第一篇:药师佛七法会发愿文(模版)
药师佛七法会发愿文
药师佛七法会发愿文
作者:佚名
一、愿民国人民,信仰坚固,确实信行忠孝仁爱信义和平八德,相待以诚,相接以礼,表里如一,心口相应,团结一致,永远不渝。
二、愿民国人民,刻苦自励,克勤克俭,富者济人以财,智者济人以道。财不令藏于地,学不令私于身,营共同之事业,成共同之社会。
三、愿民国人民,爱护国家,服务公众,实行主义,守法奉公,俾约法能行,宪法早布,国基巩固,政治修明。
四、愿青年男子,回心转意,进德修业,坚其意志,强其身体,修其言行,广其智识,力矫浮佻之时弊,作真实之功夫,养成耐劳苦,守纪律之性行,俾在家为克家之子弟,在社会为有用之人才,在国家为忠实之人民,然后方能为国为民,担当大事。
五、愿青年女子,一齐觉悟,特宜养其慈爱和平之纯德,治家教子之常识,为妻为母,保育后代。民族之生存发展责任,端在于女性同胞,尽其天赋之职责,发挥其自然之良能,俾社会受慈育之恩,万代沾祥和之德,方为爱国爱民,爱护人类,爱护国家之正道。
六、愿一切壮年人民,努力修为,不贻少年老年以忧患辛苦之境遇。在官者廉洁奉公,营业者诚实任事,刻苦耐劳,勇猛精进,上承先德,下启后人。
七、愿中国国民党全体同志,亲爱精诚,团结一致,抛弃嫌怨,互相扶持。念先烈创业之艰难,知国民责善之殷重,虚心平气,矢信矢忠,奉行主义,努力建设。纳全国之忠言,容全国之人才,以尽其救国之责,成其建国之功。
八、愿国民政府,上自主席,下迄僚属,中央地方文武官吏,履行誓言,奉行法令,廉洁勤慎,爱国如家,体总理天下为公之心,继先烈舍身救国之志,于权利则尽量忍让,于责任则奋勇承担。忠于国家,爱护人民,容纳贤能,接受忠告,提携后进,尊重前贤,共济时艰,同成大业。
九、愿全国同胞,汉满蒙回藏以及回疆,乃至西南诸省山间民族,共存天下为公之大心,同发团结国族之大愿。以三民主义为依归,则共信斯立;以忠信笃敬律言行,则互信以固。分多润寡,人人存乎慈悲;截长补短,事事行于方便。同心同德,并育并行,复兴富强安乐之中华,有志竟成;造成尽善尽美之民国,后来居上。
十、愿世界各国政府人民,共立互助之志,同弃凌暴之心,扶持弱小之民族,建立共守之法治,继绝举废,治乱扶危,厚往薄来,协和共济。
十一、愿佛教大众,彻底觉悟,发大乘心,行普度事,勿作自了之人,勿泥文字之迹,勿迷于外道邪魔而自犯毗尼,勿惑于世俗财位而妄为趋附,勿迷于鬼神而遗弃众生,勿迷于成规而阻碍进步。勇猛精进,自觉觉人;悲智双运,财法兼施。布十善于俗界,行六度于道门,持戒则如山岳之坚,度生则如河海之广。恢复固有之教义,则本体自是金刚;善用世间之科学,则法器悉为轮宝。然后释迦教义,根基巩固,枝叶繁荣,法轮常转,佛日增辉。
十二、愿大慈大悲药师世尊,运无缘慈,施无畏法,愍念众生,普垂加被,使人人觉悟,共发至诚,忏既往之夙业,种当来之善果。一切烦恼灾障消除无余,村城国邑布满佛号经声,大地山河尽成琉璃世界。千秋万世,善业昭垂;四海五洲,仁风永被。中华巩固,民国万年;万邦协和,正法永住。
[题解]
戴传贤(一八九○——一九四九),又名良弼,字季陶,法名不空、不动,晚年号孝园。清末民初,生于四川广汉。季陶早发大志,一九○四年,眼见时局纷乱,乃留学日本。一九一一年,武昌起义后,追随孙中山先生参与革命事业。民国建立后,又致力于国家政务的革新,以期拯救国难于危境。
季陶自幼即笃信佛教,为民国以来佛教界的大护法,主张唯有振兴佛教才是复国建国的根本之道。因此,曾委请欧阳竟无编著《在家必读内典》,传扬佛法;“九一八事变”发生后,举国悲愤,先生又率先启建“仁王护国法会”、“药师佛七法会”、“时轮金刚法会”、撰写颂文等,领众发菩提心,以救时局国难。一九三三年元月作<药师佛七法会发愿文>,祈愿药师如来悲心加护于全民,并效法药师佛十二大愿,以躬亲实践救国救民,文词恳切,菩萨胸怀以觉世人也!
