第一篇:高线精轧机轧辊箱进水问题的原因分析和改进措施
高线精轧机轧辊箱进水问题的原因分析和改进措施
第一线材厂线材作业区域
精轧机组辊箱进水问题是困扰我厂生产顺利进行的较为棘手的问题,也是最不好解决的问题之一。要解决此问题,要从密封、滑环、装配等多方面入手,多管齐下,达到解决问题的目的。
关键词:
高速线材
精轧机
密封
滑环
润滑油
一、精轧机组辊箱进水的问题提出
我厂线材作业区域的精轧机组是采用摩根5代顶交45°高速无扭线材轧机设备,由于受到温度、压力、摩擦等影响,冷却轧辊、导卫装置的高压水常会进入精轧机辊箱,导致精轧机稀油站的润滑油提前乳化变质,如不及时处理,最终可能导致润滑油产生不可逆转的变质而引发精轧机设备故障。精轧机组进水对设备和润滑油的危害性极大,是目前我区域面临的几个比较严重的问题之一。首先,精轧机进水后,经过循环系统进入油箱,如果长期存在进水现象而不处理,则会导致水油比例增大,当润滑油含水量超过规定范围时,对滚动轴承而言,轻则会减小轴承的使用寿命,重则会导致轴承供油不足,润滑和散热不好,最终因为热膨胀将轴承间隙吃掉,致使轴承报废;对油膜轴承而言,资料表明,进入润滑点的油中含水量超过
0.1% 时,机械磨损急剧增加;超过0.5% 时,将会破坏润滑环境,使轴与轴承之间无法形成油膜,轴承温度瞬间升高,轴与轴承出现抱死现象,出现重大事故。对齿轮而言,如果润滑油的含水量过高,则无法使齿轮啮合时产生油膜,使齿轮温度升高,将齿轮侧隙吃掉,并且使齿轮产生退火效应,降低齿轮的强度,近而导致齿轮等零部件的报废。以上任何一种情况的发生都会产生严重的后果,轻则使零部件报废,重则使整台设备报废,直接经济损失几十万元。其次,精轧机辊箱进水造成水与杂质进入油箱中,对润滑油产生乳化作用,降低了润滑油的使用寿命;水中的杂质经过过滤器时,杂质会堵塞滤芯,降低了滤芯的使用寿命,增加了生产成本,使经济效益下降。
二、精轧机组辊箱进水的原因分析
精轧机辊箱进水的原因总体可以分为两大类:分别是动密封进水和静密封进水。
(一)动密封处进水 动密封处进水,是精轧机辊箱进水最常见的现象,也是最难解决的问题,究其原因主要主要是双唇密封圈防水效果不好。
此点又可以 分为以下 4 种情况:
1.双唇密封圈自身质量不过关,周边有毛刺或出现卷边现象。此种 不合格的密封圈安装后,使用几天就严重变形,无法使用,造成大面 积进水现象。
2.滑环磨损太快,无法长时间使用,更换不及时就会出现进水现象。3 3.双唇密封防水侧的压缩量过小也会造成辊箱进水。
4.双唇密封的装配不当也是造成进水的主要原因。
5.如果偏心套内圆与其止口端面垂直度误差过大,这个问题会直接 导致双唇密封圈的双唇周边在滑环上压缩量不均,在辊轴高速旋转过 程中,双唇密封圈无法实现密封作用,出现进水现象。
(二)静密封处进水
静密封处进水虽然不常发生,但是一旦发生了进水量会很大,造 成严重的后果,所以要更加的重视。静密封处进水主要有以下3种情 况:
1.在装配过程中,如果辊箱与锥箱结合面厌氧密封胶胶涂抹不均匀 或者两者之间的螺栓孔及销孔中漏涂密封胶或密封胶涂抹不均,就会 导致辊箱进水。
2.密封板与偏心套之间虽在轧钢时静止,但调整辊缝时二者有相对 运动,因此,如果它们之间的O型圈尺寸不合适或者磨损严重也会造 成进水。另外,有时堆钢会使密封板变形,导致其与偏心套之间有间 4 隙,进而致使该部位进水。
三、精轧机组辊箱进水的解决方案
通过分析,我们对上面提出的动密封和静密封进水问题已经分析 得比较透彻,现在针对每个问题提出解决法案。
