跑马灯设计EDA课程设计

时间:2019-05-15 11:45:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《跑马灯设计EDA课程设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《跑马灯设计EDA课程设计》。

第一篇:跑马灯设计EDA课程设计

第一章 设计内容与设计方案

1.1课程设计内容

控制8个LED进行花样性显示。

设计4种显示模式:s0,从左到右逐个点亮LED;s1,从右到左逐个点亮LED;s2,从两边到中间逐个点亮LED;s3,从中见到两边逐个点亮LED。

4种模式循环切换,复位键(rst)控制系统的运行停止。数码管显示模式编号。可预置彩灯变换速度,4档快、稍快、中速、慢速,默认工作为中速。

1.2设计方案

在掌握常用数字电路功能和原理的基础上,根据EDA技术课程所学知识,以及平时实验的具体操作内容,利用硬件描述语言HDL,EDA软件QuartusⅡ和硬件平台cycloneⅡFPGA进行一个简单的电子系统设计,本次课程设计采用Verilog HDL硬件描述语言编写控制程序,应用Quartus Ⅱ软件实现仿真测试。采用FPGA芯片对LED灯进行控制,使其达到流水跑马灯显示的效果,LED灯采用共阳极接法,当给它一个低电平时,LED点亮,我们利用移位寄存器使各输出口循环输出高低电平,达到控制的目的。

第二章 设计原理

2.1设计原理及设计流程

本次试验我所完成的内容是跑马灯的设计,下面我简单的进行一下原理的阐述。

跑马灯课程设计的要求是控制8个LED进行花样显示,设计四种显示模块:第一种显示是从左向右逐个点亮LED。第二种显示:从右向左逐个点亮LED。第三种显示:从两边向中间逐个点亮LED。第四种显示:从中间到两边逐个点亮LED。四种显示模式循环切换,并带有一位复位键控制系统的运行停止。为了完成要求的效果显示,由于要求比较简单,所以不用分为很多模块来具体控制,所以我先择利用移位寄存器来完成灯的点亮,我们将LED灯采用共阳极接法,当给于低电平时点亮,那么当我们需要点亮某位LED灯时,只需在该位上赋予低电平即可,比如:如果我们要实现8个数码灯从左到右依次点亮,那么我们就可以给这8个数码灯分别赋值10000000,经过一段时间的延时后再给其赋值01000000,再经过一段时间延时后再给其赋值00100000,依次类推,则最后一种赋值状态为00000001,这样就得到了相应的现象。同理,要实现数码灯从右向左依次点亮,从中间向两端依次点亮,从两端向中间依次点亮都可以采用这样赋值的方法。为了达到四种显示模式循环切换的目的,可以将以上的所有赋值语句以顺序语句的形式置于进程中,这样在完成了一种显示方式后就会自动进入下一种设定好的显示模式,如此反复循环。当需要程序复位时,只需按下rst键即可,程序不管走都那里,执行那条语句,只要确定复位键按下时,程序立刻返回到程序执行语句的第一步,程序接着进行新的循环点亮。

第三章 设计程序

3.1 Verilog HDL程序

module ceshi(clk,rst,Q,DIN,CLK,a);input clk,rst;input [1:0]DIN;

//DIN为变换速度档 output signed[7:0]Q;

//Q为7个LED output [6:0]a;

//a为数码管显示模式 output CLK;

//自定义时钟 parameter DOUT=8'b0111_1111;reg

CLK;reg

[6:0]x;reg

[1:0]cs;reg

[7:0]Q;reg

[6:0]a;always@(posedge clk)begin x<=7'b0000000;CLK=0;case(DIN)0:begin

x<=x+1'b1;

if(x==20)begin

x<=7'b0;

CLK=~CLK;

end

end 1:begin

x<=x+1'b1;

if(x==15)begin

x<=7'b0;

CLK=~CLK;

end

end 2:begin

x<=x+1'b1;

if(x==10)begin

x<=7'b0;

CLK=~CLK;

end

end 3:begin

x<=x+1'b1;

if(x==5)begin

x<=7'b0;

CLK=~CLK;

end

end default begin

x<=x+1'b1;

if(x==20)begin

x<=7'b0;

CLK=~CLK;

end

end endcase end always@(posedge CLK or negedge rst)begin if(!rst)begin

Q<=DOUT;cs<=2'b00;a=7'b000_0000;end else begin case(cs)0:begin Q<=Q>>1;Q[7]<=1'b1;a=7'b0111111;

if(Q==8'b1111_1110)begin

Q<=8'b1111_1101;

cs<=2'b01;

end

end 1:begin Q<=Q<<1;Q[0]<=1'b1;a=7'b0000_110;

if(Q==8'b0111_1111)begin

Q<=8'b0111_1110;

cs<=2'b10;

end

end 2:begin Q[7:4]<=Q[7:4]>>1;

Q[3:0]<=Q[3:0]<<1;

Q[7]<=1'b1;

Q[0]<=1'b1;a=7'b1011_011;

if(Q==8'b1110_0111)begin

Q<=8'b1101_1011;

cs<=2'b11;

end

end 3:begin Q[7:4]<=Q[7:4]<<1;

Q[3:0]<=Q[3:0]>>1;

Q[4]<=1'b1;

Q[3]<=1'b1;a=7'b100_1111;

if(Q==8'b0111_1110)begin

Q<=8'b0111_1111;

cs<=2'b00;

end

end default begin

Q<=DOUT;

cs<=2'b00;

a=7'b0000_000;

end endcase end end endmodule

第四章 设计结果及仿真波形

4.1 设计结果

图1 顶层文件原理图

4.2仿真波形

4.3仿真结果分析

当输入DIN为00时选择慢速档,CLK的周期大约为20us,随着CLK上升沿的到来输出Q做移位变化,开始从左向右移,数码管段码输出a显示0,然后从右向左移,数码管段码输出a显示1,然后从中间向两边移,数码管段码输出a显示2,然后从两边向中间移,数码管段码输出a显示3,之后循环显示,当按下复位键rst时系统运行停止,第一个灯点亮,数码管无显示。当输入DIN为01时选择中速档,CLK的周期大约为15us,执行以上循环显示。当输入DIN为10时选择稍快档,CLK的周期大约为10us,执行以上循环显示。当输入DIN为11时选择快速档,CLK的周期大约为5us,执行以上循环显示。

