第一篇:半刚性基层材料的强度形成和缩裂特性
最新【精品】范文 参考文献
专业论文
半刚性基层材料的强度形成和缩裂特性
半刚性基层材料的强度形成和缩裂特性
摘要 :通过分析半刚性基层材料包括石灰稳定类材料、水泥稳定类材料、综合稳定类材料的强度形成和缩裂特性,充分认识沥青路面裂缝的产生原因,提出对裂缝的预防和处理措施。
关键词:半刚性基层材料 强度形成 缩裂特性
中图分类号: U416.223 文献标识码: A 文章编号:
近年来,我区的公路建设迅猛发展。由于独特的地理环境,新建的无论是一般公路、还是高速公路,90%以上都采用半刚性基层。这种结构形式具有较高的强度、承载力和使用性能,为实现“强基薄面”结构提供了可靠保证,使得其在全区公路路面建设中得以广泛应用。但与此同时,随着半刚性基层的大量采用,这种结构形式存在的难以克服的缺点也日益显现,导致路面使用质量和寿命达不到应有的水平。因此,充分认识半刚性基层材料的强度形成和缩裂特性,有针对性的进行研究和利用,对进一步改善路面实际使用效果具有非常重要的现实意义。
一、半刚性基层材料的强度形成
半刚性基层材料的强度由于稳定材料与土石材料在掺配、拌和、压实过程中发生了一系列的物理、化学反应而形成。
石灰稳定类材料的强度形成。其强度形成主要是石灰与细粒土的相互作用。土中掺人石灰,石灰与土发生强烈的相互作用,从而使土的工程性质发生变化。初期表现为土的结团、塑性降低、最佳合水量增大和最大密实度减小等;后期变化主要表观在结晶结构的形成,从而提高土的强度与稳定性。影响石灰土强度与稳定性的主要因素有:土质、石灰的质量与剂量、养生条件与龄期等。各种成因的亚砂土、亚粘土、粉土类土和粘士类土都可以用石灰来稳定。各种化学组成的石灰均可用于稳定土。但白云石石灰的稳定效果优于方解石石灰。石灰剂量是按消石灰占干土重的百分率计。石灰剂量较低时(小于
最新【精品】范文 参考文献
专业论文
3%-4%),石灰主要起稳定作用,使土的塑性、膨胀性、吸水量降低,具有一定的水稳定性。随着石灰剂量的增加,石灰土的强度和稳定性提高,但当剂量超过一定范围,过多的石灰在空隙中以自由灰存在,将导致石灰土的强度下降。石灰土的最佳剂量随土质的不同而异,土的分散度越高则最佳剂量越大。最佳石灰剂量也与养生龄期有关,在28d内,最佳石灰剂量随着龄期的增长而增大,28d后基本趋于稳定。石灰土的强度形成需要一定的温度和湿度。高温和适当的湿度对石灰强度的形成是有利的,这是因为湿度高可使反应过程加快,但湿度过大(湿砂养生)会影响新生物的胶凝结晶硬化,从而影响石灰土强度的形成。石灰土的强度随龄期的增长大体符合指数规律。
水泥稳定类材料的强度形成。其强度形成主要是水泥与细粒土相互作用。影响水泥稳定土强度与稳定性的主要因素有土质、水泥成份与剂量、水等。土的矿物成分对水泥稳定土的性质有重要影响,除有机质或硫酸盐含量高的土外,各种砂砾上、砂土、粉土和粘土均可用水泥稳定。要达到规定的强度,水泥剂量随粉粒和粘粒合量的增加而增高。实践证明,用水泥稳定级配良好的土,既可节约水泥,又能取得满意的稳定效果。水泥的成分和剂量对水泥稳定土的强度有重要影响。通常认为,各种类型的水泥都可用于稳定土。实践证明,对于同一种土,水泥矿物成分是决定水泥稳定土强度的主导因素。一般情况下,硅酸盐水泥的稳定效果好,而铝酸盐水泥则较差。当水泥的矿物成分相同时,水泥稳定土的强度随着水泥比表面和活性的增大而提高。水泥稳定土的强度随水泥剂量的增加而增加,但考虑到水泥稳定土的抗温缩与抗干缩以及经济性,应有一个合理的水泥用量范围。含水量对水泥稳定土的强度有重大影响。当混合料于合水量不足时,水泥就要与土争水,若土对水有较大的亲和力,就不能保证水泥完成水化和水解作用。水泥稳定土需要湿法养生,以满足水泥水化的需要。水泥剂量大、养生温度高时,其增长速率大。水泥稳定土的强度随龄期的增长而增长,二者之间大致呈指数关系。
综合稳定类材料的强度形成。综合稳定类材料是以石灰或水泥为主要结合剂、外掺少量活性物质或其他材料,以提高和改善土的技术性质。单纯用石灰稳定砂性土效果一般较差,而采用二灰综合稳定则
最新【精品】范文 参考文献
专业论文
效果显著提高。粉煤灰是一种火山灰物质,它含有活性的氧化硅和氧化铝,在石灰的碱性激发及相互作用下生成含水的硅铝酸钙。这些新生的胶凝物质晶体具有较强的胶结能力和稳定性。由于粉煤灰系空心球体,所以掺人粉煤灰后,石灰土的最佳含水量增大、最大干密度减少。尽管如此,其强度、刚度及稳定性均有不同程度提高,尤其是抗冻性有较显著的改善,而温度收缩系数比石灰土有所减少,这对抗裂有重要意义。粉煤灰是一种缓凝物质,由于表面能低,难于在水中溶解,导致二灰混合料体系中火山灰反应相当缓慢,这是二灰稳定类后期强度高,平期强度低的根本原因。为了改善水泥在土中的硬化条件,提高水泥稳定效果,常常在掺加水泥的同时掺加少量其他添加剂。石灰是水泥稳定土产最常用的添加剂之一。在水泥稳定之前,先往土中掺加少量的石灰,使之与土粒之间进行离子交换和化学反应,为水泥在土于的水解和硬化创造良好的条件,从而加速水泥的硬化过程,并可减少水泥用量。掺加石灰还可扩大水泥稳定土的适用范围,一些不适于单独用水泥稳定的土(如酸性粘土、重亚粘土等),若先用石灰处理,可加速水泥土结构物的形成。此外,由于石灰可吸收部分水分改变土的塑性性质,故用水泥稳定过湿土(比最佳合水量高4%-6%)时,先用石灰处理,能获得良好的稳定效果。
