第一篇:论证模型之枚举归纳
论证模型之枚举归纳
首先,我们先来看一道真题:
莫大伟到吉安公司上班的第一天,就被公司职工自由散漫的表现所震惊,莫大伟由此得出结论,吉安公司是一个管理失效的公司。吉安公司的员工都缺乏工作积极性和责任心。
以下哪项为真,最能削弱上述论证:
A.当领导不在时,公司的员工会表现出自由散漫。B.吉安公司的员工超过2万,遍布该省的十多个城市。C.莫大伟刚大学毕业就到吉安公司,对校门外的生活不适应。D.吉安公司的员工和领导表现完全不一样。
拿到一道题目,首先我们先分析题干的逻辑主线。此题的论据为莫大伟在吉安公司上班第一天看到的员工散漫的景象,结论为吉安公司管理失效、员工都缺乏责任心和积极性。通过论据及结论的分析,大家可以分析出本题的论证过程即根据一部分或者个例的情况推断出整体或者全部情况的不完全归纳的推理方式,即枚举归纳。因此,当我们看到题干论证为:根据某类事物部分对象具有某种属性,推出这类事物全部对象都具有该属性的论证过程即可判断为是枚举归纳的论证模型。
中公教育
那么判断之后我们应该如何进行加强或者削弱呢?削弱的方式即证明根据这部分的情况无法推知整体的情况,包括三种方法:①样本特殊,不具有代表性;②样本数量不够多;③其余样本不具有该属性。通过这三种方式中的任一种即可进行对于题干论证的削弱。反之,加强的目的即证明这部分的属性就可以推知全部的属性,同样包括三种方法:①样本具有代表性;②样本数量足够多;③其余样本也具有该属性。
接下来我们就用这些方法帮助我们针对这道真题进行求解。根据题干及问法,要求我们削弱题干论证。由于前面已经分析过了,我们直接来看选项:A项证明确实在某些时间段(领导不在时)员工会表现出自由散漫,证明管理确实存在问题,因此加强了题干结论,排除A项。根据B项可以得到吉安公司的员工遍布十多个城市,人数众多,通过样本数量不够多的方式对题干进行了削弱。C项莫大伟不适合校外生活与题干吉安公司管理的情况之间没有关系,属于无关项,故排除。D项吉安公司的员工和领导表现完全不一样,无法削弱题干论证,故排除。因此这道题目的正确选项为B项。
通过这道真题的讲解我相信小伙伴们对于我们枚举归纳的论证模型已经有了初步的了解,剩下的就是在自己做题的过程当中反复使用,从而加强熟悉度、提高正确率。希望各位考生牢记题干判定特征及具体的解题方法,在熟练运用当中逐渐提升自己的做题速度和正确率!
中公教育
第二篇:简单枚举个性化教案
大愚教育中小学个性化学习中心
简单枚举
专题解析:
枚举是一种常见的分析问题、解决问题的方法。一般地,要根据问题要求,一一列举问题解答。运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。
例1.小华家到学校有3条路可走,从学校到文峰公园有4条路可走。从小华家到文峰公园,有几种不同的走法?
分析与解答:为了帮助理解题意,我们可以画出如上示意图。
我们把小华的不同走法一一列举如下:根据列举可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。
练习一
1.从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路直达。从甲地到丙地有多少种不同走法?
2.新华书店有3种不同的英语书,4种不同的数学读物销售。小明想买一种英语书和一种数学读物,共有多少种不同买法?
例2.用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
分析与解答:要使信号不同,要求每一种信号颜色的顺序不同,我们可以把这些信号进行列举。可以看出,红色信号灯排在第一个位置时,有两种不同的信号,绿色信号灯排在第一个位置时,也有两种不同的信号,黄色信号灯排在第一个位置时,也有两种不同的信号,因而共有3个2种不同排列方法,即2×3=6种。
练习二
1.用红、黄、蓝三种颜色涂圆圈,每个圆圈涂一种颜色,一共有多少种不同的涂法?○○○
大愚教育中小学个性化学习中心
2.用2、3、5、7四个数字,可以组成多少个不同的四位数?