第五章 设计总结

通过这次有关于EDA技术的课程设计的学习与应用,我们基本了解了EDA技术的相关应用,也掌握了EDA设计的相关软件Quartus7.2的最基础的使用方法,丰富了我们的设计手段,也让我了解了更多的仿真方法。

在上机操作的过程中,刚开始我们遇到了很多的困难,对软件的不熟悉以及对原理掌握的不透彻,使得刚开始的时候举步维艰,但是经过对最简单的模型的设计及仿真练习过后,我们基本掌握了软件的使用方法,通过软件仿真及对各个参数的设置,我们不断调试仿真出来的波形。这期间我们也了解到,虽然软件的仿真功能很强大,但是还是需要操作人员仔细的进行观察及调试的,否则也容易出现仿真错误。

这次的学习开阔了我们的视野,使我们了解了更多的专业方面的实际应用,在生产应用方面的用处等,以及专业方面的发展方向等……随着微电子技术和计算机技术的不断发展,在涉及通信、国防、航天、工业自动化、仪器仪表等领域的电子系统设计工作中,EDA技术的含量正以惊人的速度上升,它已成为当今电子技术发展的前沿之一。EDA技术发展迅猛,完全可以用日新月异来描述。EDA技术的应用广泛,现在已涉及到各行各业。EDA水平不断提高,设计工具趋于完美的地步,所以我们更加应该多多掌握这方面的知识。

第六章 参考文献

[1] 潘松、黄继业编著.EDA技术与VHDL,北京:清华大学出版社 [2] 边计年主编.用VHDL设计电子线路, 北京:清华大学出版社

[3] 王金明,杨吉斌编著.数字系统设计与Verilog HDL.北京:电子工业出版社 [4] 徐志军,徐光辉编著.CPLD/FPGA的开发与应用.北京:电子工业出版社 [5] 叶天迟主编.EDA实用技术实验及课程设计指导书.长春:自编实验指导书

第二篇:EDA课程 跑马灯设计

EDA目录

第一章 设计思路.................................................................................................................................................1 第二章 子模块......................................................................................................................................................2 2.1 分频器....................................................................................................................................................2 2.2 显示模式模块.......................................................................................................................................3 2.3 显示LED灯模块..................................................................................................................................5 第三章 调试及结果............................................................................................................................................6 3.1顶层原理图............................................................................................................................................6 第四章 体会..........................................................................................................................................................7

第一章 设计思路

在掌握常用数字电路功能和原理的基础上,根据EDA技术课程所学知识,以及平时实验的具体操作内容,利用硬件描述语言HDL,EDA软件QuartusⅡ和硬件平台cycloneⅡFPGAJ进行一个简单的电子系统设计,本次试验我所完成的内容是跑马灯的设计,下面我简单的进行一下原理的阐述。

跑马灯课程设计的要求是控制8个LED进行花样显示,设计四种显示模块:第一种显示是从左向右逐个点亮LED。第二种显示:从右向左逐个点亮LED。第三种显示:从两边向中间逐个点亮LED。第四种显示:从中间到两边逐个点亮LED。四种显示模式循环切换,并带有一位复位键控制系统的运行停止。为了完成要求的效果显示,由于要求比较简单,所以不用分为很多模块来具体控制,所以我先择利用赋值语句来完成灯的点亮,根据了解我们实验箱上的LED灯属于共阴极接法,当给于高电平时点亮,那么当我们需要点亮某位LED灯时,只需在该位上赋予高电平即可,比如:如果我们要实现8个数码灯从左到右依次点亮,那么我们就可以给这8个数码灯分别赋值10000000,经过一段时间的延时后再给其赋值01000000,再经过一段时间延时后再给其赋值00100000,依次类推,则最后一种赋值状态为00000001,这样就得到了相应的现象。同理,要实现数码灯从右向左依次点亮,从中间向两端依次点亮,从两端向中间依次点亮都可以采用这样赋值的方法。在延时的程序编写的过程中,我们采用计数时钟脉冲个数的方式来实现。结合具体程序来说就是,在每个时钟上升沿将clk_cnt变量加一,当达到499999后,就进入显示进程做下一步的赋值操作以显示相应接续的状态。为了达到四种显示模式循环切换的目的,可以将以上的所有赋值语句以顺序语句的形式置于进程中,这样在完成了一种显示方式后就会自动进入下一种设定好的显示模式,如此反复循环。当需要程序复位时,只需按下rst键即可,程序不管走都那里,执行那条语句,只要确定复位键按下时,程序立刻返回到程序执行语句的第一步,程序接着进行新的循环点亮。

第二章 子模块

系统工作流程如下图所示,在没有外界输入控制时,中央控制器将反复循环输入预先设定的编码,因此8个数码灯将在四种显示模式中循环显示。若复位端被置0,则系统被重置,无论当前处于什么状态,都重新从最开始的状态开始重新执行。

2.1 分频器

输入一个CLK信号,通过分频器模块分别输送到显示模式模块和显示LED模块 生成分频器程序:

module FPQ(rst,clk,sel,fp);input clk,rst;input [1:0]sel;output fp;reg[1:0]temp;reg fp;always@(posedge clk or negedge rst)if(!rst)begin temp<=0;fp<=0;图1 分频器模块 end else case(sel)2'b00: if(temp==2)begin fp<=1;temp<=0;end Else begin temp<=temp+1;fp<=0;end 2'b01: if(temp==3)begin fp<=1;temp<=0;end Else begin temp<=temp+1;fp<=0;end 2'b10: if(temp==1)begin fp<=1;temp<=0;end Else begin temp<=temp+1;fp<=0;end 2'b11:fp<=clk;endcase endmodule 2.2 显示模式模块