第二篇:《修持菩提心发愿文》
《修持菩提心发愿文》
三年之前,在心印的要求下,我曾教给她一个发愿文,它流行于教内。心印看了,非常喜欢,她手抄而成,日日诵读,屡屡发愿。在某种程度上,它体现了心印法师的某种心愿。
想及修悟菩提心至最高圆满境界的圣观音与诸佛菩萨,我发愿为自己及遍虚空众生修持菩提心。
愿我摄入所有众生的贪欲,以及饿鬼道的饥渴,并将我无所贪染的清净与善根回向遍虚空众生。
愿贪业之饿鬼道因此而空,众生亦得证妙观察智,成就莲花部观音。
愿我摄入所有众生的嗔毒,以及大寒热地狱的苦报,并将我无嗔的慈悲与善根回向遍虚空众生。
愿嗔业地狱因此而空,众生亦得证大圆镜智,成就金刚部观音。愿我摄入所有众生的无明痴黯以及畜生道的愚痴闇钝苦,并将我光明的法性智慧与善根回向遍虚空众生。
愿痴业的畜生道因此而空,众生亦得证法界体性智,成就佛部观音。
愿我摄入所有众生的猜疑忌嫉、内心折磨以及阿修罗道之争斗苦,并将我身口意之包容与善根回向遍虚空众生。
愿喜争斗之阿修罗道因此而空,众生亦得证成所作智,成就羯磨部观音。
愿我摄入所有众生的贡高我慢,以及天道之死亡下坠苦,并将我谦卑的精进与善根回向遍虚空众生。
愿受死亡下坠苦的天道因此而空,众生亦得证平等性智,成就宝部观音。
愿我摄入所有众生无始来之业报,以及生老病死苦,并将我无始来之身口意功德回向遍虚空众生。
愿受别离之苦的人道因此而空,众生亦得证俱生智,成就清净法身观音。
愿我摄入所有众生破毁三乘戒律之过失,并将我获持三乘戒律的功德回向遍虚空众生。
愿三戒因此清净无一丝污渎,众生亦成就总持五佛部之金刚萨埵。愿我摄入所有众生短命之因的杀生、毁佛谤法等业,并将我获持三宝与友爱有情之功德回向遍虚空众生。
愿非时之死永远不再,众生亦得成就金刚不坏之长寿佛。愿我摄入所有众生各种疾病,并将我慈爱有情及施药功德之善根回向遍虚空众生。
愿众生清净三毒业病,成就蓝光身药师佛。
愿我摄入所有众生偷窃、不予而取,以及贫苦、饥渴之果报,并将我财、法施之功德回向遍虚空众生。愿众生福报自然俱足,拥有满天的财富。
愿我摄入所有众生极恶之行,以及堕生恶趣之果报,并将我发菩提心与修习十善之功德回向遍虚空众生。
愿众生得生于阿弥陀佛与金刚不动佛等之净土。
愿我摄入所有众生冒渎三宝等邪见所起之禅修业障,并将我奉行信、念、行之善根回向遍虚空众生。愿众生深信因果,勤修善行,舍诸所恶。
愿我摄入所有众生视己为敌之“执我”所生的贪嗔毒,并将我四无量心之善根回向遍虚空众生。
愿众生升起慈悲喜舍四无量心。
愿我摄入所有众生执假相妄想为真的诸苦之因,并将“人无我”的空性体验回向遍虚空众生。
愿众生终证空性,了悟圆融无碍佛性。
总而言之,愿我摄入所有众生的怨憎会苦、爱别离苦、五阴炽盛苦、求不得苦以及诸种不顺、意外灾难、无常之苦等等。
愿我毫不犹豫承担一切,并将我三世所积功德善业——财富、权力、生命等无分别的回向所有众生。愿众生获得安乐,趋入菩萨道。
所有与我结有善恶缘者——曾为我讲经说法、鼓励修善者; 肉供我食、奶供我饮以养命者;诚心供养我饮食财物者; 信心不具恶意批评我者;偷我、打我、击倒我、对我心存恶意者; 总之,所有曾见我、闻我名、思我功过,甚为我鼻息所触者—— 愿他们的业障均能净除,由圣观音带领进入弥陀净土。愿我身口意之事业,甚至身体之气味,都仅为利众而存办。愿伤我身、取我命者——人或邪灵——均能先我成佛。愿他们丝毫不受对我造业之果报。
需要告诉大家的是,心印的发愿,也是雪漠的发愿。多年来,此文承载的大悲之心,一直滋养着我,成了雪漠能走到今天的营养之一。
―― 雪漠 2013年11月28日晨 写于“雪漠禅坛”
