第一篇:泵送混凝土施工中温度裂缝的原因及控制措施
泵送混凝土施工中温度裂缝的原因及控制措施
中国混凝土网 [2007-7-6] 网络硬盘 我要建站 博客 常用搜索 征订网刊
摘 要:主要阐述泵送混凝土施工中温度裂缝存在的原因,提出应完善工程设计,并对使用的水泥、砂石料等加强检验,保证原材料的质量,加强施工过程控制,从而提高泵送混凝土的施工质量。
关键词:泵送混凝土,温度裂缝,控制措施
中图分类号: TU755.7 文献标识码:A
随着建筑技术的不断发展,泵送混凝土在工程施工中得到普及,广泛使用于现浇梁、板、柱、墙等各种现浇混凝土构件中。但是,泵送混凝土因骨料级配的限制,胶凝材料的大量使用,以及具有的高坍落度、高流动性、高水泥用量的原因,在水泥硬化中易产生泌水现象,并产生大量的水化热,造成温度裂缝普遍存在,在一定程度上影响结构的抗渗性和耐久性,应当引起足够的重视。为此,现对温度裂缝产生的原因及如何有效控制裂缝的出现和发展进行探讨。泵送混凝土施工中温度裂缝产生的原因
泵送混凝土浇筑后,在硬化过程中,水泥因水化而产生大量的水化热,聚积在混凝土内部不易散发,导致内部温度急剧上升,而混凝土表面散热较快,使得混凝土结构内外出现较大的温差,这些温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,在混凝土的施工中当温差变化较大或者是混凝土受到寒潮的袭击等,会导致混凝土表面温度急剧下降而产生收缩,表面收缩的混凝土受内部混凝土的约束,将产生很大的拉应力而产生裂缝。同时,商品混凝土具有较大的收缩性,在共同应力的作用下,将会产生大量的温度收缩裂缝,虽然这种裂缝通常只在混凝土表面较浅的范围内产生,但是如不加控制,将很快发展,形成贯穿裂缝,会引起钢筋的锈蚀、混凝土的碳化,降低混凝土的抗冻融、抗疲劳及抗渗能力等,严重的将形成质量病害,影响建筑的结构安全和合理的使用寿命。影响因素和控制措施
对使用泵送混凝土的工程,应充分考虑温度裂缝问题,在工程设计中,应对易产生温度裂缝的部位采取构造加强措施。施工中应从拌制混凝土使用的水泥、砂石料、掺合料、水灰比等方面进行重点控制,并在施工中加强过程控制,以保证钢筋混凝土工程质量。主要应做好以下几方面的工作。
2.1 完善工程设计
从设计角度看,现行设计规范侧重于按强度考虑,未充分按温差和泵送混凝土收缩特性等多种因素作综合考虑,配筋量因而达不到要求。在工程设计中,应充分按温差和混凝土收缩特性等多种因素作综合考虑,对易产生温度裂缝的房屋四周阳角、现浇板的中部、地下室及屋面板等配筋薄弱处,应设置一定数量的构造钢筋进行加强。如负筋不采用分离式切断,改为沿房间全长配置,并且适当加密加粗。对于超过45 m 的现浇梁板宜设置伸缩缝或后浇带。对不宜设置伸缩缝的建筑,可在混凝土中掺加一定量的混凝土微膨胀剂,以减少温度变化导致的收缩裂缝,如UEA微膨胀剂系列产品等。如在该市某栋综合楼施工中,施工方在图纸会审中提出,在温度裂缝常产生的部位应进行构造配筋,并增设一处后浇带。设计部门采纳后,进行相应变更,施工中基本未发现温度产生的病害裂缝,效果显著。
2.2 泵送混凝土原材料及配合比的选用
1)尽量选用低热或中热水泥,合理确定水泥用量。引起大体积钢筋混凝土裂缝的主要原因是水泥水化热的大量积聚,使混凝土出现早期升温和后期降温,产生内部和表面的温差。减少温差的措施是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。同时,可充分利用混凝土后期强度,以减少水泥用量;或改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。所使用的水泥应符合GB 17521999 硅酸盐水泥、普通硅酸盐水泥质量标准的有关规定。
2)掺加优质掺合料。在泵送混凝土中掺加一定量的具有减水、增塑、缓凝等作用的高性能混凝土外加剂,可改善混凝土拌合物的流动性、保水性,降低水化热,推迟热峰的出现时间。泵送混凝土中掺入一定数量高效优质的粉煤灰后,不但能代替部分水泥,而且可改善混凝土拌合物的流动性、粘聚性和保水性,从而改善了可泵性。特别重要的效果是掺加原状或磨细粉煤灰后,可以降低混凝土中水泥水化热,减少绝热条件下的温度升高。泵送混凝土使用的各种掺合料应符合GB 8076 混凝土外加剂及GB 50119混凝土外加剂应用技术规范的相应质量标准的要求,优先选用高效粉煤灰、高品质的外加剂,以保证混凝土的各种性能符合要求。
3)严格控制水灰比。泵送混凝土为了保证具有相应的泵送性,要求有较大的流动性。在浇捣完毕后,现浇板面易出现泌水现象,易产生混凝土表面温度裂缝。在使用泵送混凝土时,宜选用低坍落度混凝土,即在保证混凝土的泵送性的前提下,越小越好,以减少混凝土表面的温度裂缝的产生。
4)选用高质量的砂石料。水洗砂的质量应符合J GJ 52292 普通混凝土用砂质量标准及检验方法的相应标准,宜选用中砂或粗砂,含泥量应严格进行抽查,含泥量不得大于3 % ,泥块含量不得大于1 % ,以保证砂的质量。石子的质量应符合J GJ 53292 普通混凝土用碎石或卵石质量标准及检验方法的相应标准,选用级配合理的材料,严格控制含泥量不得大于1 % ,泥块不得大于0.5 % ,以保证石子的质量。
