通过电磁兼容课程的学习,老师教会了我许多,一方面是有关电磁兼容方面的知识,另一方面是有关生活和人生方面的体会和感悟。由于与电机系统的电......

    电磁兼容心得体会

    电磁兼容大作业三 电磁兼容课学习心得 在本学期的学习中,我对电磁兼容在理论方面的理解程度大大加深,电磁兼容设计实际上就是针对电子产品中产生的电磁干扰进行优化设计,使之......

    电磁兼容整改

    1、整改阶段,此阶段是产品EMC设计的初步阶段,及在产品第一论开始设计时,并没有考虑EMC方面的问题,等到产品功能调试完成,样子出来后进行EMC测试时,才发现EMC问题的存在,于是通过采......

    电磁兼容原理-课程设计范文大全

    《电磁兼容原理与设计》课程设计报告 姓名: 庞平;班级:2012029170 ;学号:2012029170017 姓名:丁启程;班级:2012029170 ;学号:2012029170009 完成日期:2015年4月12日 I、目标 设计一......

    常用EMC电磁兼容专业术语

    1.电磁环境 electromagnetic environment 存在于给定场所的所有电磁现象的总和。2.电磁噪声 electromagnetic noise 一种明显不传送信息的时变电磁现象,它可能与有用信号叠加......

    开关电源电磁兼容经验谈

    开关电源电磁兼容经验谈 随着电力电子技术的发展,开关电源模块因其相对体积小、效率高、工作可靠等优点开始取代传统整流电源而被广泛应用到社会的各个领域。但由于开关电源......

    电磁兼容课程简介

    课程编号: 课程名称:电磁兼容 英文名称:Electromagnetic compatibility 学分:2 总学时:40 实验/实践学时:0/0 课程简介: 电磁兼容是工科电气、电子工程类专业的一门选修课,是近代发......