第三篇:命自我作 福自我求,西方发愿文
心好命又好 富贵直到老
命好心不好 福变为祸兆
心好命不好 祸转为福报
心命俱不好 遭殃且贫夭
心可挽乎命 最要存仁道
命实造於心 吉凶惟人召
信命不修心 阴阳恐虚矫
修心一听命 天地自相保
西方发愿文
[明]莲池大师 作
稽首西方安乐国,接引众生大导师。
我今发愿愿往生,唯愿慈悲哀摄受。
弟子某甲(众等),普为四恩三有、法界众生,求于诸佛一乘无上菩提道故,专心持念阿弥陀佛万德洪名,期生净土。又以业重福轻,障深慧浅,染心易炽,净德难成。今于佛前,翘勤五体,披沥一心,投诚忏悔。我及众生,旷劫至今,迷本净心,纵贪瞋痴。染秽三业,无量无边。所作罪垢,无量无边。所结冤业,愿悉消灭。从于今日,立深誓愿,远离恶法,誓不更造;勤修圣道,誓不退惰;誓成正觉;誓度众生。阿弥陀佛,以慈悲愿力,当证知我,当哀愍我,当加被我。愿禅观之中,梦寐之际,得见阿弥陀佛金色之身,得历阿弥陀佛宝严之土,得蒙阿弥陀佛甘露灌顶,光明照身,手摩我头,衣覆我体。使我宿障自除,善根增长。疾空烦恼,顿破无明。圆觉妙心,廓然开悟。寂光真境,常得现前。至于临欲命终,预知时至。身无一切病苦厄难,心无一切贪恋迷惑。诸根悦豫,正念分明。舍报安详,如入禅定。阿弥陀佛,与观音、势至、诸圣贤众,放光接引,垂手提携。楼阁幢幡,异香天乐,西方圣境,昭示目前。令诸众生,见者闻者,欢喜感叹,发菩提心。我于尔时,乘金刚台,随从佛后,如弹指顷,生极乐国,七宝池内,胜莲华中。华开见佛,见诸菩萨,闻妙法音,获无生忍。于须臾间,承事诸佛,亲蒙授记。得授记已,三身四智,五眼六通,无量百千陀罗尼门,一切功德,皆悉成就。然后不违安养,回入娑婆。分身无数,遍十方刹。以不可思议自在神力,种种方便,度脱众生。咸令离染,还得净心。同生西方,入不退地。如是大愿,世界无尽,众生无尽,业及烦恼一切无尽,我愿无尽。愿今礼佛、发愿、修持功德,回施有情。四恩总报,三有齐资。法界众生,同圆种智。
第四篇:毛泽东的母亲叫文七妹
毛泽东的母亲叫文七妹,毛泽东的父亲叫毛顺生
毛泽东从小就聪明,人们都夸他长大了一定有出息,是个天才。
那是石三伢子4岁的时候。过年了,外婆给他穿了一身新衣服,头上戴着一顶红风帽,和小朋友们一起玩耍。有一个白胡子老头,喜欢跟孩子们逗着玩。他故意板着脸,翘起白胡子,吓唬小孩子们,说:“不许你们在这儿玩,我要割掉你们的耳朵?
小朋友们一听,都吓得跑掉了,只有石三伢子站在那儿不动。白胡子老头就问他:”你为什么不跑呢?你不怕我割耳朵?“石三伢子一点都不害怕他,反而问道:”老阿公!你为什么要割我的耳朵呢?“
白胡子老头觉得这个孩子挺有意思,一本正经地说:”我要割下你的耳朵做下酒菜!“
石三伢子一点也不害怕,也一本正经地说:”一个人做事要讲道理。老阿公,你讲不讲道理?你如果有道理,我的耳朵就给你吃;你要是没道理,我就扯掉你的胡子。“
石三伢子边说边笑咪咪地望着白胡子老头,还把红风帽子的扣解开,把耳朵露在外面。白胡子老头大吃一惊,心想:一个4岁的孩子就有这样的胆量和聪明,真是少见。
毛泽东在外婆家住的时候,他的八舅开了一个家馆教孩子们读书。4岁的石三伢子跟着去当”旁听生“。几个弟兄背书的时候,因为他们平时贪玩,一个个都憋得满头大汗,脸涨得通红,谁也背不下来。这时候,小小的石三伢子站起来,说:”八舅,让我背吧!“八舅惊奇地说:”你能背吗?“"我能背下来,不信,你听!”石三伢子从容地“赵钱孙李,周武郑王…”一气背了下来,一个字不错。外婆听说这件事以后,高兴地说:“石三伢子真是聪明,怕是天上的文曲星下了凡!”