5)合理确定泵送混凝土的配合比。泵送混凝土的配合比决定了混凝土的强度、抗渗性、和易性、坍落度、水泥用量、水化热大小、初凝和终凝时间以及混凝土收缩率等性能指标。在施工中根据结构的不同部位、不同特点和设计要求,结合气候条件及施工现场的生产管理状况,提出相应的技术参数,由相关实验室进行试配,确定详细合理的泵送混凝土配合比。在满足混凝土泵送的前提下,优先选用5 mm~40 mm 石子级配,采用低坍落度,以减少混凝土温度和收缩产生的裂缝。
2.3 加强施工过程控制措施
1)加强对钢筋工程质量的管理。在施工中应严格按照设计及有关规范施工,加强对钢筋工程的质量管理,确保钢筋工程施工质量。应合理和科学地安排好各工种交叉作业时间,并在楼梯、通道等频繁和必须的通行处应搭设(或铺设)临时的简易通道,以供必要的施工人员通行,减少对钢筋的踏踩损坏。
2)加强对楼面上层钢筋网的保护。楼面板的上层钢筋一般较细较软,同时离楼层模板的高度较大,无法受到模板的依托保护;受到人员踩踏后就立即弯曲、变形、下坠;在施工中对楼面上层钢筋必须设置钢筋小撑马,并安排足够数量的钢筋工,在混凝土浇筑前及浇筑中及时进行整修,以保证上部钢筋的位置正确。
3)施工现场应严格检查泵送混凝土的坍落度,检查随车出料单,以保证混凝土熟料的半成品质量,不符合要求的混凝土不得使用。
4)严格控制浇筑流程。合理安排施工工序,分层、分块浇筑,以利于散热,减小约束。对已浇筑的混凝土,在终凝前进行二次振动,可排除混凝土因泌水,在石子、水平钢筋下部形成的空隙和水分,提高粘结力和抗拉强度,并减少内部裂缝与气孔,提高抗裂性。二次振动完成后,仔细进行板面找平,排除板面多余的水分。若发现局部有漏振及过振情况时,及时返工进行处理。
5)注重浇筑完毕后养护。混凝土养护主要是保持适当的温度和湿度条件。保温能减少混凝土表面的热扩散,降低混凝土表层的温差,防止表面裂缝。混凝土浇筑后,及时用湿润的草帘、麻片等覆盖,并注意洒水养护,延长养护时间,保证混凝土表面缓慢冷却。在高温季节泵送时,宜及时用湿草袋覆盖混凝土,尤其在中午阳光直射时,宜加强覆盖养护,以避免表面快速硬化后,产生混凝土表面温度和收缩裂缝。在寒冷季节,混凝土表面应设草帘覆盖保温措施,以防止寒潮袭击。结语
温度裂缝的存在是泵送混凝土施工中不可避免的普遍现象,应充分认识到裂缝的出现对建筑物的危害性。在工程设计中采取构造加强措施,并在施工中采取有效的措施和合理的施工过程控制方法,来预防裂缝的出现和发展,以保证泵送混凝土浇筑质量,满足建筑结构的安全、耐久性等要求。
参考文献:
[1] GB 5030022001 ,建筑工程施工质量验收统一标准[ S].[2] GB 5001022002 ,混凝土结构设计规范[ S].[3] GB 5020422002 ,混凝土结构工程施工质量验收规范[ S].原作者: 张博
来 源: 《山西建筑》第33卷第16期2007年6月
第二篇:泵送混凝土施工中温度裂缝的有效控制
泵送混凝土施工中温度裂缝的有效控制
【摘要】:主要阐述泵送混凝土施工中温度裂缝存在的问题并进行原因分析,提出控制和防止温度裂缝的有效措施,提高混凝土浇筑质量。
关键词:泵送混凝土 温度裂缝 原因分析 控制措施
1、前言
随着建筑技术的不断发展,泵送混凝土施工技术得到普及和应用。泵送混凝土不仅能改善混凝土的施工性能,对薄壁密筋结构少振捣或不振捣施工,具有提高抗渗性、改善耐久性特点。同时,泵送混凝土骨料级配的限制,胶凝材料的大量使用,产生大量的水化热,造成温度裂缝普遍存在,在一定程度上影响结构的抗渗性和耐久性,应当引起足够的重视。为此,现就温度裂缝产生原因及如何有效控制裂缝的出现和发展,谈几点粗浅的认识。
2、温度裂缝产生原因及特征
(1)、温度裂缝产生的主要原因:一是由于温差较大引起的,砼结构在硬化期间水泥放出大量水化热,内部温度不断上升,使砼表面和内部温差较大,砼内部膨胀高于外部,此时砼表面将受到很大的拉应力,而砼的早期抗拉强度很低,因而出现裂缝。这种温差一般仅在表面处较大,离开表面就很快减弱,因此裂缝只在接近表面的范围内发生,表面层以下结构仍保持完整。二是由结构温差较大,受到外界的约束引起的,当大体积砼浇筑在约束地基(例如桩基)上时,又没有采取特殊措施降低,放松或取消约束,或根本无法消除约束,易发生深进,直至贯穿的温度裂缝。
(2)、温度裂缝形成的过程:一般(人为)分为三个时期:一是初期裂缝,就是在砼浇筑的升温期,由于水化热使砼浇筑后2-3天温度急剧上升,内热外冷引起“约束力”,超过砼抗拉强度引起裂缝。二是中期裂缝,就是水化热降温期,当水化热升温到达峰值后逐渐下降,水化热散尽时结构物的温度接近环境温度,此间结构物温度引起“外约束力”,超过砼抗拉强度引起裂缝。三是后期裂缝,当砼接近周围环境条件之后保持相对稳定,而当环境条件下剧变时,由于砼为不良导体,形成温度梯度,当温度梯度较大时,砼产生裂缝。
(3)、温度裂缝特征: 温度裂缝的走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短边方向
平行或接近平行,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显,冬季较宽,夏季较窄。高温膨胀引起的混凝土温度裂缝是通常中间粗两端细。
3、影响因素和防治措施
温度裂缝的影响因素是多方面的,其中混凝土内部的温度与混凝土厚度及水泥品种、用量有关。混凝土越厚,水泥用量越大,水化热越高的水泥,其内部温度越高,形成温度应力越大,产生裂缝的可能性越大。