在实验箱上显示彩灯运行的模式,分别有1-4种模式生成数码管显示程序:

module moshi(state,led,rst,clk,);input [1:0] state;input rst,clk;output[7:0] led;reg [7:0]led;reg [2:0]temp;always@(posedge clk or negedge rst)if(!rst)temp<=0;else if(temp==3'b111)temp<=3'b000;else temp<=temp+1;always@(posedge clk)case(state)2'b00: begin case(temp)3'b000:led<=8'b10000000;3'b001:led<=8'b01000000;3'b010:led<=8'b00100000;3'b011:led<=8'b00010000;3'b100:led<=8'b00001000;3'b101:led<=8'b00000100;3'b110:led<=8'b00000010;3'b111:led<=8'b00000001;

图2 显示模式模块 endcase end 2'b01: begin case(temp)3'b000:led<=8'b00000001;3'b001:led<=8'b00000010;3'b010:led<=8'b00000100;3'b011:led<=8'b00001000;3'b100:led<=8'b00010000;3'b101:led<=8'b00100000;3'b110:led<=8'b01000000;3'b111:led<=8'b10000000;endcase end 2'b10: begin case(temp)3'b000:led<=8'b10000001;3'b001:led<=8'b01000010;3'b010:led<=8'b00100100;3'b011:led<=8'b00011000;3'b100:led<=8'b10000001;3'b101:led<=8'b01000010;3'b110:led<=8'b00100100;3'b111:led<=8'b00011000;endcase end 2'b11: begin case(temp)3'b000:led<=8'b00011000;3'b001:led<=8'b00100100;3'b010:led<=8'b01000010;3'b011:led<=8'b10000001;3'b100:led<=8'b00011000;3'b101:led<=8'b00100100;3'b110:led<=8'b01000010;3'b111:led<=8'b10000001;endcase end endcase endmodule 2.3 显示LED灯模块

通过8个LED灯显示4种显示模式:1模式,从左到右逐个点亮LED;2模式,从右到左逐个点亮LED;3模式,从两边到中间逐个点亮LED;4模式,从中见到两边逐个点亮LED。生成LED灯模块程序:

module SEG7(ms,clk,rst,seg7);input clk,rst;input [1:0]ms;output [6:0]seg7;reg[6:0]seg7;always@(posedge clk or negedge rst)if(!rst)seg7<=7'b0111111;else case(ms)2'b00:seg7<=7'b0000110;2'b01:seg7<=7'b1011011;2'b10:seg7<=7'b1001111;2'b11:seg7<=7'b1100110;endcase endmodule

图3 显示LED灯模块

第三章 调试及结果

3.1顶层原理图

原理图如下:

图4原理图

根据引脚锁定,完成实验箱硬件电路部分的线路连接。

再次编译,设定好编程下载方式后,将导线与相应数码管及开关谅解好就可以进行硬件下载测试了。最后,将程序下载入芯片后,观察硬件运行结果,即数码灯显示情况。经测试,所编写的程序完全达到了课程设计的要求,并得要了相应的结果。

第一种显示是从左向右逐个点亮LED。第二种显示:从右向左逐个点亮LED。第三种显示:从两边向中间逐个点亮LED。第四种显示:从中间到两边逐个点亮LED。在每个显示模式之间都有一次8位led全亮,接着全灭的显示过程,四种显示模式通过手动切换,并带有一位复位键控制系统的运行停止。当rst按键按下时,led停止显示,保持按下前的状态,如过不按rst,八位led灯四种模式通过手动控制模式显示。

第四章 心得体会

在这为期近一周的EDA课程设计过程中,自己受益匪浅,不仅对书本知识有了更全面更深刻的理解,还掌握了QuartusⅡ这款软件。在以后的工作有增加了一门新技能。在整个课设过程中遇到了很多的困难,引脚的设定,顶层文件的建立,画图中连线的区分,都是小细节,但都必须注意,否则就会影响整个设计的实验的过程使我明白了,要想避免实验中走弯路,首先程序要逻辑清晰,简洁明了,避免不必要的嵌套与条用,其次要适当地给程序加上注解文字,提高可读性,以方便之后的程序出错时进行查找,最后充分利用仿真软件提供的各项编译工具与报错消息,按图索骥,有方向的完成程序调试。网上搜集的一些资料也给予了我很大的帮助。

在这短短几天的课设中,加深了我对EDA的理解,认识。对QuartusⅡ软件的使用更加得心应手,在以后的学习和工作中又多了一门技能。

书本上的知识学会知识了解,必须在实践中才能深入的掌握所学的知识,要不就是纸上谈兵,不论说的多么华丽,只有在实践中才能体现知识的价值,也才能考研一个人的真正能力。

这次EDA课设对我受益匪浅,谢谢在设计中帮助过我的老师和同学,团结就是力量。

第三篇:EDA课程设计

考试序号:28

自动打铃系统设计说明书

学 生 姓 名:周文江

号:14112502521

专 业 班 级:1102

报告提交日期:2013.11.26

湖 南 理 工 学 院 物 电 学 院

目录

一、题目及要求简介……………3 1.设计题目…………………3 2.总体要求简介……………3

二、设计方案说明……………3

三、系统采用器件以及模块说明………3 1.系统框图…………4 2.选择的FPGA芯片及配置………4 3.系统端口和模块说明…………5

四、各部分仿真结果………5

五、调试及总结………6

六、参考文献……7

七、附录………7

一、题目及要求简介

1、设计题目

设计一个多功能自动打铃系统

2、总体要求简介

① 基本计时和显示功能(24小时制显示),包括:

1.24小时制显示 2.动态扫描显示; 3.显示格式:88-88-88 ② 能设置当前时间(含时、分)③ 能实现基本打铃功能,规定:

06:00起床铃,打铃5s

二、设计方案说明

本次设计主要采用Verilog HDL硬件描述性语言、分模块法设计的自动打铃系统。由于这次用的开发板提供的是50M晶振。首先要对时钟进行分频,当计时到2FA_F07F时完成1s分频,通过计时到60s产生分钟进位信号,再通过60分钟产生时钟进位信号。最后通过6个寄存器对时分秒进行锁存最终输出到8个数码管上完成显示。当显示时钟和默认闹钟时钟相等时,驱动打铃模块。通过key_mode,key_turn,key_change查看闹钟,时钟显示,调整时钟。