例3.一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?
分析与解答:由于长方形的周长是22米,可知它的长与宽之和为11米。下面列举出符合这个条件的各种长方形:
练习三
1.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?
2.3个自然数的乘积是18,问由这样的3个数所组成的数组有多少个?如(1.2.9)就是其中的一个,而且数组中数字相同但顺序不同的算作同一数组,如(1.2.9)和(2.9,1)是同一数组。
例4.有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?
分析与解答:把4个小朋友分别编号:A、B、C、D,A与其他小朋友打电话,应该打3次,同样B小朋友也应打3次电话,同样C、D应该各打3次电话。4个小朋友,共打了3×4=12次。但题目要求两个小朋友之间只要通一次电话,那么A打电话给B时,A、B两人已经通过话了,所以B没有必要再打电话给A,照这样计算,12次电话中,有一半是重复计算的,所以实际打电话的次数是3×4÷2=6次。
练习四
1.6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
2.小芳出席由19人参加的联欢会,散会后,每两人都要握一次手,他们一共握了多少次手?
课后练习
1.明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。最多可搭配成多少种不同的装束?
2.用数字1、2、3.可以组成多少个不同的三位数?分别是哪几个数?
3把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?
4.有8位小朋友,要互通一次电话,他们一共打了多少次电话?
第三篇:《枚举算法》教学设计
《枚举算法》教学设计
苍南县成人教育中心学校 陈荣军
一、教学目标
1、知识与技能目标:
理解枚举算法的基本原理,熟悉枚举算法程序设计的基本思路及程序结构特点;学会使用枚举算法解决现实生活、学习中所遇到的问题。
2、过程与方法:
围绕“课堂任务导航程序”,通过课堂任务设计,让学生熟悉用枚举算法求解问题的基本过程,并把它运用到实际生活中去解决问题,学会选择适当的枚举方法多角度分析问题,解决问题。
3、情感态度与价值观:
激发学生的学习热情,提高学生自主学习能力,增强学生创新意识;引导学生关注枚举算法在社会生活中的应用,并以此培养学生将算法思想运用到解决实际问题中去的能力。
二、学情分析
本节内容的教学对象是普通高中高一学生,他们经过半学期的信息技术教学,具备了一定的计算机操作能力;在VB程序设计方面,也已经有所学习,具备一定的基础,但因所上课时不多,学生对VB还只是略知皮毛,语法及编程能力有待于进一步提高。
三、教材分析
1、本节主要内容介绍
枚举算法是程序设计中使用最为普遍、学生必须熟练掌握和正确运用的一种算法。它利用计算机运算速度快、精确度高的特点,对要解决问题的所有可能情况,一个不漏地进行检查,从中找出符合要求的答案。用枚举算法解决问题,通常可以从确定范围、逐一列举,验证条件、逐一验证这两个方面进行分析,把这两个方面分析好了,问题自然会迎刃而解。
2、重点难点分析 教学重点:
(1)理解枚举算法的基本原理。
(2)能根据问题描述确定枚举范围,并能用程序正确表示验证条件。(3)枚举算法的程序实现。教学难点:
(1)各种枚举算法的优劣评价。(2)编程实现枚举算法。
四、教学设计理念 采用了以学生的学习和发展为中心,基于建构主义理论的任务驱动、情境教学等教学方法,突出自主、合作、探究等学习方法;强调信息技术与生活实际的联系,培养学生的逻辑思维能力、解决问题的能力以及创新意识等;设置多元化的评价方式,让学生掌握学习内容的同时,形成交流与评价的能力。
主要教学方法:讲授法、演示法、任务驱动、情境教学等 主要学习方法:自主学习,合作探究学习等
五、教学策略
通过“课堂任务导航程序”,在教学过程中,围绕“情境导入→回顾算法思想→任务引领→自主学习→合作探究→交流评价→课堂总结”的教学流程来展开教学活动。
六、教学环境
教师用VB自制的“课堂任务导航程序”(客户端)、教师服务端程序、多媒体网络教室、多媒体教学软件、VB6.0中文企业版等。
七、教学过程
一、情境导入(3分钟)
教师活动:同学们,大家好!首先,很高兴今天能给大家上一节课,希望老师今天的这节课能让大家有所收获。在上新课内容之前,老师想先请同学们帮老师一个忙(教师广播展示VB制作的“QQ登录程序”):老师前段时间申请了个QQ,结果把密码给忘记了,但我记得密码是由六位相同的数字组成,哪位同学能上来帮老师找出密码?