(一)动密封处进水的解决方案
1.双唇密封自身质量有问题的解决方案 双唇密封圈自身是否存在质量的问题,首先在于其本身双唇之间 的尺寸是否达到图纸要求,如图 2 所示,6″双唇密封圈的双唇间尺 寸为 d=16.6mm;8″双唇密封圈的双唇之间尺寸为:d=16mm。其次,是将双唇密封圈安装到密封板上后,其双唇之间尺寸 d 是否有变化? 如果有变化则说明与其相关的零件尺寸有问题或者双唇密封圈自身 存在问题。第三,将双唇密封圈安装到辊箱上,经过试车后,再拆下 来,检查双唇密封圈的双唇是否能恢复到原始厚度尺寸,通过这一点 可以证明其是否能满足使用要求。一旦通过以上方法验证出密封自身 质量有问题,我们必须从进货渠道入手,更换提供密封的厂家或者要 求厂家进行材料和工艺的改进,严把质量关,保证进厂的双唇密封圈 都是合格产品,从而解决双唇密封圈自身质量差的问题。2.滑环磨损过快的解决方案 对于滑环磨损过快的问题我们可以通过更改其材质及热处理要 求来解决,将表面氮化取消,改为表面镀陶瓷,这样即可以减少氮化 产生的变形,又可以提高产品的耐磨性能,以达到使用要求。
3.双唇密封防水侧压缩量过小的解决方案。精轧机辊箱有两种型号,一种是 6″辊箱,另一种是 8″辊箱,现在我们以 6″辊箱为例提出改进双唇密封防水侧压缩量的方案。
4.双唇密封安装方法不当的解决方案 双唇密封的安装不当,同样可以造成密封失效,致使辊箱进水。首先在将双唇密封装到密板内时,密封板必须完全安装到双唇密封圈 中的槽中,起到好的支撑作用。其次安装双唇密封过程中必须使用工 装,不允许用手直接进行安装,防止用手安装时用力不均,造成支撑 圈变形,导致其无法有效地支撑双唇密封圈而引起出现进水现象。只 有做到以上两点,加上工人的精心操作,才能使双唇密封完好而且不 变形的安装在密封板上。
5.偏心套内圆与其止口端面垂直度误差过大的解决方案 偏心套的主要质量问题是内圆与其止口端面直度误差过大,致使 双唇密封圈的双唇周边在滑环上压缩量不均,在辊轴高速旋转过程 中,双唇密封圈无法实现密封作用,出现进水现象。通过理论计算和 实际的摸索,我们发现,偏心套内圆与其止口端面垂直度误差如果控 制在 0.1 以内,将不会使双唇密封变形,在我们的使用要求范围之内。所以我们在偏心套上机安装之前,必须进行检验,垂直度误差在 0.1 以内的才可以上机使用,不合格的挑出来进行修磨,无法修磨的直接 报废,要绝对保证装配的质量。
(二)静密封处进水的解决方案 静密封处进水主要是在辊箱锥箱装配过程中造成的,所以解决的 最主要办法就是装配精心、检查精心,我们可以通过以下两个方面着 手解决。1.锥箱辊箱结合面进水的解决方案 从图 3 中可以看到辊箱和锥箱的合箱面示意图,在装配时都要在 结合面上涂“乐泰 515”平面厌氧密封胶,如果出现胶涂的不均匀或 有漏涂的地方,在合箱过程中就会造成辊箱面板与锥箱结合面上有缝 隙进而造成进水。另外辊箱面板与辊箱连接的螺栓孔及销孔在装配时也应涂螺纹密封胶,而且必须涂抹均匀,如果漏涂或者涂抹不均就 会造成轧机冷却水从它们与螺丝孔之间的缝隙内进入辊箱内造成进 水,这样的问题出现的原因主要是装配工人防水意识不强或者操作不 精心造成的,所以要根本解决这样的问题就必须加强对操作工人的培 训,增强其防水意识和装配水平,以达到防止由于此种原因造成的进 水事故。