石三伢子6岁就开始跟着大人干活。他常和几个小伙伴去放牛。小孩子贪玩,玩高兴了,就忘牛,不是让牛吃了人家的禾苗,就是牛吃不饱。怎么才能又让牛吃得饱,又玩得好呢?石三伢子想了一个好办法:把小伙伴们组织起来,一伙人放牛,一伙人采野果子,割青草。然后,把牛拴起来,让它们吃割来的青草,小伙伴们就可以做游戏,讲故事。
第五篇:高考数学专题复习专题七 立体几何教案 文
专题七 立体几何
自查网络
核心背记
一、空间几何体的结构特征
(一)多面体
1.棱柱可以看成是一个多边形(包含图形所围成的平面部分)上各点都沿同一个方向移动____所形成的几何体.
2.主要结构特征:棱柱有两个面互相平行,而其余 的交线都互相平行,其余的这些面都是四边形.
3.侧棱和底面____的棱柱叫做直棱柱,底面为 的直棱柱叫做正棱柱. 4.有一个面是多边形,而其余各面都 的三角形的多面体叫做棱锥.
5.如果棱锥的底面是 一,它的顶点又在过 且与底面垂直的直线上,则这个棱锥叫做正棱锥,正棱锥各侧面都是 一的等腰三角形,这些等腰三角形____都相等,叫做棱锥的斜高.
6.棱锥被 一的平面所截,截面和底面间的部分叫做棱台.一—— 7.由正棱锥截得的棱台叫做正棱台.正棱台各侧面都是全等的等腰梯形,这些 一叫做棱台的斜高.正棱台中两底面中心连线,相应的边心距和 .组成一个直角梯形;两底面中心连线,和两底面相应的外接圆半径组成一个直角梯形.
(二)旋转体
1.分别以
一、直角梯形中——、——____所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体叫做圆柱、圆锥、圆台.旋转轴叫做所围成的几何体的轴;在轴上的这条边叫做这个几何体的高;垂直于轴的边旋转而成的 叫做这个几何体的底面;不垂直于轴的边旋转而成的 叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫做侧面的母线,’ 2.-个半圆绕着____所在的直线旋转一周所形成的曲面叫球面,球面所围成的几何体称为 1
球.球面也可以看做空间中到一个定点的距离等于定长的点的集合.
3.球的截面性质:球的截面是 ;球心和截面(不过球心)圆心的连线 于截面;设球的半径为R,截面圆的半径为r,球心到截面圆的距离d就是球心0到截面圆心0i的距离,它们的关系是 一.
4.球的大圆、小圆:球面被 的平面截得的圆叫做球的大圆;球面被 的平面截得的圆叫做球的小圆.
(三)投影
1.当图形中的直线或线段不平行于投射线时,平行投影具有如下性质:①直线或线段的平行投影是____;②平行直线的平行投影是 ;③平行于投射面的线段,它的投影与这条线段 ;④与投射面平行的平面图形,它的投影与这个图形 ;⑤在同一直线或平行线上,两条线段的平行投影的比等于____. 2.-个. 把一个图形照射在一个平面上,这个图形的影子就是它在这个平面上的中心投影.空间图形经过中心投影后,直线还是直线,但是平行线可能变成____.
3.在物体的平行投影中,如果投射线与投射面____,则称这样的平行投影为正投影. 4.除了平行投影的性质正投影还具备如下性质:
直于投射面的直线或线段的正投影是 .②于投射霹的平面图形的正投影是
(四)斜二测画法与三视图
1.斜二测画法的作图规则可以简记为:水平方向方向长度 竖直方向线,变为 方线,长度
2.投射面与视图:通常,总是选取三个____的平面作为投射面,来得到三个投影图.一个投射面水平放 置,叫做水平投射面,投射到水平投射面内的图形叫做,一个投射面放置在正前方,这个投射面叫做直立投射面.投射到直立投射面内的圆形叫做 和直立、水平两个投射面都垂直的投射面叫做侧立投射l面.投射到侧立投射面内的圆形叫做
3.三视图定义:将空间图形向水平投射面,直立投射 面、侧立投射面作正投影.然后把这个投影按一定的布局放 在一个平面内,这样构成的图形叫做空闷图形的三视图.