二、半刚性基层材料的缩裂特性
半刚性基层材料的缺点是抗变形能力低,在温度或湿度变化时易产生开裂,当沥青面层较薄时,易形成反向裂缝,进而严重影响路面的使用性能。了解各种半刚性基层材料的缩裂特性,有利于技术人员科学地进行路面处理,从而把裂缝减少到最低程度。
半刚性基层材料的收缩开裂及由此引起沥青路面的反射性裂缝轻重不同地存在。在国外,普遍采取对裂缝进行封缝,而在交通量繁重或者高速公路上,这种封缝工作十分困难,严重影响交通,也不安全。而在我国,目前根本就没有发现裂缝就进行沥青封缝的习惯,因而开裂得不到有效的处理。裂缝的存在导致两种后果,首先是裂缝中进水,导致沥青层和基层界面条件的变化,使基层、底基层、路基的水分状况恶化,承载能力迅速降低,表面产生水力冲刷,出现灰浆,并形成裂缝处唧浆、坑槽;其次是车轮从裂缝的一侧经过到达裂缝的最新【精品】范文 参考文献
专业论文
另一侧时,荷载变化不再连续,使路面裂缝两侧发生大的应力突变,会形成很大的上下剪切和表面受拉。
半刚性基层非常致密,它基本上是不透水或者渗水性很差的材料。水从各种途径进入路面并到达基层后,不能从基层迅速排走,只能沿沥青层和基层的界面扩散、积聚。水进入路面的途径,除了降雨、降雪、化雪的表面水外,还有多种来源,如冬季由于冰冻引起的水分积聚和春融期间产生的积水;超限超载车辆为了降温需要向轮毂不断喷水,以保持汽车的刹车性能,使路面常年处于潮湿状态;中央分隔带的绿化浇水、挖方路段的裂隙水、路面铺筑过程冲洗的水等等。可以说,水进入沥青路面是不可避免的,如果不能及时排走就将造成危害。界面上水的存在改变了界面连续的边界条件,使路面的受力状态变得十分不利,成为导致路面破坏的直接原因。
半刚性基层有很好的整体性,但是受水的影响敏感,在长期浸水条件下,板体结构会逐渐破坏,反映为路面弯沉,沥青路面开始出现破损,弯沉迅速增大,并导致结构性破损。现在许多高速公路竣工验收阶段的弯沉很小,以后逐步变大。许多路面在损坏初期开挖可见基层往往是完好的,弯沉并不大。这说明,除了少数确实是因为基层施工不好的原因外,大部分基层发生结构性损坏,是发生在沥青面层损坏之后。
半刚性基层很难跨年度施工,无论是直接暴露还是铺上一层让下面层过冬,都避免不了发生横向收缩裂缝,从而为沥青路面的横向裂缝埋下隐患。甚至在冬天就从缝中进水(融雪)、半刚性基层暴露的还可能冻疏,影响强度的形成。
用一句话来概括就是:开裂和进水且难以排走是半刚性基层沥青路面结构的致命缺点。
半刚性基层材料的收缩分为温缩与干缩两种。研究表明:若以最佳含水量状态下各种半刚性基层按温缩系数的大小排序是:石灰土>石灰砂砾>二灰>水泥砂砾>二友砂砾;按其干缩系数的大小排序为:石灰土>石灰砂砾>二灰>二灰砂砾>水泥砂砾。半刚性基层的收缩开裂,对于含土较多材料以干缩为主,对于含粗集料较多的材料以温缩为主。半刚性基层的干缩主要发生在竣工后初期阶段,当基层上铺筑沥
最新【精品】范文 参考文献
专业论文
青面层以后,基层的含水量一般变化不大,此时半刚性基层的收缩转化为以温缩为主。
半刚性基层材料的抗裂性能是以温缩抗裂系数与干缩抗裂系数来评价的。抗裂系数愈大,表明材料的抗裂性能愈强,在同样条件下,能承受较大的温度或湿度的变化而不裂。按半刚性材料的温缩抗裂系数的大小(均按最佳状态)排序为:二灰砂砾>二灰>石灰砂砾>水泥砂砾>石灰土。按干缩抗裂系数的太小排序为:二灰>二灰砂砾>水泥砂砾>石灰砂砾>石灰土。
半刚性基层材料的类型与配合比的选择,应根据当地的自然条件与基层所处的环境来确定。在条件可能时,应优先用二灰稳定类基层,二灰砂砾类集料含量约75%时,抗干缩与温缩能力均较强,可适用于不同地区,主要是解决早强不足的问题。水泥砂砾类,水泥含量约为5%时,具有较强的抗干缩能力,适用于温差不大的地区。石灰砂砾类,抗干缩和温缩能力却较差,宜采用水泥石灰综合稳定,以部分水泥代替部分石灰,提高其抗干缩能力,减轻缩裂。
从目前的实践看,早期修建的半刚性基层沥青路面,很多已进入路面大修,由于采用半刚性基层,目前的大修方案基本都采用“开膛破肚”法,然后对路基进行补强,再重铺路面结构层。这种方法费时费力费资金。因此,在做好半刚性基层路面管护,尽可能延长路面使用期限的同时,要不断更新路面基层设计理念。为了提高路面整体的抗变形能力,将原来的半刚性基层安排在柔性基层下做路面的底基层,以期综合利用柔性基层和半刚性基层的优点,克服柔性基层抗变形能力差和半刚性基层反射裂缝的缺点,能够有效地消减沥青路面的反射裂缝,减少水损害的发生,改善路面的长期使用性能和适应环境的能力。
------------最新【精品】范文
第二篇:半刚性基层沥青路面结构特性分析
半刚性基层沥青路面结构特性分析
王明远(郑州市市政工程总公司,郑州450007)
摘要:针对高速公路半刚性基层沥青路面的早期损坏,从路面结构层层间状态、路面抗裂、路面荷载特性、路面耐水性、路面养护特性等方面分析了半刚性基层沥青路面结构特点,提出防止路面早期损坏的措施.关键词:道路工程;半刚性基层沥青路面;路面养护;早期损坏 中图分类号:U416.01 文献标识码:A 我国的高速公路半刚性基层沥青路面是公路发展的历史性产物.长期以来人们普遍认为这种路面具有以下优点:①板体性强,承载能力和抗变形能力高;②抗冻性好,能有效治理季节性冰冻地区的翻浆;③可以充分利用地方性材料,造价低.然而与国外的高速公路沥青路面早期损害相比,我国的路面损坏出现得更早,而且出现的损坏现象与设计控制的损坏有所不同.因此,必须针对我国高速公路沥青路面结构,深层次地剖析高速公路半刚性基层沥青路面的特点.1路面结构层层间状态特性