学生活动:学生上台,根据老师的描述,从000000到999999一一测试密码,最终找到密码。教师活动:非常感谢这位同学的帮忙!这位同学能说下,你是怎么找出密码的吗? 学生活动:从000000,111111,222222„„ 999999这样逐个测试。教师活动:很好。像刚才这位同学这样,根据老师给的范围,逐一列举所有可能,并根据程序提示(验证条件)逐一验证,从而找出答案的方法就是今天我们要来共同学习的《枚举算法》。
设计理念:通过学生熟悉的QQ密码破解来引入课堂,增强学生兴趣,也能使学生乐于接受。
二、回顾枚举算法思想,提出课堂任务(5分钟)
教师活动:教师广播展示课件,学习枚举算法的概念,说明枚举算法的两个关键点:
1、确定范围,一一列举(既不遗漏,也不多余);
2、确定条件,逐一验证。教师活动:在了解了枚举算法的概念后,同学们能不能列举几个我们实际生活中用枚举算法解决的问题的例子呢? 学生活动:学生举例(教师根据例子引导分析,重点强调“确定范围、一一列举,根据条件、逐一验证”)
教师活动:非常好!看来大家对枚举算法已经有了一定的理解了,接下来,我们来看下在程序里面,如何实现枚举算法解决问题。请大家打开桌面“学生”文件夹里的“课堂任务导航.exe”,完成“任务一”。(教师简要说明“课堂任务导航程序“使用方法)
三、课堂任务一(10分钟)
学生活动:根据课堂任务导航程序及帮助信息自主完成课堂“任务一”(4分钟)教师活动:教师巡视、个别指导,观察、总结并及时记录学生在完成任务过程中出现的问题。同时,在“教师服务端”程序中观察展示学生任务一的完成情况,及时了解学生的学习进度。
任务反馈:大部分学生能顺利完成任务一,对于不能自主完成的,可由已完成学生帮助完成。
教师活动:很好!大部分同学已经完成任务一了,接下来让我们一起看下我们的程序是如何实现枚举算法的。教师展示任务一程序(广播)教师活动:我们知道要想实现枚举算法,主要是要做到两点:一个是确定枚举范围进行一一列举;还有就是根据条件,逐一验证。我们来看下我们的程序的怎么实现这两点的?