2.密封板与偏心套之间进水解决方案 密封板与偏心套之间靠偏心套上的O型圈保证密封,O型圈的选 用尺寸不当或者磨损严重也会造成进水,所以在装配之前要测量好二 者之间的配合间隙,选择合适的O型圈,一般选择比配合间隙大0. 50~ 0.80ram的即可。另外在偏心套使用过一段时间后,也要检查其上O 型圈的磨损情况,磨损严重的及时更换。此外,有时堆钢会使密封板 变形,导致其与偏心套之间有间隙,进而致使该部位进水,所以每次 有堆钢事故之后一定要对此处进行检查,及时发现隐患并解决问题。
四、结束语
通过我们的分析,提出了一些精轧机组辊箱进水的原因及解决方 法,除了上述提到的进水原因以外,精轧机的进水还可以由其他部位 引起,例如联轴器压盖处进水、锥箱体上2个导向柱松动渗水、精轧 机稀油站的板式换热器进水等。但生产中发生精轧机进水的主要原因仍是由以上讨论的几个方面引起的。通过采用上述措施,一般的进水 问题都可以得到了有效控制,由此引起的设备故障停机时间也由2008 年的30小时/年降到2009年的10小时/年,为生产提供了有力保障。出现问题并不可怕,可怕的是出现了问题而不想办法解决。通过 我们积极的分析,认真的完善,大胆的实践,不屑的努力,摆在我们 面前的任何问题都无法阻挡我们前进的脚步。
参考文献
【1】机械设计手册第4卷————化学工业出版社——成大先
【2】非标准机械设计手册————国防工业出版社——岑军健
第二篇:防止高线摩根精轧机辊箱进水的措施
防止高线摩根精轧机辊箱进水的措施
作者:徐纪成 石向阳
摘要:在分析高线摩根精轧机辊箱密封结构和装配要求的基础上,得出辊箱进水原因是双唇圈的压紧量和O型圈尺寸不合适,同时提出了辊箱进水的检查方法和改进措施,改进后效果明显。
关键词:精轧机;辊箱;密封;润滑油 前言
高速线材生产过程中,由于受到温度、压力、摩擦等影响,冷却轧辊、导卫的高压水常会进人精轧机辊箱,导致精轧机稀油站的润滑油提前乳化变质,如不及时处理,最终可能导致润滑油产生不可逆转的变质而引发精轧机设备故障。摩根精轧机辊箱密封的结构及要求
华西钢铁有限公司高线厂的精轧机为摩根第5代机型。生产中发现精轧机进水绝大部分是由于辊箱进水造成的,锥箱的进水相对易发现易解决,为此重点对辊箱的进水问题进行分析。
辊箱的密封由动密封和静密封两部分组成,动密封见图1中的双唇圈,轧辊的高速旋转及高压冷却水易将氧化铁皮等杂质带人抛油环与双唇圈之间,造成双唇圈磨损。另外,内、外抛油环与双唇圈之间的压紧量不当也会导致辊箱进水。静密封的两零部件之间是相对静止的,如果装配尺寸不当,也会进水。实际生产中,进水往往发生在偏心盘与八字型面板之间。
因此,要防止辊箱进水,最重要的是要对这两处密封严格按装配技术要求进行控制。
(1)动密封处。双唇圈在自由状态下,两工作唇边相距17.7mm,内、外抛油环配合装配使用后,两者的氧化铬工作镀层之间的距离为7.3×2=14.6mm,即双唇圈装配在内、外抛油环之间总的压紧量为3.1mm。如果装配不合适,同时由于轧辊轴等零件存在制造累积误差,最终可能会使双唇圈的单边压紧量太少或有一边根本没有压紧量,从而导致辊箱进水。据经验,双唇圈压紧量在内、外抛油环之间平均分配并不是最好。而是当双唇圈与外抛油环的压紧量占总压紧量的60%时较为理想。