现行公路沥青路面设计规范在进行半刚性基层沥青路面理论计算时,其中一个重要假定是层间接触条件为完全连续,即在设计结构厚度和验算沥青层底的拉应力时,假设路面各层之间的界面处于完全连续的状态.实际上沥青层与基层之间、沥青层各层之间、基层各层之间,都有可能是部分连续或者滑动的,完全连续的界面条件仅仅是开放交通初期层间尚未受任何影响时的一种理想状态.交通部公路所进行的加速加载试验显示:在表面轮迹带上出现纵向裂缝停止加载后,通过开挖发现,表面的纵向裂缝只产生在较薄的沥青层内,下面水泥稳定基层并没有发生疲劳破坏;但是水泥稳定基层顶面出现了磨蚀,表明在荷载作用下沥青层和半刚性基层处于滑动状态[1].为了分析层间接触条件变化对路面结构受力状态的影响,利用弹性层状体系理论计算了基层与沥青层之间不同界面条件下的应力分布,见图1.结果表明:基层与沥青层之间由连续变为滑动时,路表、路基弯沉增大,但是与荷载影响相比,层间联结状态对弯沉值的影响很小,即弯沉指标对界面条件的变化不敏感;当界面条件由完全连续状态变为完全滑动状态时,在100kN和300kN作用下,最大拉应力分别增加了29%,97%,最大剪应力分别增加了22%,63%;在滑动情况下,结构最大剪应力出现在荷载圆圆心下方,且随着荷载的增大,出现深度加深[1].曾梦澜等[2]分析了沥青面层与基层间接触条件对半刚性沥青混凝土路面极限轴载的影响.计算显示:接触条件由连续到滑动,可以导致极限轴载降低大约40%;在不同的接触条件下,所讨论路面结构的极限轴载在183~399kN之间变化,路面极限轴载与现实超载车辆轴载处于同一量级.文献[3]计算分析表明:当面层与基层完全连续时,路面剪应力从上至下逐渐减小,主要集中在面层内,传至基层顶面已经很小;面层与基层发生相对滑动后,面层内最大剪应力出现在面层中部,同时,基层顶面也形成两部分剪应力集中区域.以上力学分析表明,当层间界面条件由连续变为滑动时,路面结构的剪应力和拉应力将发生很大的变化.因此,可以说路面结构的剪应力、拉应力对边界条件和荷载具有很强的敏感性.沥青层之间不能成为整体,沥青层与基层不连续,有可能使沥青路面的使用寿命缩短,成为早期损坏的根源.一般情况下,基层材料的抗剪能力远低于沥青混凝土,所以面层与基层发生相对滑动对基层的受力很不利,过大剪应力使基层表面部分容易发生变形甚至破碎,从而在路表形成车辙、网裂和坑槽等早期破坏现象.而事实表明各层间的联结是路面结构中比较薄弱的地方,尤其是沥青混凝土面层与半刚性基层之间的联结.导致沥青面层和基层层间界面条件发生变化的因素见图2.排除非规范施工因素外,水的存在是结构层层间界面条件发生变化的主要诱因.由于我国的半刚性基层特别致密,水无法通过基层排走,滞留在基层表面的水使基层软化并形成泥浆.在荷载的作用下,沥青层和基层之间的界面至少在局部地方将从理想中的连续状态变为滑动状态或半滑动状态;而基层表面容易破坏成为灰浆,通过裂缝泵吸到路面上产生唧浆.同时,路面结构将产生较大的剪应力和拉应力,在较大的剪应力、拉应力的共同作用下造成路面提前破坏,而车辆的超载又加剧了这种破坏的发展
2路面抗裂特性
沥青路面出现裂缝是不可避免的,而半刚性基层沥青路面的开裂更加严重.路面存在裂缝,一方面使路面荷载变化不再连续,从而降低路面的传递荷载能力;另一方面为水提供了进入路面结构层的途径.图3对早期非荷载裂缝的成因做了简要概括.目前为止,沥青路面产生的温缩裂缝,尚无法避免和根治.因此从这个意义上讲,温度裂缝不能算是沥青路面的早期损坏,是属于一种正常的力学行为,但对于其带来的影响,需通过养护工作采取一定的措施加以弥补.半刚性基层沥青路面反射裂缝指沿开裂基层向上方扩展到沥青面层而形成的裂缝.很显然,反射裂缝的产生首先归因于半刚性基层的开裂,然后再经行车或温度、湿度变化引起沥青面层开裂.根据开裂原因半刚性基层开裂可以分为两大类:荷载型裂缝和非荷载型裂缝.正常条件下,我们更关注半刚性基层的非荷载型开裂.半刚性基层非荷载型裂缝包括:温缩裂缝和干缩裂缝.在基层开裂过程中,如果水进入路面结构内,虽然水和水泥稳定材料中的细颗粒在开裂破碎后能形成胶液,对开裂有一定重愈合作用;但在交通荷载作用下,由于压力水的渗透,水泥稳定材料的开裂也可能被加速.因为横向开裂,使半刚性基层成为被裂.缝隔开的板结构.板块之间的剪应力靠裂缝表面啮合实现,其传递随时间、年平均温度以及温度梯度而变化,从而使基层中对应产生不同的应力分布.当传荷能力很小时,一旦裂缝表面处拉应力消失,垂直于裂缝的拉应变就比板中间大得多.同时,在开裂处路基垂直应力增加,使得路面受力状态更加不利.在基层出现裂缝的位置,汽车荷载及温度荷载在裂缝对应的上方造成应力集中,从而导致沥青面层产生反射裂缝.3路面耐水特性