对于大体积混凝土,其形成的温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝的危险性也越大,这就是大体积混凝土易产生温度裂缝的主要原因。因此防止大体积混凝土出现裂缝最根本的措施就是控制混凝土内部和表面的温度差。
温度裂缝的产生一般是不可避免的,重要的是如何把其控制在规范允许的范围之内,要进行有效的控制,就必须进行科学选材,科学配比,科学施工,以保证控制的准确性。
3.1 混凝土原材料及配合比的选用
(1)尽量选用低热或中热水泥,减少水泥用量。大体积钢筋混凝土引起裂缝的主要原因是水泥水化热的大量积聚,使混凝土出现早期升温和后期降温,产生内部和表面的温差。减少温差的措施是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。再有,可充分利用混凝土后期强度,以减少水泥用量。改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。
(2)选择优化配合比
选用良好级配的骨料,严格控制砂石质量,降低水灰比,并在砼中掺加粉煤灰和外加剂等,以降低水泥用量,减少水化热,以降低砼温升,从而可以降低砼所受的拉应力。大量试验研究和工程实践表明,混凝土中掺入一定数量优质的粉煤灰后,不但能代替部分水泥,而且由于粉煤灰颗粒呈球状具有滚珠效应,起到润滑作用,可改善混凝土拌合物的流动性、粘聚性和保水性,从而改善了可泵性。特别重要的效果是掺加原状或磨细粉煤灰后,可以降低混凝土中水泥水化热,减少绝热条件下的温度升高。在混凝土
中掺加一定量的具有减水、增塑、缓凝等作用的外加剂,改善混凝土拌合物的流动性、保水性,降低水化热,推迟热峰的出现时间。
3.2施工工艺流程改进
(1)改善搅拌工艺
采用二次投料的净浆裹石或砂浆裹石工艺,可以有效地防止水分聚集在水泥砂浆和石子的界面上,使硬化后界面过渡层结构致密、粘结力增大,从而提高混凝土强度10%或节约水泥5%,并进一步减少水化热和裂缝。改善混凝土的搅拌加工工艺,在传统的三冷技术的基础上采用二次风冷新工艺,降低混凝土的浇筑温度。
(2)严格控制浇筑流程 合理安排施工工序,分层、分块浇筑,以利于散热,减小约束。对已浇筑的混凝土,在终凝前进行二次振动,可排除混凝土因泌水,在石子、水平钢筋下部形成的空隙和水分,提高粘结力和抗拉强度,并减少内部裂缝与气孔,提高抗裂性。在高温季节泵送,宜用湿草袋覆盖管道进行降温,以降低入模温度。
(3)加强混凝土的测温工作 为及时掌握混凝土内部温升与表面温度的变化值,埋没若干个测温点,采用L形布置,每个测温点埋设温管2根,1根管底埋置于混凝土的中心位置,测量混凝土中心的最高温升,另一根管底距混凝土表面100 mm,测量混凝土的表面温度,测温管均露出混凝土表面100 mm。用100的红色水银温度计测温,以方便读数。第l--5d每2h测温1次,第6d后每4h测温1次,测至温度稳定为止。从已有施工经验的测温情况看,混凝土内部温升的高峰值一般在3.5d内产生,3d内温度可上升到或接近最大温升,内外温差值在20℃左右,控制在规范规定范围内,未发现异常现象。如温差超出规范规定范围,就应采取措施。
(4)注重浇筑完毕后养护 混凝土养护主要是保持适当的温度和湿度条件。保温能减少混凝土表面的热扩散,降低混凝土表层的温差,防止表面裂缝。混凝土浇筑后,及时用湿润的草帘、麻片等覆盖,并注意洒水养护,适当延长养护时间,保证混凝土表面缓慢冷却。在寒冷季节,混凝土表面应设置保温措施,以防止寒潮袭击。
4.温度裂缝的处理方法
混凝土裂缝的修补措施主要有采取以下一些方法:如表面修补法,嵌缝法,结构加固法,混凝土置换法等。
4.1表面修补法
表面修补法主要适用于稳定和结构承载能力没有影响的表面裂缝以及深进裂缝的处理。通常的处理措施是在裂缝的表面涂抹水泥浆、环氧胶泥或在混凝土表面涂刷油漆、沥青等防腐材料,在防护的同时为了防止混凝土受各种作用的影响继续开裂,通常可以采用在裂缝的表面粘贴玻璃纤维布等措施。
4.2 嵌缝法
嵌缝法是裂缝封堵中最常用的一种方法,它通常是沿裂缝凿槽,在槽中嵌填塑性或刚性止水材料,以达到封闭裂缝的目的。常用的塑性材料有聚氯乙烯胶泥、塑料油膏、丁基橡胶等等;常用的刚性防水材料为聚合物水泥砂浆。
4.3 结构加固法
当裂缝影响到混凝土结构的性能时,就要考虑采用加固法对混凝土结构进行处理。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。
4.4 混凝土置换法
混凝土置换法是处理严重损坏混凝土的一种有效方法,此方法是先将损坏的混凝土剔除,然后再置换入新的混凝土或其他材料。常用的置换材料有:普通混凝土或水泥砂浆、聚合物或改性聚合物混凝土或砂浆。
5、结束语
温度裂缝的存在是混凝土施工中不可避免的普遍现象,泵送混凝土施工同样如此。但是,我们应该明白裂缝的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力。因此,我们在
施工中,应充分认识到裂缝的出现对建筑物的危害性,采取各种有效的措施和合理的处理方法来预防裂缝的出现和发展,不断提高混凝土浇筑质量,满足建筑结构安全稳定等要求。参 考 文 献:
1、《建筑混凝土》 张承志
化学工业出版社
2005
2、《混凝土工程细节详解》 郭杏林
机械工业出版社