(2)静密封处。主要在于控制好密封件的尺寸。辊箱与锥箱的配合面经过精加工,其精度相对较稳定,且之间涂有密封胶,密封性较好。主要装配重点在于控制好八字型面板与偏心盘之间的密封问题,此密封处虽在轧钢时静止,但调整辊缝时二者有相对运动,因此它们之间必须选择合适的O型圈。另外,由于偏心盘在轧辊轴高度方向上的位置与八字型面板配合台阶面之间的位置有变化,八字型面板上台阶面的高度尺寸较小,加上有时堆钢会导致八字型面板变形,所以该部位也较易进水。在装配时首先要检查其有无变形,其次要测量好二者之间的配合间隙,选择合适的。型圈。一般选择比配合间隙大0.50~0.80mm的O型圈,而且还需注意观察O型圈与八字型面板的台阶面配合位置是否合适。
3辊箱的进水检验
装配好的辊箱必须经过试水检验,确认合格后方可作为合格备件上线使用,检验设备见图2。从进水口注入加有乳化液的水(加入乳化液是为避免辊箱锈蚀),然后在下面检查辊箱是否漏水,若有水渗出,则可从下面直接观察到是双唇圈进水还是偏心盘或其他部位进水,再根据上述方法进行分析解决,直至漏水检验合格为止。
要检查辊箱在线使用过程中是否进水,首先,可通过勤观察油站内油箱水位的变化来确定。其次,必须确定是哪架轧机进水,这可利用每天换辊换槽时间,停止精轧机的润滑供油来检查。为方便检查,对精轧机锥箱的各架回油总管进行改造,即在每架回油总管的最低位接上一根较细的金属软管,并在出口一端加上阀门,正常运转时该阀关闭;如需对、油品取样,也可通过此阀取样。在停车停油检查是否进水时,将此阀打开,精轧机的保护罩关闭,打开高压冷却水(此时精轧机绝对禁止启动!),即可检查接在每架总回油管上的金属软管是否有水流出。
4精轧机进水问题的解决措施
确定进水机架后,解决的方法是:
(1)考虑双唇圈问题。停车时取下内、外抛油环和双唇圈,检查其磨损状况。如双唇圈已损坏,直接更换;如双唇圈完好,则检查抛油环,观察其氧化铬镀层的磨损痕迹,如果出现内外抛油环磨损量不同,需考虑调整双唇圈的压紧量。如外抛油环的磨损量很小或未磨损,则需考虑在偏心盘下面加上合适的偏心盘垫片;如果内抛油环的磨损很小或未磨损,则需修磨偏心盘的厚度。当然,有时可能出现双唇圈损坏,抛油环单边磨损,则二者一并解决即可。
(2)考虑偏心盘与八字型面板之间的问题。首先观察偏心盘、八字型面板是否由于堆钢等故障发生变形,如有变形,则应更换新备件。其次要观察偏心盘与八字型面板的配合间隙,如发现间隙太大则应更换大一点的O型圈,因为二者之间经常会发生由于冷却水的侵蚀而造成二者间的配合间隙变大进而引起该处密封失效的现象。
若以上两方面均无问题,其他方面也未发现明显问题,则可将整台辊箱换下另作离线检查。
5结语
精轧机进水除由辊箱进水引起外,还可能由’其他部位进水引起,例如:辊箱与锥箱的配合面进水、联轴器压盖处进水、抛油环未压紧进水、锥箱体上2个导向柱松动渗水、精轧机稀油站的板式换热器漏水等。但生产中发生精轧机进水的主要原因仍是辊箱进水,通过采用上述措施,进水问题得到了有效控制,由此引起的设备故障停机时间同比下降了50%,为生产提供了有力保障。
(1.江阴华西钢铁有限公司高线厂;2.西安航空发动机集团公司机电石化设备厂)
第三篇:高速线材精轧机辊箱进水原因和预防措施
高速线材精轧机辊箱进水原因和预防措施
1. 概述
韶钢高速线材厂精轧机组采用意大利达涅利(DANIELI)公司设计 的顶交 45°无扭悬臂辊环式轧机,主要生产 φ5.5mm~φ20mm 的盘圆。精轧机组由 8 机架精轧机和 4 机架减定径机组成,每个机架由一台锥 箱和一台辊箱构成。在生产过程中,由于密封、轧件温度、压力、摩擦等 因素的影响,导致精轧机组辊箱进水,造成精轧机组设备故障。
2. 辊箱轧辊轴密封的结构和原理