学生活动:观察程序,思考。
教师活动:我们先来看下“确定范围、一一列举”在程序里是如何体现的?(6分钟)
学生活动:使用for语句实现
教师活动:“根据条件,逐一验证”呢? 学生活动:if语句
教师活动:很好!一般实现枚举算法的程序都是由循环结构嵌套分支结构组成。好了,大家现在已经知道了枚举算法的程序结构了,接下来请同学们继续完成任务二。
(设计理念:通过任务一的设计,让学生自主探究学习,培养学生的自主探究学习能力,通过学生互助,培养学生互帮互助的精神;通过对任务一的程序分析,培养学生的善于观察思考、解决问题的能力,并让学生熟悉枚举算法的程序结构特点,以便学生能更加顺利的完成任务二。)
四、课堂任务二(设置陷阱,探讨交流)(15分钟)学生活动:学生先自主完成任务二。(5分钟)
教师活动:教师巡视、个别指导,观察学生在完成任务过程中出现的问题:有些学生能输出58个数,有些学生只输出6个数,原因在哪里?请一个能输出58个数的学生上台演示操作,然后让学生分析输出的这些数都能满足要求吗?经过分析,学生会发现有些数的个位数不符合要求。提出问题:如何修改程序将不符合要求的数去掉?(2分钟)
学生活动:修改程序(由学生小组合作相互探讨完成)。(5分钟)教师活动:当有部分学生输出正确答案后,请一个能输出正确结果的学生分析如何修改,并到教师机上修改刚才错误的程序(算法1); 请一个不同算法的同学来修改程序(算法2);让他们分析各自算法的效率谁更高。然后教师小结,鼓励学生要善于发现问题、深入分析问题、积极解决问题;从不同角度分析问题可以得到不同效率的算法。(3分钟)
(设计理念:设计任务陷阱培养学生善于发现问题、深入分析问题、积极解决问题的能力;通过探讨交流,培养学生的团体协作能力及合作探究精神;设计任务一题多解,培养学生从不同角度分析问题的能力,锻炼学生的发散性思维。通过算法分析,让学生理解算法的执行效率,懂得选择最优算法去解决问题,提高程序的性能。)
五、层层递进,任务拓展(高层次学生做)
拓展任务:在任务二的基础上,增加验证条件:“十位数是3的倍数,百位数是4的倍数”,提出问题:如何将数字里的十位数和百位数分离?
学生活动:学生通过教师提供的帮助材料,讨论分析问题,尝试去完成拓展任务 教师活动:教师观察,引导。
(设计理念:设计拓展任务,提高任务难度梯度,供高层次学生完成,以实施课堂中的分层教学。)
六、提交作品,课堂评价(3分钟)
学生提交作品,教师选择几个作品做总结性评价。
七、归纳总结、布置课后作业(1分钟)
1、通过“教师服务端”程序中学生“自我评价”中的知识点,进行课堂总结:(1)枚举算法的基本原理:
确定范围、逐一列举(既不遗漏,也不多余)(循环语句)确定条件、逐一验证
(条件语句)
(2)枚举算法中范围的确定及列举:循环语句(如for)实现
(3)枚举算法中验证条件的表示:利用if语句进行条件判断;条件表示主要运用VB中的算数运算符及逻辑运算符实现。(4)实现枚举算法的程序结构特点:
外层循环嵌套内层条件判断
2、布置课后作业: 找水仙花数(学生任务导航程序)
(设计理念:通过知识总结,帮助学生将知识系统化,便于学生理解记忆。通过知识的延伸,促使学生将知识内化,并进行能力迁移,进一步提高学生解决问题的能力。)
八、自我评价(1分钟)
让学生利用“课堂任务导航程序”中的自我评价功能进行自我评价。教师活动:展示学生自评结果。
(设计理念:通过评价,引导学生自我反思,加深对所学知识的认识与理解;教师查看学生自我评价结果能及时了解到学生对本堂课所学知识点的掌握情况,以便安排后续教学内容。)
第四篇:实用的枚举算法教案
《实用的枚举算法》教案
上课时间:2016.4.29 班级:技术1班 授课教师:徐飞翔
一、教学目标:
1、知识与技能:
(1)理解枚举算法的概念。
(2)通过枚举算法,理解循环中嵌套分支的结构特点,执行过程。
(3)在理解流程图的基础上,初步实现VB代码的编写,并上机用VB语言实现程序的功能。