沥青路面的水损坏已经成为沥青路面早期损坏的一种主要模式.整个水损坏过程包括:静水损害和动 水损害两个方面.大量研究表明[4-6],动水压力作用是引发高速公路沥青路面水损害的重要原因,动水压力与行车速度的平方成正比,随行车速度呈级数增长,而超载又加速了损坏进程.根据实地调查我国半刚性基层沥青路面水损坏从发生的形式上主要分为两种类型:自上而下的路面水损坏和自下而上的水损坏.自上而下的路面水损坏表现形式主要是表面松散和坑槽.它的形成条件是水能够渗入表面层,但继续往下渗透比较困难,同时存在外力作用的环境.据国内外的研究认定,沥青路面的空隙率小于8%时,沥青层中的水在混合料内部以毛细水的形式存在,在荷载作用下一般不会产生大的动水压力,不容易造成水损坏;而对于排水性沥青路面空隙率大于15%时,水能够在空隙中自由流动,也不容易造成水损坏.当路面实际空隙率在8%~15%的范围内时,水容易进入并滞留在混合料内部,在荷载作用下产生很大的毛细压力成为动力水,造成沥青混合料的水损坏.该类水损坏的进程与荷载的大小、频度有关.在初始阶段:集料与集料之间发生剪切滑移,伴有沥青膜移动和脱落;剪切应力超过沥青与集料的粘附力导致附着力丧失,但这个过程很短.在这个阶段,它往往局限于表面层发生松散和坑槽,如果及时修补,路面性能可以很快恢复;但是如果不及时维修,损坏面积将扩散很快.所以对该类水损坏要在其发生的初始阶段,尽快维修遏制其发展速度,尽量减小对路面的损坏.当半刚性基层沥青路面的沥青层较薄时,路面的水损坏经常是自下而上发展的.此类水损坏主要由于半刚性基层本身的强度较高,细料含量又多,非常致密,透水性差,同时又存在一定的裂缝.水从各种途径进入路面并到达基层后,不能从基层迅速排走,只能沿沥青层和基层的界面扩散、积聚.沥青层和基层之间的界面条件将从想象中的连续状态变为滑动状态或半连续半滑动状态.沥青层底部的弯拉应变将可能成为控制指标,在交通荷载作用下,下面层将有可能早于基层首先发生弯拉开裂,并逐渐向上扩展.而且由于半刚性材料本身的微裂,导致水在半刚性基层内流动,使得半刚性基层不断松散.这种类型的水损坏基本过程见图4,且主要发生在雨季或梅雨季节以及季节性冰冻地区的春融季节,损坏之初一般都先有小块的网裂、唧浆,然后松散形成坑槽,发生水损坏的地方一般是透水较严重且排水不畅的部位.4路面荷载特性
公路沥青路面设计规范中,进行半刚性基层层底拉应力验算时,轴载换算系数取8,标准设计轴载为100kN.下面做一个 简单的比较,当轴载从100kN增至300kN时,不计其他因素的影响只考虑换算指数变化得到的轴载换算值,见表1.表中结果直观显示,在相同的换算系数等于8条件下,随着轴载的增加换算成的标准轴载数值增长惊人,更不要说轴载超过l30kN时,变化换算系数的影响。高速公路“渠化交通”明显,各车道具有事实上的明确分工.在通车运营阶段,超车道承受的重轴载以及轴载次数很少,行车道或重车道承担了绝大部分的轴载作用次数及重或超重轴载.超车道和行车道路面实际上成为了2个明显不同的路面.从养护角度,宏观上应把高速公路不同车道作为不同的路面来看待,分别进行养护检测和养护方案设计.尽管路面在横向是一个完整均匀的路面结构,但由于不同车道路面的使用性能和承担的轴载差别巨大,理论上已构成完全不同的路面,在养护中应当分别采取有针对性的、不同的维修措施.5路面养护特性
沥青路面的损坏可分为两类:结构性损坏和功能性损坏.路面的初期损坏为功能性破坏,损坏发生于路面面层内,此时路面的整体强度(弯沉)依然很高,损坏原因不是结构整体强度不足,而是局部抗力不足.病害由局部沥青混凝土结构薄弱处产生,并逐步向周围发展,导致上面层产生细小裂缝,裂缝的出现使得水有机可乘,进而加速中面层、下面层的破坏,沥青层的有效厚度逐步减小,面层整体抗力亦逐步降低.随着病害继续向深层发展,路面结构组合抗力效应降低,导致破坏速度加快,而破坏速度加快反过来使结构组合抗力效应加速降低,最终导致路面破坏速度越来越快.对于结构性病害,为恢复和维护半刚性材料层的“板体性”,必需进行基层修复或补强设计.而半刚性基层损坏后没有愈合能力,且无法进行修补,给沥青路面的维修养护造成很大的困难.半刚性基层“补强”设计在理论上成立,在现实中却很难实现.对于非结构性病害,则只需进行沥青混凝土面层维修恢复路面使用功能,同时起到保护基层的作用.许多路面在损坏初期开挖基层往往是完好的,弯沉并不大;但在路面损坏后开挖,基层结构可能已经松散.因此,当沥青混凝土面层发生早期非结构性病害时,要尽早维修以保护基层不受气候与轴载侵害,避免发展为结构性病害.6路面结构特性讨论
结合前面分析总结半刚性基层沥青路面结构特性见图5.根据图中内容逐项分析不难发现:
1)通过对半刚性基层沥青路面水损坏的分析,可以发现半刚性基层沥青路面的内部排水性能差是其致 命的弱点.在多雨潮湿地区和季节性冰冻地区,来自沥青路面的自由水很容易从裂缝、沥青混合料离析及较大的空隙率进入路面结构内.而在冰冻地区,由于雪融、冰融形成的自由水和游离水也不可避免地进入路面结构.所以对于半刚性基层沥青路面,如果能够很好做到封水、排水,不让水滞留在路面结构层内将会有效地改善路面水损坏的程度。第27卷第6期河南科学