三、系统采用器件以及模块说明

1.系统框图如下:

:下如图框统系

2.选择的FPGA芯片及配置:本次系统设计采用的FPGA芯片是Alter公司生产的Cyclone II EP2C8Q208C8。该芯片是208个管脚,138个IO,并且具有两个内部PLL,而且内嵌乘法器,8K的逻辑门,资源相当丰富。完成这次自动打铃系统的设计总共消耗250个LE单元,22个IO口,131个寄存器。经过综合后,本系统最高能实现145M的运行速度。通过Quartus II 软件观察到内部的RTL图如下

3.系统端口和模块说明

(1)分频部分

分频器的作用是对50Mhz的系统时钟信号进行分频,得到频率为1hz的信号,即为1S的计时信号。

(2)按键部分

按键key_mode--0为显示计时,1为闹钟显示,2为调整时间。按键key_turn—0为调整小时,1为调整分钟。按键key_change—每按一次加1(3)计时部分

通过sec_L,sec_H,min_L,min_H,hour_L,hour_H 6个寄存器对时分秒进行锁存然后送入数码管显示

(4)闹钟模块

当设定的闹钟时间和数码管上显示的时间相等时驱动闹钟,完成打铃,持续时间5s。

(5)数码管显示模块

显示模块是由8个位选8个段选构成的显示模块,利用人眼的余晖效果完成动态扫描,显示时间。

四、各部分仿真结果

测试文件如下:

module clock_tb;reg sysclk,rst_b;reg key_mode,key_turn,key_change;wire buzzer;

wire [7:0] led_sel,led_data;clock I_clock(.sysclk(sysclk),.rst_b(rst_b),.key_mode(key_mode),.key_change(key_change),.key_turn(key_turn),.buzzer(buzzer),.led_sel(led_sel),.led_data(led_data));initial begin sysclk = 1'b1;rst_b = 1'b0;//复位信号

#30 rst_b = 1'b1;end always #10 sysclk = ~sysclk;//输入的系统时钟,20ns的周期 endmodule

五、调试及总结

本次课程设计总共花费了四天左右的时间,设计了自动打铃系统。通过这次的设计更加熟悉了对EDA技术的了解和认识,在中也发现许多不足的地方。使用了自顶而下的设计方法,使得设计更加的简单和明了。在调试过程中,有些代码的设计不规范性,导致时序相当缓慢,甚至编译综合都会报错。在不断的修改下,发现时序电路和组合逻辑最好分开写,这样便于查错,和修改代码。毕竟Verilog HDL语言不同于C语言,不能以软件的思想来设计,而是要利用电路的思想来编程,这样可以更好的节省资源,使得时序也比较的简单明了。在以后的学习及程序设计当中,我们一定要倍加小心,在程序出现不正常运行的情况下要耐心调试,尽量做到精益求精。

最后通过这次EDA方面的课程设计,提高了我们对EDA领域及通信电路设计领域的认识,有利于培养我们在通信电路EDA方面的设计能力。有利于锻炼我们独立分析问题和解决问题的能力。

六、文献参考

[1].王金明、左自强 编,《EDA技术与Verilog设计》科学出版社

2008.8 [2].杜慧敏、李宥谋、赵全良 编,《基于Verilog的FPGA设计基础》 西安电子科技大学出版社 2006.2 [3].韩彬 编,《从零开始走进FPGA世界》杭州无线电爱好者协会出版社 2011.8.20

七、附录(实物图及源码)

module clock(//Input

sysclk,rst_b,key_mode,key_change,key_turn,//Output

buzzer,led_sel,led_data);

input sysclk,rst_b;//sysclk--global system clock,rst_b--global reset signal input key_mode;//mode choose.0--Timing function.1--Alarm clock function.2--adjust function input key_turn;//choose adjust minute or hour input key_change;//count add 1 output buzzer;//device buzzer output [7:0] led_sel;//led tube bit choose

output [7:0] led_data;//led_tube 8 bit data choose

parameter init_hour = 8'h12;parameter init_min = 8'h59;parameter init_sec = 8'h50;//initial time :12:59:50 parameter init_alarm_hour = 8'h06;parameter init_alarm_min = 8'h30;//initial alarm time : 06:30:0 parameter Count_1s = 28'h2FA_F07F;//count time 1s;

reg [7:0] sec;reg [7:0] min;reg [7:0] hour;reg [3:0] min_L;//minute low 4 bit reg [3:0] min_H;//minute high 4 bit reg [3:0] hour_L;//hour low 4 bit reg [3:0] hour_H;//hour high 4 bit reg [23:0] key_time;//press key away shake reg key_mode_n;//press key_mode next state reg key_change_n;//press key_change next state reg key_turn_n;//press key_turn next state wire key_mode_press;//sure Button press key_mode wire key_turn_press;//sure button press key_turn wire key_change_press;//sure button press key_change

always @(posedge sysclk)key_mode_n <= key_mode;assign key_mode_press =(!key_mode)&&(key_mode_n);always @(posedge sysclk)key_turn_n <= key_turn;assign key_turn_press =(!key_turn)&&(key_turn_n);always @(posedge sysclk)key_change_n <= key_change;assign key_change_press =(!key_change)&&(key_change_n);

always @(posedge sysclk or negedge rst_b)begin if(!rst_b)key_time <= 24'h0;else if(key_time!= 24'h0)

key_time <= key_time + 24'h1;else if((key_time == 24'h0)&&(key_mode_press || key_change_press || key_turn_press))key_time <= key_time + 24'h1;

end

reg [1:0] mode_num;//key mode..0--Timing function.1--Alarm clock function.2--adjust function always @(posedge sysclk or negedge rst_b)begin if(!rst_b)mode_num <= 2'b00;else if(mode_num == 2'h3)mode_num <= 2'h0;else if(key_mode_press &&(key_time == 24'h0))