2、过程与方法:
(1)培养同学自主探索研究、解决问题的能力。
(2)能通过实际问题的分析、求解过程,尝试归纳出利用枚举算法解决问题的思路和方法。(3)培养同学用计算机程序解决问题的思维能力。
3、情感态度与价值观:
(1)通过解决任务,培养同学勇于尝试,不怕困难的精神。(2)积极参与、主动探究;合作学习,体验成功。
二、教学设计思想:
《学科教学指导意见》中对枚举算法的教学目标是使学生能了解枚举算法的概念,并用枚举算法来解决实际问题。根据这两次信息技术选考考试的难度,此课例不要求同学独立地画出流程图,而仅要求学生在理解枚举算法设计思想的基础上,读懂循环中嵌套分支的流程图,并完成主程序关键处的选择或填空(其中填空比选择对学生思维的要求又高一些)。
三、学情分析:
通过前几个章节的学习与实践,VB中几个相关的函数已经讲解并上机实践过了,对于3种基本控制结构大部分同学已理解,对于用流程图描述算法也非常熟悉,VB上机操作已有一定的实践,为本节内容的学习提供了良好的基础。
对于简单的程序段也有一定的认知意识,那么在本课中学生会觉得设计思想比较容易掌握。困难之处在于如何将题目的设计思想转化为流程图,根据流程图写出相应的代码,并通过自己编制程序上机实践来体验。那么在课堂分析过程中学生将从听课--理解--体验--探究,这些过程中全面掌握枚举算法的设计思想,并能用此算法来解决日常生活问题及与其他学科有所关联的一些简单问题。
四、教学重点:
理解枚举算法的概念和基本特征。
五、教学难点:
a)熟练掌握循环结构、分支结构的嵌套使用。
b)枚举算法思想的理解与实现(流程图转化为VB代码并上机实践)。
六、教学准备:
计算机机房、教学课件(枚举算法.ppt)
七、教学过程:
(一)新课导入
小明不小心把寝室门钥匙丢了,他去寝室管理员那里去找钥匙开门。寝室管理员那里总共有100把钥匙,其中配套的钥匙有若干把,但钥匙上只有1到100的编号没有寝室编号,请问小明如何才能找出能开自己寝室门的所有钥匙?
设计算法画出流程图。
(二)学习新课
1.枚举算法:按问题本题的性质,一一列举出该问题所有可能的解,并在逐一列举的过程中,检验每个可能解是否是问题的真正解,若是,就采纳这个解,否则就抛弃它。
例题1:使用枚举算法解决问题,在列举问题可能解的过程中做到()A.不能遗漏,但可以重复 B.不能遗漏,也不应该重复 C.可以遗漏,但不应该重复 D.可以遗漏,也可以重复
例题2:鸡兔共笼问题,若有腿共60条,问鸡、兔各有多少只?下面鸡和兔只数最合理的范围是()。(范围确定了循环的起始值和终止值)
A.鸡:1到28,兔:1到14 B.鸡:2到28,兔:1到14 C.鸡:1到28,兔:2到14 D.鸡:2到28,兔:2到14 例3.一份单据中被涂抹数字的推算(体验数字推算算法)
有一张单据上有一个5位数的编号n,如图1所示,其百位数和十位数处已经变得模糊不清,但是知道这个5位数是37或67的倍数。现要设计一个算法,找出所有满足这些条件的5位数,并统计这些5位数的个数。
图1 1)算法分析
这个5位正整数n中的百位和十位数有00、01、02、„、97、98、99共100种可能,分别填入,从而产生出n的全部可能解:25006、25016、25026、„、25986、25996。使用枚举算法解决问题时,必须逐一地给出所有可能解并对它们逐一进行检验,既不应遗漏任何一个可能解,也不应重复地产生和检验可能解。因而将每个可能解n逐一进行判断是否是一个真正解,即n是否能被37或67整除。若n是真正解,则输出n的值,并在计数器c中加上1,表示找到了一个真正解。2)算法表示
图2 寻找单据中被涂抹数字算法流程图 3)完成算法运行体验“涂抹数字推算” 程序并补完整程序代码。提高:把程序中的 for循环换成 Do While循环 For j=1 to 99 n = 25006 +j*99 If n Mod 37 = 0 Or n Mod 67 = 0 Then List1.AddItem Str(n)c = c + 1 End If Next j 2.枚举算法解题过程: 解题过程分两步:
逐一列举可能的解的范围。这个过程用循环结构实现。
对每一个列举可能的解进行检验,判断是否为真正的解。这个过程用分支结构实现。
枚举算法=循环结构+分支结构,循环结构内嵌套选择结构
(三)课堂训练:
有30个人,其中有男人、女人和小孩。他们在一家饭馆里花去500元。已知,每个男人花30元,每个女人花20元,每个小孩花10元。问男人、女人和小孩各为多少人?VB程序如下,在划线出填入合适的语句或表达式。
Private sub command1_click()Dim man , woman , children , s As Integer For man=1 to(1)For woman=1 to 23 children=(2)s = 30*man + 20*woman + 10*children If(3)then list1.AddItem(str(man)+str(woman)+str(children))End if next woman next man End sub
(四)课堂总结:
1.枚举算法=循环结构+分支结构 2.做到既不遗漏任何一个解、也不重复.3.枚举算法效率较低.注:并不是所有的问题都可以使用枚举算法来求解,只有当问题的所有可能解的个数不太多时,并在可以接受的时间内得到问题的所有解,才有可能使用枚举算法。
(五)课后作业
完成《学生活动手册》实践活动八 找出1000以内的所有素数
四、教学反思
枚举算法的教学设计,得到几位听课老师的指点,经过几次教学实践环节和本人的反思,我认为以下几方面很值得去总结和改进。
1、教学情境的创设
枯燥乏味的程序算法课中,如何让学生变得愿学、乐学,一直是信息技术教师追求的梦想。不过,算法本来就是源于生活的,如果教师能够细心观察、多多思考,完全可以使算法的课堂变得生活气息十足。本节课以在一串钥匙中查找一把锁的所有正确钥匙为新课引入,此任务同学经常遇到,非常形象。而且又能结合课堂教学内容和教学目标,比较有效地调动了学生主动探究学习的积极性。
2、培养同学总结、概括的能力
开始的教学设计中在新课引入后,老师直接将枚举算法的概念和流程图特征总结了出来,同学只是被动的知识接受者,主动思考,积极参与教学环节的热情不太高。后来有听课老师指出,可以先让同学自主探索完成任务1水仙花,并在同学根据新课引入和尝试完成任务1(水仙花数)中的领悟和理解,用自己的语言讨论和总结:枚举算法的概念、结构特征和注意事项,然后老师再补充、完善。如此可以培养同学总结、概括的能力。
3、程序成功的体验
任务1有下列三种难度,难度★★(流程图+完整程序),难度★★★(流程图),难度★★★★(仅任务描述。)同学选择合适自己的难度(分层教学)。课后统计选择难度★★的有16人,选择难度★★★的有15人,没有同学选择难度★★★★。第一个任务(水仙花数)将作详细的介绍,大部分同学可以比较顺利地理解和上机实现。第二个任务是用枚举算法来找出一定条件下的勾股数,相关概念比较多,还用到了VB中的INT函数。部分理解能力强,上机实践熟悉的同学可以按时地独立完成此任务;有部分同学只能完成算法流程图的理解,我会提供不完整的程序代码作为学习支架,在程序的关键处还是要求其思考和填空。
第五篇:房屋买卖合同纠纷之法律论证
房屋买卖合同纠纷之法律论证
第一、出卖人出具的收据性质为房屋买卖合同。
虽然本案中出卖人出具的收据不是一般情况下的正式房屋买卖合同,但是从其内容上看该份收据包括了房屋买卖合同应具备的合同双方当事人、标的即房屋的坐落位置和价款、付款时间、交房期限等主要条款。因此,应当将该收据认定为房屋买卖合同。
第二、该房屋买卖合同系双方真实意思表示,合法、有效。
首先,房屋买卖合同无效的情形:
(一)房屋与土地分开转让的《城市房屋产权产籍管理暂行办法》的第三条规定:“城市房屋的产权与房屋占用土地的使用权实行权利人一致的原则,除法律法规另有规定的外,不得分离”。