2)半刚性基层特别致密,水无法通过基层排走,因此排除非规范施工因素,水是结构层层间界面条件发生变化的主要诱因.在荷载的作用下,沥青层和基层之间的界面至少在局部地方从理想中的连续状态变为滑动状态或半滑动状态.路面的设计寿命是建立在一定假设条件下的,而实际上这种假设不是一直成立的,所以这应该是造成路面使用寿命缩短的设计原因.3)路面裂缝是客观存在的,其表现形式可能是从路表面产生,向下发展,也可能是上、下面对应产生,或者由下向上延伸.除了荷载的影响外,不同的地区路面主导裂缝不同.在北方寒冷地区,以温缩裂缝为主,由于基层的开裂使路面温缩裂缝的程度加重或提早发生.而在温暖地区,则主要是半刚性基层开裂引起的反射缝,沥青层的温度收缩加剧基层裂缝向上扩展.裂缝的防治是比较困难的,但关键是出现裂缝后如何对待,这一点对养护工作至关重要.4)半刚性基层沥青路面对大交通量及重载交通的敏感性大,而超限超载现象在我国又是客观存在,且比较严重.因此,要防止路面早期损坏,必须首先治理超限超载车辆.5)半刚性基层损坏后没有愈合能力,且无法进行修补,给沥青路面的维修养护造成很大的困难.当沥青混凝土面层发生早期非结构性病害时,要尽早维修以保护基层不受气候与轴载侵害,避免发展为结构性病害.因此,半刚性基层沥青路面的结构特性决定了整个路面使用寿命主要取决于半刚性基层的使用寿命.为保证路面使用寿命必须采取相应的措施尽力确保设计条件的成立,避免半刚性基层非正常损坏.6)针对半刚性基层沥青路面结构的特性,为防止路面早期损坏避免大、中修养护的提前到来,必须根据路况特点有针对性地实施路面预防性养护.参考文献: [1]沈金安,李福普,陈景.高速公路沥青路面早期损坏分析与防治对策[M].人民交通出版社,2004:69-84。
2]曾梦澜.面—基层间接触条件对半刚性沥青混凝土路面极限轴载的影响[J].公路,2005(1):25-30.[3]严二虎,沈金安.半刚性基层与沥青层之间界面条件对结构性能的影响[J].公路交通科技,2004(21):15-18.[4]李福普.高速公路沥青路面的早期损坏与预防性养护[J].石油沥青,2005(1):1-6.
[5]王笑风.高速公路半刚性基层沥青路面预防性养护体系研究[D].西安:长安大学,2007. [6]罗志刚,周志刚,郑健龙,等.沥青路面水损害分析[J].长沙交通学院学报,2005,21(3):23-26。
AnalysisontheStructurePerformanceofthe Semi-RigidBaseAsphaltPavement WangMingyuan(ZhengzhouMunicipalEngineeringParentCompany,Zhengzhou450007,China)
Abstract:Aimedattheprematuredamageofsemi-rigidbaseasphaltpa
vement,thepaperanalyzesthecharacteristicsofthesemi-rigidbaseasphaltexpresswayinChinafromseveralaspectsoftheinterfacestateofdifferentstructurallayers,thepavementcracking,theload-bearingabilityofthepavement,thepavementmoisturedamageandthe pavementmaintenance,andputsforwardsomepreventivemeasurestopreventtheprematuredamageofsemi-rigidbaseasphaltpavement.
Keywords:roadengineering;semi-rigidbaseasphaltpavement;pavementmaintenance;thepremature damage。
第三篇:半刚性基层沥青路面裂缝防治
半刚性基层沥青路面裂缝防治
[摘要] 随着我国公路建设的发展,半刚性基层沥青路面这种结构形式被越来越多地应用到公路建设中,但是半刚性基层沥青路面的裂缝问题一至困扰着施工和养护单位,现就其裂缝产生的原因进行分析并提出防治措施,供同行参考。
关键词:半刚性基层;沥青路面;裂缝防治 引言
我国高速公路目前多采用二灰碎石、水泥稳定级配碎石等半刚性基层,作为高速公路沥青路面的基层。半刚性基层具有较高的强度、刚度和稳定性, 使用年限长,承载能力高的特点,但半刚性基层最致命的缺点是收缩系数大,抗变形能力低,在自身的干缩、温缩及车辆荷载的反复作用下会产生裂缝,并将裂缝反射到沥青面层,另外沥青面层自身的温缩和行车荷载作用下的疲劳裂缝,成为沥青路面裂缝形成的两种主要原因。
1.裂缝类型 1.1横向裂缝
横向裂缝是与路面中线近于垂直的裂缝,缝宽不一,通常贯通整个路幅,沿路面大致呈均匀分布。横向裂缝通常不是由于荷载作用引起的,一般是由于基层或沥青路面的温缩引起。沥青混凝土和半刚性基层多在高温夏季和常温时施工,入冬后温度骤降,收缩过程中产生收缩应力(拉应力)如果收缩应力大于当时混合料的极限抗拉强度时,就会产生第一批温度收缩裂缝,路面开裂后应力重新分布,如果此时温度应力仍超过混合料的抗拉强度,则又产生第二批裂缝,应力再重新分布,直至温度应力小于或等于混合料极限抗拉强度时,裂缝的数量即停止发展。
1.2纵向裂缝
纵向裂缝是平行于行车方向的裂缝,纵向裂缝一般由基层反射、半填半挖路段路基差异沉降、面层施工左右幅摊铺冷热接缝引起纵向裂缝。