mode_num <= mode_num + 2'h1;end

always @(*)begin if(mode_num == 2'h1)begin

min = init_alarm_min;hour = init_alarm_hour;end else begin

min = {min_H,min_L};hour = {hour_H,hour_L};end end

reg fm;//choose turn hour or minute always @(posedge sysclk or negedge rst_b)begin if(!rst_b)fm <= 1'b0;else if(key_turn_press &&(mode_num == 2'h2)&&(key_time == 24'h0))

fm <= ~fm;end

reg [27:0] time_cnt;///count time reg [27:0] time_cnt_n;//count time next state always @(posedge sysclk or negedge rst_b)begin if(!rst_b)time_cnt <= 28'h0;else time_cnt <= time_cnt_n;end

always @(*)begin if(time_cnt == Count_1s)time_cnt_n <= 28'h0;else if(mode_num!= 2'h0)time_cnt_n <= time_cnt;else time_cnt_n <= time_cnt + 28'h1;end

reg [3:0] sec_L;//second low 4 bit reg [3:0] sec_H;//second high 4 bit wire sec_cb;//second carry bit signal assign sec_cb =(sec_L == 4'h9)&&(sec_H == 4'h5);always @(posedge sysclk or negedge rst_b)begin if(!rst_b)begin

sec_L <= init_sec[3:0];sec_H <= init_sec[7:4];end else if((sec_L == 4'h9)&&(sec_H!= 4'h5)&&(time_cnt == Count_1s))begin

sec_L <= 4'h0;sec_H <= sec_H + 4'h1;end else if(sec_cb &&(time_cnt == Count_1s))begin

sec_L <= 4'h0;sec_H <= 4'h0;end else if(time_cnt == Count_1s)

sec_L <= sec_L + 4'h1;end

wire min_cb;//minute carry bit signal assign min_cb =(min_L == 4'h9)&&(min_H == 4'h5);always @(posedge sysclk or negedge rst_b)begin if(!rst_b)begin

min_L <= init_min[3:0];min_H <= init_min[7:4];end else if((sec_cb)&&(min_L!=4'h9)&&(time_cnt == Count_1s))

min_L <= min_L + 4'h1;else if((sec_cb)&&(min_L == 4'h9)&&(min_H!= 4'h5)&&(time_cnt == Count_1s))begin

min_L <= 4'h0;min_H <= min_H + 4'h1;end else if((sec_cb)&&(min_cb)&&(time_cnt == Count_1s))begin

min_L <= 4'h0;min_H <= 4'h0;end else if((fm)&&(mode_num == 2'h2)&&(key_change_press)&&(key_time == 24'h0)&&(min_L!= 4'h9))

min_L = min_L + 4'h1;else if((fm)&&(mode_num == 2'h2)&&(key_change_press)&&(key_time ==

24'h0)&&(min_L == 4'h9)&&(min_H!=4'h5))begin

min_L = 4'h0;min_H = min_H + 4'h1;end else if((fm)&&(mode_num == 2'h2)&&(key_change_press)&&(key_time == 24'h0)&&(min_L == 4'h9)&&(min_H ==4'h5))begin

min_L = 4'h0;min_H = 4'h0;end end

always @(posedge sysclk or negedge rst_b)begin if(!rst_b)begin

hour_L <= init_hour[3:0];hour_H <= init_hour[7:4];end else if((sec_cb)&&(min_cb)&&(hour_L!= 4'h9)&&(hour_H!= 4'h2)&&(time_cnt == Count_1s))

hour_L <= hour_L + 4'h1;else if((sec_cb)&&(min_cb)&&(hour_L!= 4'h3)&&(hour_H == 4'h2)&&(time_cnt == Count_1s))

hour_L <= hour_L + 4'h1;else if((sec_cb)&&(min_cb)&&(hour_L == 4'h9)&&(hour_H!= 4'h2)&&(time_cnt == Count_1s))begin

hour_L <= 4'h0;hour_H <= hour_H + 4'h1;end else if((sec_cb)&&(min_cb)&&(hour_L == 4'h3)&&(hour_H == 4'h2)&&(time_cnt == Count_1s))begin

hour_L <= 4'h0;hour_H <= 4'h0;end else if((!fm)&&(mode_num == 2'h2)&&(key_change_press)&&(key_time == 24'h0)&&(hour_L!= 4'h9)&&(hour_H!=4'h2))

hour_L <= hour_L + 4'h1;else if((!fm)&&(mode_num == 2'h2)&&(key_change_press)&&(key_time == 24'h0)&&(hour_L!= 4'h3)&&(hour_H ==4'h2))

hour_L <= hour_L + 4'h1;else if((!fm)&&(mode_num == 2'h2)&&(key_change_press)&&(key_time == 24'h0)&&(hour_L == 4'h9)&&(hour_H!=4'h2))begin

hour_L <= 4'h0;hour_H <= hour_H + 4'h1;end else if((!fm)&&(mode_num == 2'h2)&&(key_change_press)&&(key_time ==

24'h0)&&(hour_L == 4'h3)&&(hour_H ==4'h2))begin

hour_L <= 4'h0;hour_H <= 4'h0;end end

wire buzzer_en;assign buzzer_en =(init_alarm_min == {min_H,min_L})&&(init_alarm_hour == {hour_H,hour_L});

led_tube I_led_tube(.sysclk(sysclk),.rst_b(rst_b),.scan_time(24'h1F090),.data0({1'h1,sec_L}),.data1({1'h1,sec_H}),.data2({1'h1,4'hA}),.data3({1'h1,min[3:0]}),.data4({1'h1,min[7:4]}),.data5({1'h1,4'hA}),.data6({1'h1,hour[3:0]}),.data7({1'h1,hour[7:4]}),.led_data(led_data),.led_sel(led_sel));buzzer I_buzzer(.sysclk(sysclk),.rst_b(rst_b),.buzzer_en(buzzer_en),.buzzer(buzzer));endmodule

第四篇:EDA 课程设计

《电子系统设计自动化》课程设计报告

学 院: 机电工程学院

题 目: 数字时钟电路设计 课 程: 《电子系统设计自动化》课程设计 专业班级: 电信10级2 班 学生姓名: 刘星 秦玉杰 王艳艳 学 号: 1004101035 1004101036 1004101038