《城镇国有土地使用权出让和转让暂行条例》第二十四条规定:“土地使用者转让地上建筑物、其他附着物所有权时,其使用范围内的土地使用权随之转让,但地上建筑物、其他附着物作为动产转让的除外”
《城市房地产管理法》第四十二条规定:“房地产转让时,土地使用权出让合同载明的权利、义务随之转移。”
(二)侵犯优先购买权的。
《民法通则》第七十八条第二款规定:“按份共有财产的每个共有人有权将自己的份额分出或者转让,但在出售时,其他共有人在同等条件下,有优先购买的权利。”
《关于贯彻执行〈中华人民共和国民法通则〉若干问题的意见》(试行)第一百一十八条规定:“出租人出卖出租房屋,应提前三个月通知承租人,承租人在同等条件下,享有优先购买权,出租人未按此规定出卖房屋的,承租人可以请求人民法院宣告该房屋买卖无效。”
《合同法》第二百三十条条也有相应规定:“出租人出卖租赁房屋的,应当在出卖之前的合理期限内通知承租人,承租人享有以同等条件优先购买的权利。”
(三)因欺诈而转让商品房的。
《关于审理商品房买卖合同纠纷案件适用法律若干问题的解释》第十条规定:买受人以出卖人与第三人恶意串通,另行订立商品房买卖合同并将房屋交付使用,导致其无法取得房屋为由,请求确认出卖人与第三人订立的商品房买卖合同无效的,应予支持。
(四)在商品房转让过程中,涉及到土地使用权转让违法的。
《城市房地产管理法》第三十八条、三十九条、第四十条的相关规定,以下合同应为无效:以出让方式取得土地使用权的,没有按照出让合同约定已经支付全部土地使用权出
让金,并取得土地使用权证书;按照出让合同约定进行投资开发,属于房屋建设工程的,没有完成开发投资总额的百分之二十五以上,属于成片开发土地的,没有形成工业用地或者其他建设用地条件;转让房地产时房屋已经建成的,没有房屋所有权证书;以划拨方式取得土地使用权的,转让房地产时,应当按照国务院规定,报有批准权的人民政府审批而没有报批或不予批准的;有批准权的人民政府准予转让的,应没有办理土地使用权出让手续并依照国家有关规定缴纳土地使用权出让金的。
其次,依据《合同法》第五十二条及五十四条合同无效、可撤销的条款可知,双方当事人签订的房屋转让合同未违法上述法律法规的规定,因此,该房屋转让合同是在双方真实意思表示情况下签订的,又无违法法律强制性规定的情形,应当认定为有效。
第三、如若出卖人在合同约定的期限拒不对该房屋进行过户登记,买受人有权要求出卖人按约定履行合同,变更房屋登记。
鉴于该房屋买卖合同是合法有效的,出卖人应当依据该合同继续履行,变更登记。如若出卖人妻子欲以未征得其同意为由主张该买卖行为无效,而买受人不是在明知出卖人妻子不同意的情况下签订合同,则买受人可以依据合同要求出卖人过户登记或赔偿损失。
法律规定
《关于适用〈婚姻法〉若干问题的解释
(一)》第十七条第(二)项“夫或妻非因日常生活需要对夫妻共同财产做重要处理决定,夫妻双方应当平等协商,取得一致意见。他人有理由相信其为夫妻双方共同意思表示的,另一方不得以不同意或不知道为由对抗善意第三人”
《关于贯彻执行〈中华人民共和国民法通则〉若干问题的意见》第八十九条“共同共有人对共有财产享有共同的权利,承担共同的义务。在共同共有关系存续期间,部分共有人擅自处分共有财产的,一般认定无效。但第三人善意、有偿取得该项财产的,应当维护第三人的合法权益;对其他共有人的损失,由擅自处分共有财产的人赔偿”
《物权法》第一百零六条规定:“ 无处分权人将不动产或者动产转让给受让人的,所有权人有权追回;除法律另有规定外,符合下列情形的,受让人取得该不动产或者动产的所有权:
(一)受让人受让该不动产或者动产时是善意的;
(二)以合理的价格转让;
(三)转让的不动产或者动产依照法律规定应当登记的已经登记,不需要登记的已经交付给受让人。受让人依照前款规定取得不动产或者动产的所有权的,原所有权人有权向无处分权人请求赔偿损失。当事人善意取得其他物权的,参照前两款规定。”