2007
3、《混凝土与砌体结构裂缝控制技术》 罗国强
中国建材工业出版社
2006
第三篇:泵送混凝土施工对温度裂缝的有效控制
泵送混凝土施工对温度裂缝的有效控制
摘要:主要阐述泵送混凝土施工中温度裂缝存问题并进行原因分析,提出控制和防止温度裂缝有效措施,提高混凝土浇筑质量。
关键词:泵送混凝土温度裂缝原因分析控制措施 1.前言
建筑技术不断发展,泵送混凝土施工技术到普及和应用。泵送混凝土能改善混凝土施工性能,对薄壁密筋结构少振捣或不振捣施工,具有提高抗渗性、改善耐久性特点。同时,泵送混凝土骨料级配限制,胶凝材料大量使用,产生大量水化热,造成温度裂缝普遍存,一定程度上影响结构抗渗性和耐久性,应当引起足够重视。为此,现就温度裂缝产生机理及如何有效控制裂缝出现和发展,谈几点粗浅认识。2.温度裂缝产生机理及特征
混凝土浇筑后,硬化过程中,水泥水化产生大量水化热。混凝土体积较大,大量水化热聚积混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,使混凝土结构内外出现较大温差,这些温差造成内部与外部热胀冷缩程度不同,使混凝土表面产生一定拉应力。当拉应力超过混凝土抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生混凝土施工中后期。混凝土施工中当温差变化较大,是混凝土受到寒潮袭击等,会导致混凝土表面温度急剧下降,而产生收缩,表面收缩混凝土受内部混凝土约束,将产生很大拉应力而产生裂缝,这种裂缝通常只混凝土表面较浅范围内产生。
温度裂缝走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大结构,裂缝多平行于短边;深入和贯穿性温度裂缝一般与短边方向平行或接近平行,裂缝长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显,冬季较宽,夏季较窄。高温膨胀引起混凝土温度裂缝是通常中间粗两端细,而冷缩裂缝粗细变化不太明显。此种裂缝出现会引起钢筋锈蚀,混凝土碳化,降低混凝土抗冻融、抗疲劳及抗渗能力等。3.影响因素和防治措施
混凝土内部温度与混凝土厚度及水泥品种、用量有关。混凝土越厚,水泥用量越大,水化热越高水泥,其内部温度越高,形成温度应力越大,产生裂缝可能性越大。
大体积混凝土,其形成温度应力结构尺寸相关,一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,引起裂缝危险性也越大,这就是大体积混凝土易产生温度裂缝主要原因。防止大体积混凝土出现裂缝最根本措施就是控制混凝土内部和表面温度差。3.1混凝土原材料及配合比选用
(1)尽量选用低热或中热水泥,减少水泥用量。大体积钢筋混凝土引起裂缝主要原因是水泥水化热大量积聚,使混凝土出现早期升温和后期降温,产生内部和表面温差。减少温差措施是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。再有,可充分利用混凝土后期强度,以减少水泥用量。改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。(2)掺加掺合料大量试验研究和工程实践表明,混凝土中掺入一定数量优质粉煤灰后,能代替部分水泥,粉煤灰颗粒呈球状具有滚珠效应,起到润滑作用,可改善混凝土拌合物流动性、粘聚性和保水性,改善了可泵性。特别重要效果是掺加原状或磨细粉煤灰后,可以降低混凝土中水泥水化热,减少绝热条件下温度升高。混凝土中掺加一定量具有减水、增塑、缓凝等作用外加剂,改善混凝土拌合物流动性、保水性,降低水化热,推迟热峰出现时间。3.2施工工艺流程改进
(1)改善搅拌工艺采用二次投料净浆裹石或砂浆裹石工艺,可以有效防止水分聚集水泥砂浆和石子界面上,使硬化后界面过渡层结构致密、粘结力增大,提高混凝土强度10%或节约水泥5%,并进一步减少水化热和裂缝。改善混凝土搅拌加工工艺,传统三冷技术基础上采用二次风冷新工艺,降低混凝土浇筑温度。(2)严格控制浇筑流程合理安排施工工序,分层、分块浇筑,以利于散热,减小约束。对已浇筑混凝土,终凝前进行二次振动,可排除混凝土因泌水,石子、水平钢筋下部形成空隙和水分,提高粘结力和抗拉强度,并减少内部裂缝与气孔,提高抗裂性。高温季节泵送,宜用温草袋覆盖管道进行降温,以降低入模温度。
(3)注重浇筑完毕后养护混凝土养护主保持适当温度和湿度条件。保温能减少混凝土表面热扩散,降低混凝土表层温差,防止表面裂缝。混凝土浇筑后,及时用湿润草帘、麻片等覆盖,并注意洒水养护,适当延长养护时间,保证混凝土表面缓慢冷却。寒冷季节,混凝土表面应设置保温措施,止寒潮袭击。4.温度裂缝处理方法
混凝土裂缝修补措施主要有采取以下一些方法:如表面修补法,嵌缝法,结构加固法,混凝土置换法等。
4.1表面修补法
表面修补法主要适用于稳定和结构承载能力没有影响表面裂缝以及深进裂缝处理。通常处理措施是裂缝表面涂抹水泥浆、环氧胶泥或混凝土表面涂刷油漆、沥青等防腐材料,防护同时防止混凝土受各种作用影响继续开裂,通常可以采用裂缝表面粘贴玻璃纤维布等措施。4.2嵌缝法
嵌缝法是裂缝封堵中最常用一种方法,它通常是沿裂缝凿槽,槽中嵌填塑性或刚性止水材料,以达到封闭裂缝目。常用塑性材料有聚氯乙烯胶泥、塑料油膏、丁基橡胶等等;常用刚性防水材料为聚合物水泥砂浆。