完成日期:2013年 12 月 27 日

摘要:

EDA(Electronic Design Automation)电子设计自动化,就是以大规模可编程器件为设计载体,以硬件描述语言为系统逻辑描述的主要表达方式,通过相关的软件,自动完成用软件方式设计的电子系统到硬件系统,最终形成集成电子系统或专用集成芯片。本次实习利用QuartusII为设计软件、VHDL为硬件描述语言,结合所学的数字电路的知识设计一个24时多功能数字钟,具有正常时、分、秒计时,动态显示,清零、快速校时校分、整点报时、花样显示等功能。利用硬件描述语言VHDL对设计系统的各个子模块进行逻辑描述,采用模块化的设计思想完成顶层模块的设计,通过软件编译、逻辑化简、逻辑分割、逻辑综合优化、逻辑布线、逻辑仿真,最终将设计的软件系统下载设计实验系统,对设计的系统进行硬件测试。

一、课程设计基本要求和任务

《EDA课程设计》是继《模拟电子技术基础》、《数字电子技术基础》课程后,电信专业学生在电子技术实验技能方面综合性质的实验训练课程,是电子技术基础的一个部分。1.1 目的和任务

(1)通过课程设计使学生能熟练掌握一种EDA软件(QUARTUSII)的使用方法,能熟练进行设计输入、编译、管脚分配、下载等过程,为以后进行工程实际问题的研究打下设计基础。

(2)通过课程设计使学生能利用EDA软件(QUARTUSII)进行至少一 个电子技术综合问题的设计,设计输入可采用图形输入法或VHDL硬件描述语言输入法。(3)通过课程设计使学生初步具有分析、寻找和排除电子电路中常见 故障的能力。

(4)通过课程设计使学生能独立写出严谨的、有理论根据的、实事求是的、文理通顺的字迹端正的课程设计报告。1.2 功能要求:

(1)具有时、分、秒计数显示功能,以24小时循环计时。(2)时钟计数显示时有LED灯的花样显示。(3)具有调节小时、分钟、秒及清零的功能。(4)具有整点报时功能。

1.3 总体方框图:

本系统可以由秒计数器、分钟计数器、小时计数器、整点报时、分的调整以及小时的调整和一个顶层文件构成。采用自顶向下的设计方法,子模块利用VHDL语言设计,顶层文件用原理图的设计方法。显示:小时采用24进制,而分钟均是采用6进制和10进制的组合。1.4 设计原理:

数字钟电路设计要求所设计电路就有以下功能:时、分、秒计时显示,清零,时、分调节,整点报时及花样显示。分、秒计时原理相似,可以采用60进制BCD码计数器进计时;小时采用24进制BCD码进行计时;在设计时采用试验电路箱上的模式7电路,不需要进行译码电路的设计;所设计电路具有驱动扬声器和花样显示的LED灯信号产生。试验箱模式7的电路如图一所示:图一模式七实验电路图

1.5 性能指标及功能设计:

(1)时钟计数:完成时、分、秒的正确计时并且显示所计的数字;对秒、分——60进制计数,即从0到59循环计数,时钟——24进制计数,即从0到23循环计数,并且在数码管上显示数值。

2.2 模块划分自顶向下分解

2.3 模块描述

时钟计时模块完成时、分、秒计数,及清零、调节时和分钟的功能。时、分、秒计数的原理相同,均为BCD码输出的计数器,其中分和秒均为六十进制BCD码计数器,小时为二十四进制BCD码计数器。设计一个具有异步清零和设置输出功能的六十进制BCD码计数器,再设计一个具有异步清零和设置输出功能的二十四进制计数器,然后将它们通过一定的组合构成时钟计时模块。各个输入/输出端口的作用为:

(1)clk为计时时钟信号,reset为异步清零信号;

(2)sethour为小时设置信号,setmin为分钟设置信号;(3)daout[5„0]为小时的BCD码输出, daout[6...0]为秒和分钟的BCD码输出,enmin和enhour为使能输出信号。

(4)在时钟整点的时候产生扬声器驱动信号和花样显示信号。由时钟计时模块中分钟的进行信号进行控制。当contr_en为高电平时,将输入信号clk送到输出端speak用于驱动扬声器,同时在clk的控制下,输出端lamp[2..0]进行循环移位,从而控制LED灯进行花样显示。输出控制模块有扬声器控制器和花样显示控制器两个子模块组成 2.4 顶层电路图

顶层文件是由四个模块组成,分别是时、分、秒计数器和报警的VHDL语言封装而成。经过锁定引脚再重新编译获得如下顶层原理电路图:

三、方案实现

3.1 各模块仿真及描述

(1)秒计数器模块仿真图:将标准秒信号送入”秒计数器”,秒计数器采用60进制计数器,每累计60秒发出一个分脉冲信号,该信号将作为分计数器的时钟脉冲,daout代表秒输出。

(2)分计数器电路仿真图:也采用60进制计数器,每累计60分钟,发出一个时脉冲信号,该信号将被送到时计数器,daout端口代表分钟输出

(3)小时计数器电路仿真图:时计数器采用12进制计时器,可实现对24小时累 计。每累计12小时,发出一个脉冲信号。

引脚配置完成后再进行一次全程编译,无误则可以下载到试验箱上进行硬件测试。硬件验证的方法如下:选择实验模式7;时钟脉冲clk与clock0(1024Hz)信号相连;键8和键5均为低电平,时钟正常计时,数码管1和2显示秒,数码管4和5显示分钟,数码管7和8显示小时;键8为高电平时,时钟清零;键5为高电平时,按下键7和键4进行调时调分操作;当时钟为整点的时候,三个发光二极管进行循环移位操作,同时扬声器发声。

五、心得体会

经过源程序的编辑、逻辑综合、逻辑适配、编程下载成功后,在EDA实验开发系统进行硬件验证时却发现实验结果不正确,扬声器无法发声。经检查,自己设计的管脚文件有错。将管脚锁定文件修改后,重新进行逻辑适配、编程下载成功后,实验结果仍然不正确,百思不得其解。无奈之下,决定重头开始排查每一步的细节,确定各个模块的功能完全实现并且顶层模块功能正确。修改之后,重新进行逻辑适配、编程下载验证,实验结果完全正确。