5 1 6 7 2 4 A 迷宫式增压系统 A 为压缩空气系统入口 1.内抛油环 2.外抛油环 3.八字型面板 4.双唇密封件
5.O 形圈 6.偏心套 7.轧辊轴 图 1 精轧机辊箱密封结构图
轧辊轴密封原理
高速线材厂精轧机组辊箱采用净化压缩空气迷宫密封,其密封结 构见图 1。内抛油环和外抛油环安装在旋转轴上,内、外抛油环在安装 时相互贴紧,内抛油环端面由轧辊轴的轴肩支承,外抛油环则由辊环压 紧;双唇密封件安装在八字型面板的密封保持架上,密封保持架与八字 型面板相固定;密封唇与内、外抛油环的内表面相接触受到预紧力,产 生压应力。在轧制过程中,偏心套及油膜轴承、双唇密封、密封保持架和 八字型面板保持静止状态;内、外抛油环随着主轴高速同步旋转。密封 效应主要来自双唇密封件:一是密封唇的接触应力,密封唇与抛油环在 轴向有压缩,唇口向内收缩形成过盈量,唇口边缘产生压应力形成密封 带,阻止润滑油和冷却水的相互渗透,起到密封作用;二是密封件封油 侧唇口的甩油效应,将唇部边缘的油液高速甩出,使之回到主轴箱,避 免在密封件唇部大量聚积;同样,封水侧唇口的甩水效应,使水汇集到排 水系统,排到外界。所以双唇密封件是高速线材精轧机辊箱的关键部件。
3. 辊箱进水的原因
3.1 辊箱的动密封件和静密封件
(1)动密封件由内抛油环和外抛油环组成。在内抛油环和外抛油环 压紧时,如果外抛油环与八字型面板之间的间隙太大,轧辊轴高速旋转 时高压冷却水易将氧化铁皮等杂质带入抛油环与双唇密封件之间,造
成双唇密封件的磨损,导致辊箱进水。另外,内、外抛油环与双唇密封件 之间的压紧量不当也会导致辊箱进水。
(2)静密封件由八字型面板、双唇密封件、Ο 形密封圈等零部件组 成。双唇密封件与内外抛油环之间是相对静止的,如果装配尺寸不当,辊箱就会进水;实际生产中,如果处理堆钢时间过长,就会导致八字型 面板变形,破坏辊箱与八字型面板的密封条件,辊箱进水也会发生在偏 心套与八字型面板之间;Ο 型密封圈与八字型面板的台阶面位置配合 不当辊箱也会进水。
3.2 双唇密封件的材料性能
双唇密封件(见图 2)的作用一是保证密封轴承腔体内的润滑油形 成连续不断的油膜的同时,避免润滑油的泄漏;二是防止外界的冷却 水、铁屑、灰尘等杂质进入轴承腔内污染润滑油,避免油膜轴承烧坏。
图 2 双唇密封件简图
双唇密封件胶料的耐油性是影响其密封性能的一个重要因素。当 橡胶与润滑油接触时,在高温下会比干热空气下产生更为复杂的物理
和化学变化。高速线材厂精轧机组双唇密封件唇口线速度高达 120m/s,由于高速旋转导致摩擦升温,水无法进入到橡胶接触面,橡胶与外抛油
环形成干摩擦,使密封唇口工作面局部高温老化,致使双唇密封件失效 导致辊箱进水。双唇密封件在使用过程中始终承受外界压力,随着使用 时间的增加,唇口形状会发生变化,无法恢复到原来的尺寸,其与内、外 抛油环的配合间隙增大,导致内泄漏油和外进水事故的发生。
3.3 压缩空气压力大小
高速线材厂精轧机组辊箱采用净化压缩空气迷宫式密封,用洁净 的压缩空气对双唇密封件的封水唇边进行吹扫和冷却,使唇边紧紧压 住外抛油环,确保辊环冷却水和杂质不进入辊箱。其设定压力为
0.8MPa,压力过大容易损坏双唇密封件的封水唇,降低了双唇密封件的 使用寿命;压力过小既降低了压缩空气对双唇密封件封水唇边的冷却 效果,也不能防止辊环冷却水和外界的杂质进入辊箱。
3.4 其它原因
辊箱与锥箱的配合面进水、热电偶压盖处进水、抛油环未压紧进 水、辊箱体面上两个导向柱松动和固定螺栓的防水垫片损坏渗水、精轧 机组稀油站的板式换热器漏水等都会导致辊箱进水。