4.3结构加固法
当裂缝影响到混凝土结构性能时,就要考虑采用加固法对混凝土结构进行处理。结构加固中常用主要有以下几种方法:加大混凝土结构截面面积,构件角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。4.4混凝土置换法
混凝土置换法是处理严重损坏混凝土一种有效方法,此方法是先将损坏混凝土剔除,然后再置换入新混凝土或其他材料。常用置换材料有:普通混凝土或水泥砂浆、聚合物或改性聚合物混凝土或砂浆。5.结语
温度裂缝存是混凝土施工中不可避免普遍现象,泵送混凝土施工同样如此。,我们应该明白裂缝出现会降低建筑物抗渗能力,影响建筑物使用功能,会引起钢筋锈蚀,混凝土碳化,降低材料耐久性,影响建筑物承载能力。,我们施工中,应充分认识到裂缝出现对建筑物危害性,采取各种有效措施和合理处理方法来预防裂缝出现和发展,不断提高混凝土浇筑质量,满足建筑结构安全稳定等要求。
第四篇:浅析大体积混凝土温度裂缝原因及控制措施
浅析大体积混凝土温度裂缝原因及控制措施
中图分类号:TV544+.91
文献标识码: A 文章编号:
摘要:随着我国社会经济的快速发展和城市化进程的不断加快,城市工程建设规模日趋大型化和复杂化,随之而来的混凝土温度裂缝问题逐渐成为了普遍性的问题。因此,文章结合工程实例,通过对混凝土的相关计算,针对混凝土裂缝产生的原因进行深入的分析,提出相关合理有效的控制措施。供工程技术人员参考。
关键词:大体积混凝土;温度裂缝;控制措施
Abstract: with the rapid development of economy of our country society and accelerating urbanization, the city engineering construction scale is large and complicated, with the temperature cracks of concrete problem gradually become the universal problems.Therefore, combining with engineering practice, by the related calculation of concrete, the causes of cracks in concrete thorough analysis, and put forward relevant reasonable and effective control measures.For reference of engineering technicians.Keywords: mass concrete;Temperature crack;Control measures
城市工程建筑业的快速发展使得高层建筑等大型设备基础大量的出现。大体积混凝土广泛应用于工程的施工当中,在现代建设当中占有重要的地位。但是,温度裂缝作为混凝土结构中常见的现象,逐渐成为建筑工程技术人员面临的技术难题,直接影响到整体工程建设的质量。因此,分析温度裂缝产生的原因,寻找合理有效的控制措施,从而预防和避免裂缝的产生是十分必要的。
1工程概况
某建筑项目为大型商住楼,占地总面积为75627?O,由地下室、商业裙房、商住楼组成。底盘平面尺寸为119.5m×81.1m,为满足建筑使用功能的要求,该工程结构没有设温度缝,采用了超长超宽大底盘多塔复杂结构方案。
2大体积混凝土温度裂缝的成因分析
在固结过程中,大体积混凝土常因温度下降引起开裂,裂缝出现过程基本上可分为3个活动期:
2.1初期裂缝
初期是指浇筑后的升温期。在此期间,由于水化热使混凝土浇筑后1~3d温度急剧上升,内热外冷引起“自约束应力”,超过混凝土抗拉强度即引起初期裂缝。
2.2中期裂缝
中期是指水化热降温期。当水化热温升达到峰值之后便逐渐下降,水化热散尽时结构物的温度接近于周围气温,在此期间结构物冷缩(另外还增加干缩)引起“外约束应力”,当超过混凝土抗拉强度便引起中期裂缝。
2.3后期裂缝
后期是指“准稳定期”。当混凝土接近周围气温之后即保持相对稳定,随季节温度和日温度而变化,如暴露在外面受到寒流袭击引起裂缝,混凝土干缩也会引起开裂,因其效果与降温引起的收缩变形相似,通常采用当量温度表示,并与温度变化共同考虑。这些称为后期裂缝。针对不同的混凝土厚度和外界条件,早期、中期与后期裂缝产生的大小程度有所不同。对于厚度较薄的大面积混凝土,由于水化热能较快的通过混凝土上下表面很快散去,其早期和中期裂缝问题可弱化,后期裂缝为主要问题;但对于大体积混凝土,其早中期裂缝问题比较突出。大体积混凝土温度裂缝控制验算分析
本工程地下室底板平面尺寸为119.5m×81.1m,面积为8877m2,混凝土总用量为12246m3。基础底板标高为-8.75m,设计混凝土强度等级为C40,抗渗等级S8。施工方式为泵送混凝土,采用52.5号普通水泥,内掺UEA,要求UEA补偿收缩混凝土的限制膨胀率ε,不低于2.5×104。混凝土线膨胀系数为1.0×10-5/℃。本工程基础底板超长超宽,且公寓楼、办公楼核心筒下基础桩筏承台及l#住宅楼桩筏承台均为大体积混凝土。为此,本文以公寓楼核心墙下桩筏基础承台大体积混凝土为例进行定量与定性分析。
3.1温度计算