这次EDA课程设计历时两个星期,在整整两个星期的日子里,不仅巩固了以前所学过的知识,而且学到了很多书本上学不到的知识,同时锻炼了自己的能力,使自己对以后的路有了更加清楚的认识,对未来有了更多的信心。这次课程设计,进一步加深了我对EDA的了解,使我对QuartusII的基本操作有所了解,使我对应用软件的方法设计硬件系统有了更加浓厚的兴趣。通过这次课程设计,我懂得了理论与实际相结合的重要性,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合,从实践中得出结论,才能真正提高自己的实际动手能力和独立思考的能力。在设计的过程中,我遇到许多问题,毕竟是第一次应用VHDL进行硬件电路系统的设计,许多EDA的知识还没有充分的掌握,遇到困难也是在所难免的,同时发现了自己的不足之处:学习知识表面化,没有深入了解它们的原理。总的来说,这次设计的数字时钟电路还是比较成功的,尽管在设计中遇到了很多问题,最后在老师的辛勤指导、同学的帮助和自己不断思考下,终于迎刃而解,有点小小的成就感,觉得平时所学的知识有了实用的价值,达到了理论与实际相结合的目的。最后,对给过我帮助的所有同学和指导老师再次表示忠心的感谢!

参考文献

[1] 崔健明.《电子电工EDA仿真技术》 高等教育出版社 2000年 [2] 卢杰,赖毅.《VHDL与数字电路设计》 科学出版社 2001年 [3] 潘松,黄继业.《EDA技术实用教程》 科学出版社 2002年 [4] 朱运利.《EDA技术应用》 电子工业出版社 2004年 [5] 张明.《VHDL实用教程》 电子科技大学出版社 1999年

[6] 彭介华.《电子技术课程设计与指导》 高等教育出版 1997年

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY minute IS PORT(clk,clk1,reset,sethour:IN STD_LOGIC;enhour:OUT STD_LOGIC;daout:OUT STD_LOGIC_VECTOR(6 DOWNTO 0));END ENTITY minute;ARCHITECTURE fun OF minute IS SIGNAL count :STD_LOGIC_VECTOR(6 DOWNTO 0);SIGNAL enhour_1, enhour_2: STD_LOGIC;--enmin_1为59分时的进位信号 BEGIN--enmin_2由clk调制后的手动调时脉冲信号串 daout<=count;enhour_2<=(sethour and clk1);--sethour为手动调时控制信号,高电平有效 enhour<=(enhour_1 or enhour_2);PROCESS(clk,reset,sethour)BEGIN IF(reset='0')THEN--若reset为0,则异步清零 count<=“0000000”;ELSIF(clk'event and clk='1')THEN--否则,若clk上升沿到 IF(count(3 DOWNTO 0)=“1001”)THEN--若个位计时恰好到“1001”即9 IF(count <16#60#)THEN--又若count小于16#60#,即60 IF(count=“1011001”)THEN--又若已到59D enhour_1<='1';--则置进位为1 count<=“0000000”;--count复0 ELSE count<=count+7;--若count未到59D,则加7,即作“加6校正” END IF;--使前面的16#60#的个位转变为8421BCD的容量 ELSE count<=“0000000”;--count复0(有此句,则对无效状态电路可自启动)END IF;--END IF(count<16#60#)ELSIF(count <16#60#)THEN count<=count+1;--若count<16#60#则count加1 enhour_1<='0' after 100 ns;--没有发生进位 ELSE count<=“0000000”;--否则,若count不小于16#60# count复0 END IF;--END IF(count(3 DOWNTO 0)=“1001”)END IF;--END IF(reset='0')END process;END fun;

3、时计数器模块的VHDL语言:

LIBRARY IEEE;use IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;

IF(clk'event and clk='1')THEN IF(dain=“0000000”)THEN speak<=count1(1);IF(count1>=“10”)THEN count1<=“00”;--count1为三进制加法计数器 ELSE count1<=count1+1;END IF;END IF;END IF;END PROCESS speaker;lamper:PROCESS(clk)BEGIN IF(rising_edge(clk))THEN IF(count<=“10”)THEN IF(count=“00”)THEN lamp<=“001”;--ELSIF(count=“01”)THEN lamp<=“010”;ELSIF(count=“10”)THEN lamp<=“100”;END IF;count<=count+1;ELSE count<=“00”;END IF;END IF;END PROCESS lamper;END fun;

循环点亮三只灯

第五篇:《EDA课程设计》

《EDA课程设计》

课程设计题目:

基于单片机的温湿度采集系统

名:

xxx

号:

xxxx

级:

xxxx

间:

2014.4.21~ 2013.5.5

点:

xxxxx

指 导

师:

xxxxx

目录

一、电路原理图..................................................................................2

二、电路PCB图(或实物图).........................................................2

三、电路效果图..................................................................................3

四、设计总结......................................................................................3 附录(单片机源代码)......................................................................4

一、电路原理图

二、电路PCB图(或实物图)

三、电路效果图

四、设计总结

EDA的实验还是挺有趣的,比较讲究动手能力,当然也不能忽略团体合作。总的来说本次实验还是成功了,虽然每个环节都遇到了困难。在生成原理图的过程中,就曾把导线画成了Placeline而不是Placewire,还有芯片的引脚应该用NET符号而不是用文本符号,所以这些错误都导致我花在原理图上的时间多了点。而在生成PCB电路图的过程中遇到的困难则是自动布线之后,还有电源的几个脚需要手动布线,所以各个元件之间的位置要布置好,以免发生短路。腐蚀的时候,由于腐蚀的时间太长了,有些碳都化开了,导致里面的铜被腐蚀掉了,所以又为我的工作增加了困难。在焊接的时候,要注意元件的正负极,还要检测锡是否都与那些铜连接上了。最终把LED和 DHT11的程序烧进去就行了。

本次实验我还是能多多少少学到点什么的,总的来说还是希望能有多一点这样的实习。

附录(单片机源代码)