4. 辊箱进水之后产生的危害
辊箱进水造成润滑油粘度下降,破坏油膜产生机理,油膜轴承的油 膜承载力下降,导致轧辊轴与油膜轴承干摩擦而烧损辊轴,更为严重的 是烧损一台辊箱可能引起连锁反应,导致其它的辊箱也损坏。
辊箱进水带入的氧化铁皮和固体颗粒物使油膜轴承和齿轮得不到 很好的润滑,轻者缩短油膜轴承的使用寿命或造成齿面粘结,重者可能 使整台辊箱报废。
冷却水和氧化铁皮从辊箱进入润滑系统,造成稀油站过滤器堵塞,频繁更换滤芯;进水严重时导致润滑油乳化。
5. 辊箱进水的预防措施
5.1 完善辊箱装配操作规程
将辊箱面板、八字型面板、辊箱与锥箱的结合面的平面度纳入安装 操作规程;对八字型面板的保持架、八字型面板与辊箱面板的结合面等 进行研磨处理和平面度检测;抛油环安装前仔细检查是否有局部变形 或残留物存在,装配过程中严禁用金属工具敲打;安装双唇密封件时应 注意八字型面板的保持架与双唇密封件骨架是否松动,然后同时加压,直至将其安装到位;严禁敲打双唇密封件的唇边。
5.2 改进双唇密封件的材质和结构参数
(1)双唇密封件工作时,旋转的轧辊轴偏心跳动是不可避免的,如果 双唇密封件相随性差,双唇密封件的唇口与内外抛油环之间容易形成 间隙,造成润滑油泄漏或辊箱进水。因此,双唇密封件必须要有良好的 耐磨性和回弹性来提高油封的相随性。
(2)严格控制好双唇密封件的唇口过盈量:过盈量太小,密封性降 低,在工作中容易造成泄漏;过盈量太大,使唇口紧贴在内外抛油环上,唇间的间隙过小,唇口和抛油环之间呈“干接触”,在高速旋转下,唇口 和抛油环表面都会迅速升温,从而加速唇口老化龟裂,甚至损伤密封唇 和内外抛油环上的氧化铬,使密封失效。因此,选择适当的双唇密封件 的唇口过盈量非常重要。
5.3 提高预警能力
(1)在精轧机组的回油管路上增加监控仪器,用来监测润滑油的进 水量,更准确地掌握润滑油的进水情况,及时找到具体的进水机架,有针 对性地对辊箱进水进行处理。
(2)加强对压缩空气压力的控制,确保压力在 0.8MPa~1.0MPa 范围之内。
(3)制定严格的装配工艺、装配清洁要求及备件定期更换制度,加强 对备件的把关和测量,使辊箱进水因素逐步下降。
6. 结语
高速线材厂通过对辊箱进水原因的分析,采取了有效的预防措施,精轧机组辊箱和润滑系统运行状况越来越好,大量进水的现象基本能 够避免,有效地降低了油耗,减少了润滑油泄漏对环境造成的污染。对 偶尔出现的进水情况,能及时发现并在短时间内处理,大大降低了维护 成本,为生产提供了有力保障,创造了一定的经济效益。
第四篇:高加水位运行不稳定的原因分析及改进措施[最终版]
韶关发电厂#8机组是采用哈尔滨汽轮机厂制造的型号为N200-230/535/
535、一次中间再热、凝汽式单轴三缸三排汽口汽轮机,1985年投产使用。全机共有8段非调整抽汽。其中1、2、3段分别为3台高加抽汽用汽。回热加热系统的配置方式为“3大2小”,即3台高加、1台前置式蒸汽冷却器和1台外接式疏水冷却器。3台高加均为“U”型管表面式加热器,疏水采用逐级自流的方式,#1高加疏水最终至除氧器。疏水装置为电动式调节装置。高加水位运行不稳定,据运行日记统计,最多时一个月高加动作8次,高加投入率不高。原因分析
1.1 疏水装置调整性能差