3.1.1混凝土水化热最高温升值:
(1)
式(1)中:W1、W2、F分别为单方混凝土水泥用量、UEA用量、粉煤灰或矿粉用量(kg/m3);Q1、Q2分别为水泥、UEA的水化热,取Q1=461kJ/kg,Q2=260kJ/kg;混凝土密度ρc=2450kg/m3,混凝土比热Cc=0.97kJ/kg?℃。将上述参数代入式(1)得:
△Tmax=86.2℃
参照不同浇筑厚度大体积混凝土龄期绝热温升曲线图,混凝土浇捣施工时,散热影响系数ξ∈取0.65,则混凝土内部实际最高温升值△T1=△ξTmax=56.0℃。
3.1.2本工程公寓楼部分底板施工期在秋季11月初,混凝土浇筑温度△Tj=24℃,环境温度取22.0℃,混凝土内部最高温度值按(2)式计算:
Tmax=Tj+△T1(2)
则混凝土内部最高温度Tmax=24+56.0=80.0(℃)
混凝土内外温差:88.0-22.0=58.0(℃)?25℃
根据《块体基础大体积混凝土施工技术规程》(YBJ224-91)的要求规定:混凝土浇筑块体的里外温差不应超过25℃。因此需采取温控措施,当混凝土内部为最高温度时混凝土表面温度应控制在不小于53℃左右,以控制早期、中期裂缝。表面温度的控制可通过材料热工系数计算,采取调整保温层的厚度来解决。
3.2.2后浇带封闭后混凝土温度收缩应力
本工程负二层地下室气温:冬天取平均10℃,夏天取平均26℃,温差△=l6℃;根据有关资料,基础底板最终收缩量取2.0×10-4,本工程施工期理论计算已完成收缩1.48×10-4。则正常使用阶段最大收缩变形值ε'd=0.52×10-4,收缩当量温差△T'2=5.2℃;在正常使用阶段,地下室底板因直接接触地基土,混凝土表面始终处于湿润状态,UEA能保持微膨胀状态,UEA限制膨胀率取ε'y=6×10-5,UEA补偿当量温差△T'1=εy/a=6.0℃,则后浇带封闭后使用阶段最大综合温差:
△T'=△T'1+△T'2-△T'3=16+5.2-6=15.2℃
将底板直线总长度L=119.5m,底板均厚H=1500,S(t)=0.28,及有关参数代人式(3),得温度应力σ'2=0.97MPa
σ'2为119.5m长基础底板中心位置附近最大拉应力,则公寓楼处衰减为γσ'2,取γ=0.6,则公寓楼区域处温度收缩应力σ2=γσ'2=0.6×0.97=0.58MPa
按照上述假定条件,本工程采用中国建研院SAP2000程序进行有限元计算复核,得后浇带封闭后该区域底板中心位置附近X向较大拉应力为0.55MPa,Y向较大拉应力为0.45MPa。此数值与上述计算σ2值很接近。
综合考虑上述两种,可估算出收缩和温差引起的公寓楼部分基础底板的最大拉应力:
σ=σ1+σ2=1.38+0.58=1.96MPa<2.39MPa,抗裂安全度K=2.39/1.96=1.21>1.15,满足抗裂要求。
从上面温度-应力双控计算结果分析,降温和收缩产生的拉应力不会引起基础混凝土贯穿裂缝。在采取合适的混凝土浇筑方法及良好的构造措施的前提下,基础底板的裂缝问题能得到较好的解决。
4大体积混凝土温度裂缝的控制措施
上述中关于定量分析中取值的研究与很多因素相关,其在施工中的参数具有一定的离散性,如大体积混凝土温度计算中,混凝土内部最高温度值、水平阻力系数及收缩影响系数等参数的取值直接影响到计算结果,这些都可能引起偏差。因此本工程的裂缝控制要求从原材料、设计、施工等方面进行综合控制。
4.1设计方面
(1)UEA补偿收缩混凝土结构自防水技术要求底板的UEA限制膨胀率不低于0.025%,本工程实测值为0.034%。
(2)设置后浇膨胀加强带,将传统后浇带做法与UEA混凝土膨胀加强带技术结合起来。本工程在纵横方向各设两道后浇带,将整个底板分成9个混凝土浇筑区间,在该条件下最大限度地削弱温度收缩应力Ea、△t。
(3)在满足强度、刚度、整体性和耐久性等结构计算的前提下,尽量降低混凝土强度
等级。可利用混凝土后期强度,以减小水泥用量,降低水化热。本工程基础底板混凝土强度等级比墙、柱降低两级。
(4)对大体积混凝土浇筑块体的温度、温度应力及收缩应力进行验算,确定大体积混凝土浇筑块体的升温峰值、内外温差(不超过25℃)及降温速度(不超过1.5℃,d)的控制指标,制订温控施工的技术措施。
4.2构造方面
为提高基础底板混凝土表面抗裂性能,在表面配置双向构造钢筋。本工程大体积混凝土承台板四周侧面及大于2m厚混凝土中间均设置双向构造筋。超长结构梁侧面应加强构造腰筋。在结构突变(或断面突变)部位易产生应力集中,转角和孔洞处增设构造筋加强。
4.3材料方面
(1)选用中低水化热的水泥(本工程原设计要求采用矿渣水泥,后因材料来源供应不上而只好采用普通水泥)。
(2)粗骨料选用5mm~40mm连续级配的石子,细骨料采用中、粗砂,严格控制骨料含泥量在1.5%以下。
(3)采用双掺技术,即混凝土中掺人一定量的优质粉煤灰或矿粉以代替部分水泥并提高混凝土的和易性,同时掺人具有缓凝、减水、膨胀的混凝土外加剂,以改善泵送混凝土工作性能和可靠性。
(4)大体积混凝土的配制应优化配合比设计,本工程因条件限制,地下室底板混凝土的配合比见表1(注:JEA为UEA系列换代产品)。
表1
4.4施工措施
本工程施工浇筑方案采用连续薄层推移式浇筑,利用分层斜面充分散热。同时,层面最长时间间隔不大于初凝时间;当层间间隔时间超过混凝土的初凝时间时,层面应按施工缝处理。泵送混凝土摊铺厚度≤500mm,并在浇筑过程中及时清除混凝土表面泌水。