1.3网状裂缝
网裂是纵横交错的网状裂缝,相互交错的裂缝形成一系列多边形小块,缝宽 1 mm以上,缝距40cm以下,1m2以上。路面结构设计不合理,沥青混合料配合比不当孔隙率大,路面水渗入面层引起的水损坏,或沥青混合料在拌和、摊铺过程中不均匀,粗细集
料离析,使沥青与石料粘结性差形成网裂。
1.4龟裂
路基、路面总体强度不足,损坏初期形成网裂,在车辆荷载的反复碾压和剪切冲击作用下,沥青面层老化,缝距缩小形成龟裂。
2.裂缝的防治措施 2.1设计方面
2.1.1选用优质沥青做面层,保证沥青的针入度、延度等指标,在缺少优质沥青的情况下,应采用改性沥青,如沥青玛蹄脂碎石(SMA)混合料,SMA混合料具有良好的高温稳定性,低温抗裂性,使用寿命长等特点,是防裂路面设计时应选用的一项新技术。2.1.2选择合适的沥青层厚度,当沥青面层较厚时,对半刚性基层有很好的保护作用,能够明显降低半刚性基层顶面遭受的温度变化,从而减少甚至避免半刚性基层产生温缩裂缝。
2.1.3采用密实型沥青混凝土面层,空隙率对面层的疲劳寿命有很大影响,密实型沥青混合料在使用中沥青老化缓慢,并可防止路面水的渗入,延缓裂缝的开裂。
2.1.4沥青混合料的集料应选用表面粗糙、石质坚硬、耐磨性强、嵌挤作用好、与沥青粘附性好的碱性石料。如所用集料呈酸性,则应填加一定数量的抗剥落剂或石灰粉,确保混合料的抗剥落性能。并尽可能使用人工砂代替天然砂。
2.1.5选用抗冲刷能力好,干缩、温缩系数小、抗拉能力高的材料作基层料。并应有合理的级配,在规范范围内,适当增加粗集料用量,减少细集料用量,尤其是0.075mm以下细料含量,这类细料比表面积大,遇水膨胀,失水后收缩变形大,是造成裂缝的关健之一。并通过加强碾压方式以达到嵌挤密实型水泥稳定基层,增加基层的抗压和抗折强度。2.1.6一般选用初凝时间3h以上和终凝时间5h以上低水化热的32.5级普通硅酸盐水泥,不得使用快硬水泥和早强水泥。在满足设计强度的情况下,尽量减少水泥用量,可适当加入有助于提高早期性能的外加剂,减少水泥用量,水泥用量不应大于6%。水泥稳定无机结合料中水泥含量越大,其强度越大,但强度和刚性越大的混合料,收缩性能也越大,就越容易开裂。
2.2施工方面
2.2.1 路基填筑引起的纵横向裂缝,填筑时填料应尽可能用砂性土,路基应分层填筑,分层压实,同一水平层用同一种填料,边部应超宽填筑30cm,同一断面全幅路段应同步
施工。半填半挖路段填方横断面坡度大于1:5时应挖成台阶,台阶宽度不小于2米,填方路基应密实、稳定,压实度应达到设计要求。
2.2.2沥青混合料拌合时应控制好加热时间和加热温度,不使沥青老化,并适当增加碾压遍数,碾压时应配备双钢轮压路机和大吨位胶轮压路机搓揉挤压,使沥青混合料达到规定的压实度。
2.2.3沥青各层之间施工应尽可能连续,如施工不连续,各层间应洒粘层油,保证上下之间有良好的连接。另外应注意上、下层的施工纵缝应错开15cm以上。
2.2.4 施工时要严格控制摊铺机的摊铺质量,在一定程度上减少沥青混合料的纵、横向裂缝。沥青面层较窄时施工宜采用全路幅一次摊铺,如面层较宽分幅摊铺时,应使用新旧一致,型号一致的摊铺机梯队作业,确保热接缝。前后幅相接处为冷接缝时,应先将已施工压实完的边缘坍斜部分切除,切线须顺直,侧壁要垂直,清除碎料后,宜用热混合料敷贴接缝处,使其预热软化,然后铲除敷贴料,并对侧壁涂刷0.3-0.6kg/m2粘层沥青,再摊铺相临路幅。摊铺时控制好松铺系数,使压实后的接缝结合紧密、平整。2.2.5严格控制基层含水量,根据天气和温度情况严格控制半刚性基层施工碾压时含水量,混合料的含水量不能超过压实需要的最佳含水量。水泥稳定碎石基层干缩应变随混合料的含水量增加而增大,施工碾压时含水量越大,结构层越易产生干缩性裂缝。因此在施工时,应根据天气、运距远近、运输车辆配置情况适当增加或减少拌和用水量。确保碾压时混合料含水量在最佳含水量范围内。
2.2.6半刚性基层碾压完毕,要及时养生,比较理想的养生方法是采用透水土工布覆盖养生,如基层在养生期得到了良好保水,始终保持湿润基层的质量稳定,裂缝将在一段时间内很少发生。
2.2.7做好透层和下封层(防水层)。基层养生结束后,将土工布收走,应及时洒布透层油,并在洒布透层油的基础上撒布3~8mm的碎石作为沥青下封层(防水层)。此时基层未受到污染,渗透效果较好,能使基层和面层形成一个整体,这样既能起到了很好的防水的作用,防止路面水渗入基层导致唧浆,又防止后期半刚性基层干缩和温缩裂缝的产生,避免裂缝在层与层之间传递,提高整个路面结构的疲劳寿命。透层和下封层作完后,应尽快铺筑沥青面层。
2.2.8切割横向预裂缝。在7天养生结束后,进行横向预裂缝的切割,每隔15m设置一条,切割深度为6cm-7cm,缝宽≯5mm。切割完后清洗余浆,晾干后立即用沥青灌缝,防止雨水的入侵。在沥青面层摊铺前,对切割的预裂缝顶面用1m宽的土工布进行覆盖,进一步预防裂缝的反射。
2.2.9基层料拌合控制。目前基层料拌合均采用大功率为连续式拌和站拌合,其产量的增加只是单纯地增加了拌和电机的功率来实现的,拌和时间并没有相应增加,宜将拌和站的产量设定为额定产量的80%进行生产,以便有效地控制混合料的拌和均匀性,减少混合料成型后因不均匀性造成内部受力不一致而产生裂缝。同时,还应定期对水泥控制系统和水量控制系统进行专项检查和校核,防止出现水泥含量和含水量不稳定。2.2.10选择有利的季节或时间进行基层施工,冬天气温低于5℃,一般不能进行基层的施工,施工最好选择在年平均气温时进行,此时气温变化不大,结构内温度应力较小,基层不易发生热胀冷缩现象。