高加疏水系统中的疏水装置仍采用KDJ式电动调节装置,这种装置属于80年代的产品,由于其执行机构机械元件多,迟缓率大,很容易出现刹车失灵,产生过调现象。当高加水位偏高需增大调整门开度时,由于执行机构的过调现象,会使水位降低过 多;而当高加水位偏低需减小调整门开度时,往往会使水位又上升过多。由于水位不稳定,调整门频繁动作,对高加内部及其疏水系统的管道冲蚀增大,甚至会产生振动,调节阀也易冲蚀磨损,经常出现故障,以至造成高加水位调整失灵,引起高加保护动作,或高加无水位运行,特别是汽轮机变工况运行时,高加水位就更加难以控制。
1.2 高加疏水至除氧器管道布置不合理
投入#
2、#3高加疏水,调整至正常后投#1高加时,随即出现水位不断升高甚至满水现象。而疏水管道为∮219 mm×7 mm,疏水调节阀窗口通流面积79.4 cm2,通流面积足够,造成#1高加疏水不畅的原因是疏水管路压力损失太大,使疏水调节阀压差减小,影响了通流能力。图1为改造前的高加疏水至除氧器管道布置。
1.3 高加疏水至除氧器管道管壁偏薄
由于长期被冲蚀,高加疏水至除氧器管道管壁已由原来的8 mm减至4~5 mm,特别是疏水管道弯头处,由于高加水位的波动,磨损特别严重,以致管道及弯头处泄漏而造成高加停运。改进措施
据上述分析,在2002年#8机组大修时,采取了以下改进措施。
2.1 更换KDJ自动疏水装置
切除KDJ的电动疏水装置,更换为自调节液位控制装置。自调节液位控制装置克服了传统的浮球式、气动式、电动式液位调节产品的缺点,基于“汽液两相流”的原理,自动调节容器出口流量,从而达到相对稳定的液位。其结构见图2。
疏水由阀口进入,调节汽由进汽口进入阀体内部,当调节汽进入阀腔与疏水混合后,调节汽随疏水一起向阀腔喉部流动,由于喉部截面积不变,疏水的有效通流面积相应减少,使疏水流量降低,从而达到阻碍疏水的作用。由于汽体比容为液体的1 000多倍,只需极少汽量就可控制大量的疏水变化。该装置自调节能力强,无活动部件,无任何机械、气动、电动传动和控制系统,无需热工信号的支持,内芯采用全不锈钢材料,高温下耐蚀、耐磨、耐冲刷性好,且适应负荷变化范围大。2.2 改变布置方式
原系统在除氧层有7个弯头,管路较长,经改进后,减少了4个弯头和7 m的管路,较大幅度地减少了压力损失。图3为改造后的管路布置方式图。
2.3 更换高加疏水至除氧器管道
为提高管道的强度、耐蚀、耐温性能,将高加疏水至除氧器管道由原来的#20钢更换为不锈钢管,弯头采用∮219 mm×8 mm不锈钢材料,并对相应支吊架进行了改造,减小管道摆动。改造效果
通过对高加疏水系统的改进,2002年8月至2003年2月期间,#8机3台高加在机组运行中都能全部投入。且由于高加疏水系统中采用了汽液两相流疏水器,自调节能力强,适应负荷变化范围广,在机组负荷40%~100%范围内都能实现稳定控制,保持高加水位在规定范围内运行,增强了机组变工况运行时回热系统的适应性。高加疏水系统故障率由改造前的55%降为0,高加稳定性及投入率大大提高,机组热效率也相应增加,提高了机组的安全性;同时,由于新加装的汽液两相流调节装置无机械电气元件,无需热工信号的支持,减少了热工人员及运行人员的工作量。4 巩固措施
综上所述,针对韶关发电厂#8机组高加水位运行不稳定的改造是成功的,应继续跟踪高加汽液两相流疏水器的运行情况,坚持做好设备的运行记录。利用机组大小修期间定期检查高加疏水管道,防止高加疏水管道爆裂而引起停高加及故障停机事故的发生。同时加强设备巡查,关注高加危急疏水门的状况,杜绝泄漏、机械卡死的设备隐患。
第五篇:混凝土质量通病砂线泌水质量通病分析原因和防治措施1