混凝土浇筑完毕后,应及时按温控技术措施进行养护。本工程500mm厚超长底板仅覆盖1层薄膜保湿和1层麻袋保温,可满足要求,但大体积混凝土的温控养护必须高度重视。公寓楼核心墙下承台2.2m厚大体积混凝土采用保温方案:表面采用覆盖2层塑料薄膜保湿、1层5cm厚泡沫塑料板和2层麻袋保温,该措施可满足温控指标要求1住宅楼、办公楼核心筒下2.5m厚桩筏基础平面尺寸较大,中心温升接近绝热温升,为降低浇筑块体在入模温度基础上的最大温升值,采用外保内降方案,除保温外,在混凝土内部还设置冷却水管。冷却水管沿长向排列,水平间距为1.0m,浇筑后1d开始通水,通水流量1.2m3/h,水管进水口设换向控制阀门,不断调换进、回水方向,水温与混凝土的温度差控制在20℃~25℃:
对筏板混凝土基础施工进行现场监测,随时关注温度场的变化,如果内部最高温度或内外温差、降温速率超过警戒值应立刻调整养护方案。结束语
综上所述,大体积混凝土温度控制是一项长期严峻的工作,其关键在于降低混凝土温度应力和提高混凝土本身抗拉性能。因此,在混凝土施工前,应对其温度和温度应力进行计算,加强施工过程中的监控,遇到突发问题应及时做好相应的控制措施,同时提高工程技术人员的综合技能,学习和引进国内外先进的技术和经验。最大限度地减少和避免温度裂缝的产生,从而保证工程建设的整体质量。
参考文献
[1] 周明荣;高层建筑大体积混凝土温度裂缝的形成与预防[J];广西质量监督导报;2009年11期
[2] 房进胜;韩新怀;大体积混凝土结构裂缝产生的原因及措施[A];土木建筑学术文库(第15卷)[C];2011年
第五篇:大体积混凝土温度裂缝控制措施
大体积混凝土温度裂缝控制措施
1、概述
此次拟浇筑砼系华荣xx城D区基础筏板。D区基础砼等级为为C35P8,板的一般厚度为2.0m,集水井处最厚区域为4.35m;本区域一次浇筑砼方量约为2980m3;板内配筋情况是:板上下部均为φ28@150双向双层网筋,第二层配有φ18@150双向网筋一层,板中间配置构造抗裂钢筋网片φ16@200,D区柱下配置φ22@150。由此可见,该筏板确具有体形大、结构厚、砼方量多,钢筋密而工程条件较复杂和施工技术要求高等特点。
大体积混凝土是指最小断面尺寸大于1m以上的混凝土结构。与普通钢筋砼相比,具有结构厚,体形大、混凝土数量多、工程条件复杂和施工技术要求高的特点。
大体积混凝土在硬化期间,一方面由于水泥水化过程中将释放出大量的水化热,使结构件具有“热涨”的特性;另一方面混凝土硬化时又具有“收缩”的特性,两者相互作用的结果将直接破坏混凝土结构,导致结构出现裂缝。因而在混凝土硬化过程中,必须采用相应的技术措施,以控制混凝土硬化时的温度,保持混凝土内部与外部的合理温差,使温度应力可控,避免混凝土出
现结构性裂缝。
2、大体积混凝土裂缝产生的原因
大体积混凝土墩台身或基础等结构裂缝的发生是由多种因素引起的,各类裂缝产生的主要影响
因素如下:
(1)收缩裂缝。混凝土的收缩引起收缩裂缝。收缩的主要影响因素是混凝土中的用水量和水泥用量,用水量和水泥用量越高,混凝土的收缩就越大。选用的水泥品种不同,其干缩、收缩的量也不同。
(2)温差裂缝。混凝土内外部温差过大会产生裂缝。主要影响因素是水泥水化热引起的混凝土内部和混凝土表面的温差过大。特别是大体积混凝土更易发生此类裂缝。
大体积混凝土结构要求一次性整体浇筑。浇筑后,水泥因水化热,由于混凝土体积大,聚集在内部的水泥水化热不易散发,混凝土内部温度将显著升高,而其表面则散热较快,形成了较大的温度差,使混凝土内部产生压应力,表面产生拉应力。此时,混凝土龄期短,抗拉强度很低。当温差产生的表面抗拉应力超过混凝土极限抗拉强度,则会在混凝土表面产生裂缝。(3)材料裂缝。材料裂缝表现为龟裂,主要是因水泥安定性不合格或骨料中含泥量过多而引起的。
3、大体积混凝土裂缝控制的理论计算
华荣.上海城D区,混凝土及其原材料各种原始数据及参数为:一是C35P8混凝土采用P.O42.5普通硅酸盐水泥,其配合比为:水:水泥:砂:石子:粉煤灰:矿粉(单位Kg)=172:285:716:1070:60:100(每立方米混凝土质量比),砂、石含水率分别为3%、0%,混凝土容重
为2390Kg/m3。
二是各种材料的温度及环境气温:水30℃,砂、石子35℃,水泥40℃,粉煤灰35℃,矿粉35℃,环境气温32℃。3.1混凝土温度计算
(1)混凝土拌和温度计算:公式TO=∑Timici/∑mici可转换为:TO=[0.9
(mcTc+msTs+mgTg+mfTf+mkTk)+4.2Tw(mw-Psms-Pgmg)+C1(PsmsTs+PgmgTg)-C2(Psms+Pgmg)÷[4.2mw+0.9(mc+ms+mg+mf+m
k)] 式中:TO为混凝土拌和温度;mw、mc、ms、mg、mf、mk—水、水泥、砂、石子、粉煤灰、矿粉单位用量(Kg);Tw、Tc、Ts、Tg、Tf、Tk—水、水泥、砂、石子、煤灰、矿粉的温度(℃);Ps、Pg—砂、石含水率(%);C1、C2—水的比热容(KJ/Kg.K)及溶解热(KJ/Kg)。
当骨料温度>0℃时,C1=4.2,C2=0;反之C1=2.1,C2=335.本实例中的混凝土拌和温度为:TO=[0.9(285*40+716*35+1070*35+60*35+100*35)+4.2*30(172-716*3%)+4.2*3%*716*35]÷4.2*