//51单片机控制温湿度传感器DHT11

LCD1602上显示当前机最小系统。//LCD 读进去 写出来 #include #include typedef unsigned char BYTE;typedef unsigned int WORD;#define uint unsigned int

//定义无符号整型 #define uchar unsigned char typedef bit BOOL;

//此声明一个布尔型变量即真或假// uchar data_byte,num,i;uchar RH,RL,TH,TL,flag;uchar shuzi[4];unsigned char code num1[11]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x7f};

sbit dht=P2^4;

//dht11data端接单片机的P2^4口//

//***************

数************************************* void delay(uchar ms)//延时模块//延时1毫秒

{

}

void delay1()

//一个for循环大概需要8个多机器周期

//一个机器周期为1us晶振为12MHz也就是说本函数延时8us{

} uchar i;

while(ms--)

for(i=0;i<110;i++);

uchar i;

for(i=0;i<1;i++);void display(void){ // if(flag==0)// {

P2=0x07;

P0=num1[shuzi[2]];delay(1);// }

// if(flag==1)// {

P2=0x0b;

P0=num1[shuzi[3]];delay(1);// } // if(flag==2)// {

P2=0x0d;

P0=num1[shuzi[0]];delay(1);// } // if(flag==3)// {

P2=0x0e;P0=num1[shuzi[1]];delay(1);// } }

//**************************dht11

块*************************************// void start()//开始信号

{

dht=1;

delay1();

//主机发出8us高电平,开始信号开始发出 dht=0;

delay(25);

// 主机把总线拉低必须大于18ms

DHT11能检测到起始信号

dht=1;

//delay1();

//以下三个延时函数差不多为24usdelay1();delay1();

20-40us

}

uchar receive_byte()

//接收一个字节 8位// {

uchar i,temp;

for(i=0;i<8;i++)//接收8bit的数据

{

while(!dht);

//等待40-50us的低电平开始信号结束

delay1();

//开始信号结束之后延时26us-28us

delay1();delay1();

temp=0;

//时间为26us-28usif(dht==1)

temp=1;

//如果26us-28us

'0'

数据为'1'

while(dht);

//

'0'为26us-28us

'1'为70us

} data_byte<<=1;

//data_byte|=temp;

//接收每一位的数据,相或保存数据

return data_byte;}

void receive()//接收数据// {

uchar T_H,T_L,R_H,R_L,check,num_check,i;start();

//开始信号//调用开始信号子函数

dht=1;

//主机设为输入判断从机DHT11响应信号

if(!dht)

//判断从机是否有低电平响应信号// {

while(!dht);//判断从机发出 40us 的低电平响应信号是否结束//

while(dht);

//判断从机发出 40us 的高电平是否结束 如结束则从机进入发送数据状态,主机进入数据接收状态

//两个while语句加起来就是DHT11的响应信号

R_H=receive_byte();//湿度高位

调用接受一个字节的子函

R_L=receive_byte();//湿度低位

T_H=receive_byte();//温度高位

T_L=receive_byte();//温度低位

check=receive_byte();//校验位

//结束信号

dht=0;

//当最后一bit数据接完毕后主机拉低电平50us// for(i=0;i<7;i++)//差不多8us的延时

delay1();

dht=1;

//总线由上拉电阻拉高进入空闲状态

num_check=R_H+R_L+T_H+T_L;

if(num_check==check)//判断读到的四个数据之和是否与校验位相同

{

RH=R_H;

RL=R_L;

TH=T_H;

TL=T_L;

check=num_check;}

shuzi[0]=RH/10;shuzi[1]=RH%10;shuzi[2]=TH/10;shuzi[3]=TH%10;

} }

void main()//主函数模块// { while(1)

//进入死循环

{

receive();

//接收数据

display();

} }

下载跑马灯设计EDA课程设计word格式文档
下载跑马灯设计EDA课程设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    微机原理课程设计跑马灯

    微机原理课程设计走马灯 运用8086最小模式和8255等芯片设计出一个跑马灯电路,要求至少有5中花式,在ISIS 7 Professional软件中运行。 设计电路图如图所示: 源代码 DATA SEGMENT......

    EDA课程设计流水灯设计

    EDA课程实践报告 基于verilog的流水灯设计 学院:物理与电气工程学院 专业:11级电子信息工程 姓名:蒋美菊 学号:111102088 基于verilog的流水灯设计 一、摘要 随着EDA技术发展......

    PLC课程设计霓虹灯跑马灯要点

    烟 台 南 山 学 院 PLC课程设计题目 霓虹灯广告屏装置PLC设计与调试 姓 名: 李海港 所在学院: 烟台南山学院 所学专业: 电气工程及其自动化 班 级: 电气工程1102班 学 号......

    eda课程设计5篇

    数字钟 一、 设计要求 设计一个数字钟,具体要求如下: 1、 具有时、分、秒计数显示功能,以24小时循环计时。 2、 具有清零、校时、校分功能。 3、 具有整点蜂鸣器报时以及LED花......

    EDA数字钟课程设计

    课 程 设 计 报 告 设计题目:用VHDL语言实现数字钟的设计 班 级:电子1002班 学 号:20102625 姓 名:于晓 指导教师:李世平、李宁 设计时间:2012年12月摘要 数字钟是一种用数字电路......

    eda课程设计心得体会

    eda课程设计心得体会 写心得体会是困扰很多人的问题,心中有很多想法,想说却不知道怎么写下来。下面本栏目搜集了eda课程设计心得体会,欢迎查看,希望帮助到大家。 eda课程设计心......

    EDA课程设计时钟

    EDA课程设计姓名:学号:班级:自动化设计题目多功能数字钟电路设计设计任务及要求多功能数字钟应该具有的功能有:显示时—分—秒、小时和分钟可调等基本功能。整个钟表的工作应该......

    《EDA课程设计》教学大纲

    设计四 拔河游戏机 1、 设计一个能进行拔河游戏的电路。 2、 电路使用15个(或9个)发光二极管,开机后只有中间一个发亮,此即拔河的中心点。 3、 游戏双方各持一个按钮,迅速地、......