关于混凝土质量通病
砂线和泌水产生原因及防治措施浅析
目前关于混凝土质量通病包括很多,近期我部针对混凝土砂线和泌水质量通病进行探讨分析。首先我们了解下混凝土泌水跟混凝土砂线的定义,其次分析产生的原因,最后谈谈防治的措施。
混凝土砂线产生的主要原因是混凝土泌水造成的,混凝土泌水后,表面砂浆过多,泌水后,水带走水泥浆。只剩下砂,形成泌水通道,产生砂线。
混凝土泌水产生的主要原因是混凝土在运输、振捣、泵送等原因的过程中出现骨料下沉、水分上浮的现象。
一、分析产生问题原因
1、产生问题的主要原因(1)、罐车司机向混凝土里加水
因为现在山东淄博的天气比较炎热、风大、或者待灌时间长,造成混凝土坍落度损失严重。导致混凝土从罐车里倒不出来。罐车司机是按照方量和运距算钱,为了能赚到钱,司机为了省事,司机经常私自往混凝土里加水是常有的事。(2)、振捣工人往混凝土里加水
混凝土振捣工人偷懒,不想振捣时间长。混凝土坍落度大,振捣时间就必须要短些,否则混凝土离析。工人只是一味偷懒,没有质量意识。
2、产生问题的次要原因(1)、混凝土离析
因施工不当造成混凝土离析:混凝土下落高度超过2米。造成混凝土离析;混凝土拌合物组成材料粘聚力不足以抵抗粗集料下沉,混凝土拌合物成分相互分离造成内部组成不均匀的现象通常表现为粗集料与砂浆相互分离例如密度大的颗粒沉积到拌合物底部或者或者粗集料从拌合物中整体分离出来;
(2)、天气温度过高,某些人偷加减水剂;
(3)、混凝土振捣工人懒惰,不能及时按规范进行操作,造成混凝土过振;骨料下沉集中,靠近模板部分砂浆较厚,造成泌水离析;(4)、混凝土坍落度大;
(5)、模板设计不合理,刚度不足,在混凝土振捣时候出现微弱变形,水分过大,造成泌水或者砂线;
3、可能产生问题的原因:
①外加剂进场后保管不善,造成外加剂失效; ②劣质外加剂; ③错用外加剂;
④因为拌和楼操作手的原因; ⑤拌和楼系统错误;
⑥脱模剂与混凝土发生化学反应。
⑦模板拼缝不紧密,造成砂浆流失,砂浆的流动,造成混凝土表面出现砂线、泌水; ⑧机制砂细度模数太大。
二、防治措施
1、加强一线技术人员质量意识;加强一线操作工人质量意识。加强对一线操作人员技术交底与培训工作。以人为本,以人为核心来控制;
2、加强考核制度管理,加大奖惩力度。严格各道工序过程控制;
3、提前做好各种施工准备;
4、优化施工配合比,严格控制粉尘含量,严格控制水用量。
5、使用正规厂家水质脱模剂,禁止使用油脂脱模剂,禁止使用小厂家模板。
6、严格控制下料速度,布料均匀,分层合理,振捣棒布点合理,不漏振,不过振;
7、拌和楼要定期进行机械检修;
8、严格控制施工现场坍落度;
9、聘请实际经验丰富的老师傅进行“传帮带”。
10、雇用成熟的技术工人。
11、每道工序施作前,进行一次岗前教育(培训)。
12、技术员全过程指导施工、规范操作,自检合格再报监理工程师。
13、指派有力度的领导亲自抓,工作作风要雷厉风行。
14、实行“自检、互检、交叉检”,推行样板指路。
15、第一次报检不合格,第二次升级报检制度。
16、对于做的不好的工点,实行开现场会制度,分析原因,当场制定整改措施。向做得好的队伍派员学习,很批反面典型。
三、总结
以上质量通病只是我监理项目部在施工过程中的一点心得,毕竟是一家之言,见解和思维比较有限,如有异议可以继续探讨。也希望我部的心得能为**铁路做出一点点贡献。也希望多跟兄弟单位多沟通,多探讨,多学习,互通有无,一起进步。
2016年6月20日