172+0.9(285+716+1070+60+100)]=34.3℃.(2)混凝土浇筑温度计算:按公式TJ=TO-(α.Tn+0.032n)*(TO-YQ)式中:TJ—混凝土浇筑温度(℃);TO—混凝土拌和温度(℃);TQ—混凝土运送、浇筑时环境气温(℃);Tn—混凝土自开始运输至浇筑完成时间(h);n—混凝土运转次数。
α--温度损失系数(/h)本例中,若Tn取1/3,n取1,α取0.25,则:
TJ=34.3-(0.25×1/3+0.032×1)×(34.3-32)=34.0℃
3.2混凝土的绝热温升计算
Th=WO.QO/(C.ρ)
式中:WO—每立方米混凝土中的水泥用量(Kg/m3);QO—每公斤水泥的累积最终热量(KJ/Kg);C—混凝土的比热容取0.97(KJ/Kg.k);ρ—混凝土的质量密度(Kg/m3)
Th=(285*375)/(0.97*2390)=55.8℃
3.3混凝土的内部实际温度
Tm=TJ+ξ•Th
式中:TJ—混凝土浇筑温度; Th—混凝土最终绝热温升;ξ—温将系数查建筑施工手册,若混凝土浇筑厚度4.0m,则:ξ3取0.74,ξ15取0.55,ξ21取0.37.Tm(3)=34.0+0.74*55.8=75.3℃;
Tm(15)=34.0+0.55*55.8=64.7℃;
Tm(21)=34.0+0.37*55.8=54.6℃.3.4混凝土表面温度计算
Tb(T)=Tq+4h,(H-h,)△T(T)/H2式中:Tb(T)—龄期T时混凝土表面温度(℃);Tq--龄期T时的大气温度(℃);H—混凝土结构的计算厚度(m)。
按公式H=2h+ h,计算,h—混凝土结构的实际厚度(m);h,--混凝土结构的虚厚度(m);h ,=K•λ/Βk=--计算折减系统取0.666,λ—混凝土的导热系数取2.33W/m•K
β—模板及保温层传热系数(W/m2•K);
β值按公式β=1/(∑δi/λi+1/βg)计算;δi—模板及各种保温材料厚度(m);λi—模板及各种保温材料的导热系数(W/m•K);βg—空气层传热系数可取23(W/m2•K).T(T)--龄期T时,混凝土中心温度与外界气温之差(℃):
T(T)= Tm(T)-Tq,若保护层厚度取0.04m,混凝土灌注厚度为4m,则:
β=1/(0.003/58+0.04/0.06+1/23)=1.4:1 h,=K•λ/β=0.666×2.33/1.41=1.1;
H=2h+ h,=4.0+2×1.1=6.2(m)
若Tq取32℃,则:
T(3)=75.3-32=43.3℃ T(15)=64.7-32=32.7℃ T(21)=54.6-32=22.6℃
则:Tb(3)=32+4×1.1(6.2-1.1)×43.3/6.22=57.3℃ Tb(15)=32+4×1.1(6.2-1.1)×32.7/6.22=51.1℃ Tb(21)=32+4×1.1(6.2-1.1)×22.6/6.22=45.2℃ 3.5混凝土内部与混凝土表面温差计算
本工程中: T(3)s=75.3-57.3=18℃ △ T(15)s=64.7-51.1=13.6℃ △ T(21)s=54.6-45.2=9.4℃
4、计算结果分析
从以上计算可以看出,混凝土3d龄期时内外温度差达到最大值18℃,符合混凝土内外温差小于25℃的技术要求。但必须看到计算结果是基于养护环境温度为32℃,表面保温措施得当,入模混凝土温度为34℃条件下得出的。实际施工养护中有可能无法满足以上条件要求。2008年8月19日实测C30混凝土拌和后温度未36℃,当时拌和水温度为30℃,环境温度为32℃,若养护环境温度为夜间较低时的情况,假设为23℃,则△T(3)s=22.6℃,加上保温措施有可能达不到要求,有产生温度裂缝的可能,因此有必要采取一丁的措施防止温度裂缝的产生。
5、大体积混凝土施工技术措施
(1)降低混凝土入模温度。包括:浇筑大体积混凝土时应选择较适宜的气温,尽量避开炎热天气浇筑。可采用温度较低的地下水搅拌混凝土,或在混凝土拌和水中加入冰块,同时对骨料进行遮阳保护、洒水降温等措施,以降低混凝土拌和物的入模温度,掺加相应的缓凝型减水剂。(2)加强施工中的温度控制。包括:在混凝土浇筑之后,做好混凝土的保温保湿养护,以使混凝土缓缓降温,充分发挥其徐变特性,减低温度应力。应坚决避免曝晒,注意温湿,采取长时间的养护,确定合理的拆模时间,以延缓降温速度,延长降温时间,充分发挥混凝土的“应力松弛效应”;加强测温和温度监测。可采用热敏温度计监测或专人多点监测,以随时掌握与控制混凝土内的温度变化。混凝土内外温差应控制在25℃以内,基面温差和基底面温差均控制在20℃以内,并及时调整保温及养护措施,使混凝土的温度梯度和湿度不致过大,以有效控制有害裂缝的出现(养护措施详见大体积砼浇筑方案)。
(3)提高混凝土的抗拉强度。包括:控制集料含泥量。砂、石含泥量过大,不仅增加混凝土的收缩而且降低混凝土的抗拉强度,对混凝土的抗裂十分不利,因此在混凝土拌制时必须严格控制砂、石的含泥量,将石子含泥量控制在1%以下,中砂含泥量控制在2%以下,减少因砂、石含泥量过大对混凝土抗裂的不利影响;改善混凝土施工工艺。加强早期养护,提高混凝土早期及相应龄期的抗拉强度和弹性模量;在大体积混凝土基础表面及内部设置必要的温度配筋,以
改善应力分部,防止裂缝的出现。