3.结束语
半刚性基层损坏后没有愈合的能力,且无法进行修补,除了挖掉重建,别无他法,这将对沥青路面的维修养护造成很大的困难。只能在早期设计和施工中加以防治从而消除或减少来自基层的反射和沥青面层自身的裂缝数量,延长路面使用寿命、提高路面服务水平。参考文献:
交通部公路科学研究所.《公路路面基层施工技术规范》(JTJ034-2000).人民交通出版社,2008,6 作者简介:姓名:徐仲赟 单位:平凉公路总段高等级公路养护管理中心
邮箱:529631661@qq.com 电话 ***
第四篇:半刚性路面基层施工
半刚性路面基层施工
交通工程12级1班 1201031101 白金磊
摘要:近几年来,随着我国公路行业发展脚步的不断加快,半刚性基层路基凭借着自身施工方便、水稳性好以及适宜的工作性能等诸多优势在公路施工中得到了广泛应用。无机结合料稳定路面具有稳定性好、抗冻性能强、结构本身自成板体等特点,但具耐磨性差,因此广泛用于修筑路面结构的基层和底基层。由于无机结合料稳定材料的刚度介于柔性路面材料和刚性路面材料之间,常称之为半刚性材料。以此修筑的基层或底基层亦称为半刚性基层或半刚性底基层为了能够更好地将半刚性基层路基的优势发挥出来,促进我国公路建设的可持续发展,相关部门就必须对其施工技术进行不断完善。本文主要是在介绍半刚性基层原理的基础上,探讨半刚性基层的施工技术,以此来为今后半刚性路面基层的施工提供一定的参考依据。
关键词:半刚性 基层路基 施工技术
随着我国城市建设发展脚步的不断加快,公路工程项目建设也得到相关部门的高度关注。半刚性基层路基作为目前应用最广泛的一种路基形式,如何确保其施工质量也成为了相关部门所面临的一项重要工作。由于公路工程半刚性路面基层对强度和平整度均有较高要求,因此,在对其进行施工的时候,应该首先从以上两个方面出发,采取科学合理的施工方法,以此来确保整个工程的施工质量。1 半刚性基层原理 1.1 材料强度的形成原理
在任何工程的施工过程中,是否能够对材料进行科学合理的加工直接影响到工程的整体质量,半刚性路面基层施工也不例外。通常情况下,材料强度的形成与材料的掺配、拌和以及压实具有密切的联系,在以上几项操作中,材料自身会发生一系列的物理和化学反应,而材料的强度则是在反应之后形成的。半刚性基层施工过程中所涉及的材料主要是石灰稳定类材料,包括石灰土、石灰砂砾土和石灰碎石等,其强度的形成主要是石灰与细粒土的相互作用,从而使土的工程性质发生变化,这种变化可以分为两个阶段,第一个阶段表现为土的结团、本身的塑性降低,最佳含水量增大,最大密实度变小等。第二阶段就是结晶结构的形成,在这种情况下,土的整体强度和稳定性都会有所提高。从我国目前半刚性基层的施工现状来看,对于材料强度的影响因素主要包括石灰、土质的质量与剂量,同时,材料的养生条件如何也会在一定程度上影响到材料的强度和稳定性。1.2 材料缩裂特性
虽然半刚性基层施工所选用材料的强度能够在一定程度上满足工程的建设需求,但是,也同样存在着一些不足之处,比如说材料的缩裂特性。通常情况下,这种缩裂特性都是由于材料本身抗变形能力低导致的,材料本身如果没有较强的抗变形能力,那么当材料所处环境的温度或湿度发生变化的时候,就容易产生开裂。此外,当沥青面层较薄的时候,也容易形成反向裂缝,从而严重影响了工程的整体质量。因此,工程人员在进行半刚性基层施工之前,一定要对材料的缩裂规律进行全面系统的分析,从而科学合理的对材料进行选择,以此来尽可能避免裂缝的出现。2 半刚性基层施工技术 2.1 铺筑试验路
通常情况下,为了确保公路施工的整体质量,在进行大规模施工之前,都要先铺筑一条试验路,在试验路的施工过程中,施工人员可以按照原计划的公路施工方法进行施工,并在施工的过程中对出现的问题进行处理。施工单位可以根据试验路铺筑的实际情况,对施工组织设计进行科学合理的制定,与此同时,还要根据试验路的实际操作情况对混合料的配合比进行确定,在检验铺筑的半刚性基层质量是否符合设计和规范要求的基础上,提出相应的质量控制措施。在确保试验路的施工效果达到相关要求之后,再进行大面积施工作业,这样不仅能够避免由于施工误操作而引起的质量问题,而且还能够对拌和、运输、碾压、养生等施工设备的可靠性进行检验,从而大大降低反复施工给施工单位带来的经济损失。2.2 厂拌法施工
厂拌法施工是目前进行公路半刚性路面基层施工过程中采用的最广泛的一种方法。为了确保施工的连续性和最终质量的稳定性,在进行具体施工操作之前,相关工作人员首先要对施工中所涉及到的设备进行调试,确保其处于最良好的状态。此外,拌和之前还要进行必要的试拌工作,以此来确保大批量的拌和符合工程的根本需求。通常情况下,采用厂拌法进行施工,要充分注意混合料的拌和、摊铺和碾压。
2.2.1 下承层准备与施工放样
由于半刚性基层施工的特殊性,其对下承层的要求也较高,不仅需要下承层平整、密实,而且还要确保其没有松散和“弹簧”的不良现象。因此,在进行施工之前,相关工作人员应该按照相关的施工标准对下承层进行检查验收,验收合格后才能够进行具体施工。施工放样主要是对路中线进行恢复,每隔一段距离设置一个中桩,并在每个桩上明显标记出基层的边缘设计标高和松铺的厚度的位置。2.2.2 备料
原材料的质量如何直接关系到工程的整体质量,因此,对于施工中的原材料的质量,一定要确保其符合工程的施工需求。同时还要做好必要的防护工作,比如说对于水泥应该做好防雨防潮工作,对于石灰应该做好必要的洒水工作,在潮湿多雨的季节里,还要采取有效的措施确保细粒土和结合料不会受到雨淋。2.2.3 拌和与摊铺
在对混合料进行拌和的时候,首先应该严格按照相关规范对其配合比进行准确测定,使其无论是从级配还是剂量上,都能够符合工程的要求。其次,要将混合料的含水量控制在最佳的程度,一般来说,水泥稳定类混合料的含水量可比最佳含水量大1-2个百分点,而石灰稳定类的混合料则刚好相反。对于混合料的摊铺应该掌握好摊铺时间,最好是在运送到施工场地之后,第一时间进行摊铺,并碾压成型。2.2.4 碾压
碾压是半刚性基层施工中最重要的一个环节,碾压过程中,施工人员要控制好每个层的厚度,最小分层一般不能小于10cm。此外,碾压的时候还应该严格按照先轻后重的次序对各个类型的压路机进行安排,以此来对公路路面进行逐步压实。3 结语
综上所述,随着我国公路建设的飞速发展,半刚性基层施工的整体质量也必然会得到相关部门的高度重视。通过本文的介绍我们能够得知,如果想使半刚性基层的施工取得预期的效果,相关工作人员就要对原材料、拌和以及施工养生等多个环节进行严格控制,与此同时,还要注意对施工环境、材料拌和时间以及养生期进行严格控制。只有这样,才能够从根本上确保工程的整体质量,从而促进我国公路行业的可持续发展。参考文献:
[1]于井和.半刚性基层施工工艺及常见问题处理方法研究[j].交通世界,2011(02).[2]许建设.高速公路半刚性基层分析[j].安徽职业技术学院学报,2006(01).[3]匡厚诚.半刚性基层路基施工技术研究[j].中国高薪技术企业,2009(24).
第五篇:浅议半刚性基层的透层与下封层
浅议半刚性基层的透层与下封层
山东金茂建设工程有限责任公司
苏玉刚 广饶盐化工业建筑安装公司
张光云
长期以来,我国在使用下封层与透层中常常混淆,无论设计单位还是施工企业,此种现象屡见不鲜,这是我们的技术人员对两种材料的概念不清,对要求的功能和起到的作用不明确所导致。根据我们多年来的做法和自己的粗浅看法与广大同行交流。
一、透层与下封层的区别
透层与下封层的区别是很严格的。
透层油要求渗透到一定深度,一般不小于5mm,目的在于使沥青下面层与半刚性基层结合良好。下封层的目的在于封闭表面,不一定要求透下去。
透层的主要作用:⑴透入基层表面空隙,增强基层与下封层间的粘结;⑵有助于结合基层表面集中的细料;⑶减少基层养生费用,提高养生质量;⑷渗透成型的基层,表面开口空隙被填充,从而得到一个渗透深度上的防水层。
下封层的主要作用:⑴与下面层成为一个整体,与透层配合,使下面层与基层有效连为一体;⑵增强路面的防水能力;⑶增加层间连续性,更有效传递荷载;⑷基层与下面层间产生了阻止移动的摩阻力、粘结力,承担着刚柔之间的粘结和过度任务,一起抵抗荷载作用,提高路面的整体强度。
目前,在市政工程道路施工时,有些施工单位的某些技术人员,只看到在固化的半刚性基层上洒布透层油不好,而有些工程改作下封层,但是它根本不能代替透层油。如果它挡不住半刚性基层开裂的反射缝,仍不能解决水的渗入,逐渐引起界面分离的问题。不能透入基层的油,只在基层表面形成了一层油膜或油皮,并不能起到固结、稳定、联结、防水等作用,不是真正意义上的透层油,这层油皮很容易在施工过程中被运料车车轮及摊铺机履带捻起、推掉。由于油层太薄,在路面使用过程中,很容易与基层脱开或被下面层的粗集料刺破,因而一定要明确,即使铺设下封层的基层也不能省却喷洒透层沥青。
二、材料的规格和用量不同
透层乳化沥青的用量,规范规定:PC-2和PA-2均为0.7—1.5L/㎡,是指包括水分在内的乳化沥青的总量。乳化沥青中的残留物含量是以50%为基准的,如果浓度不一样需进行换算。在半刚性基层上洒布时要进一步稀释。
透层油一般不需撒石屑或砂,有的工程为了保护透层不被运输车破坏,通常在喷洒后一破乳立即撒2m3/1000㎡的石屑保护,这并非下封层。
下封层采用单层式层铺法表面处治或稀浆封层两种方法。层铺法多采用乳化沥青,蒸发残留物含量60%时按1.0—1.2Kg/㎡洒布,沥青含量不同时另行折算。撒布S12(5-10mm)或S14(3-5mm)的碎石,用量5-8 m3/1000㎡。
稀浆封层,采用慢裂或中裂的乳化沥青或改性沥青做结合料,厚度不小于6mm。所用石料要坚硬、粗糙、耐磨、洁净、呈碱性,并有一定的级配。
三、施工时机不同
透层的洒布时间,交通部JTG F40-2004《公路沥青路面施工技术规范》和住建部CJJ1-2008《城镇道路工程施工与质量验收规范》都统一要求,“宜”紧接在基层施工结束表面稍干后浇洒。交通部规范还强调“有些工程在施工养生一周后喷洒这是错误的做法”,半刚性基层在水泥尚未结硬时喷洒透层,原因是经过养生,将逐渐产生强度,内部结构越来越紧密,难以下透。
下封层是铺筑基层后,不能及时铺筑面层而需通行车辆时,在喷洒透层后才铺筑的,或者是在铺筑底面层之前,铺筑稀浆封层。