4.三视图的画法要求;三视图的主视图、俯视图、左视图分别是从物体的 看到的物体的正投影围成的平面图形.
5.一个物体的三视图的排列规则是:俯视图放在 的下面,长度与 一样;左视图放在主视图的,高度与____一样,宽度与——的宽度—样为了便于记忆.通常说:“长对正 高平齐、宽相等”或“主左一样高、主俯—样长、左俯—样宽
6.画三视图时应注意:被挡住的轮廓要画成瘦线,尺寸线用细实线标出;φ表示直径,R表示半径;单位不注明按mm计,二、空间几何体的表面积与体积
(一)柱、锥、台的表面积公式
1.设直棱柱的高为b,底面多边形的周长为c,则直棱柱侧面面积计算公式为——.设圆柱的底面半径为r 周长为C,侧面母线长为l,则圆柱的侧面积是____. 2.设正棱锥的底面边长为a,底面周长为C,斜高为h,则正n梭锥的侧面积计算公式为一·如果圆锥底面半径为r,周长为C,侧面母线长为l,那么圆锥的侧面积是一.
3.如果设正棱台下底面边长为a、周长为C,上底面边长为a'、周长为C'斜高为h',则正竹棱台的侧面积公式为____ .如果圆台的上下底面半径分为r',r,周长为C,C,侧面母线长为l,那么圆台的侧面积是
(二)柱、锥、台的体积公式
1.棱柱的底面面积为S,高为h,则体积为——’
底面半径为r,高是h的圆柱体的体积计算公式是—一.
2.若一个棱锥的底面面积为S.高为h,那么它的体积公式为____.若圆锥的底面圆的半径为r,高为h,则体积为____.
3.若台体(棱台、圆台)上、下底面面积分别为S,S,高为h,则台体的体积公式为一,若圆台的上、下底面半径分别为r,r,高为h.则圆台的体积公式为
(三)球的表面积与体积公式设球的半径为R.则球的表面积计算公式为-.即球面面积等于它的大圆面积的____.球的体积公 式为
三、平面的基本性质与推论
(一)平面的定义平面是一个不加定义,只需理解的最基本的原始概 念.在生活中平静的水面、镜面、书桌面都给我们平面的印 象,立体几何中的平面就是由此抽象出来的.平面是处处平直的面,它是向四面八方 一的.无大小、厚薄之 分,它是不可度量的.
(二)平面的基本性质及推论 1.平面的基本性质 1:如果一条直线上的两点在一个平面内,那么这条直线上的 都在这个平面内,这 时我们说:直线在平面内或平面____直线.
2.平面的基本性质2:经过____的三点,有且只 有一个平面,即:____的三点确定一个平面.
3.推论1:经过一条直线和____一点,有且只 有一个平面. 4.推论2:经过两条 直线有且只有一个平面. 5.推论3:经过两条 直线有且只有一个平面.
6.面面相交:如果两个平面有一条公共直线,则称之 为两平面相交,这条公共直线也叫做两个平面的交线.平面口与p相交,交线是Z,符号表示为 .
7.平面的基本性质3:如果不重合的两个平面有一个公共点,那么它们 一条经过 一的公共直线.
(三)异面直线
1._ ___的直线叫做异面直线.
2.异面直线的判定:与一平面相交于一点的直线与平面内一 的直线是异面直线,用符号表示为:若ABn口-B,B垂z,Zc口,则直线AB与直线z是异面直线.
四、空间中的平行关系
(一)平面的基本性质4与等角定理
1.平面的基本性质4:平行子同一直线的两条直线____.符号表示为:若直线矗∥6.c∥6,那么——.
2.等角定理:如果一个角的p边与另一个角的两边分别对应平行,并且一,那么这两个角相等.
(二)空间四边形顺次连接____ 的四点A.B,C.D所梅成的图形叫做空闻四边形.其中,四个点A,B,C.D,每个点都Ⅱq它的____ .所连接的相邻顶点fa-的线段叫做它的____.连接不相邻的顶点的线段叫做空间四边形的____.
(三)直线与平面平行
1.直线a和平面口只有一个公共点A,叫做 直线与平面____.这个公共点A叫做直线与平面的交点.记作____.
2.直线a与平面a没有公共点,叫做直线与平面平行.记作一 一.
3.判定定理:如果____的一条直线和——的一条直线平行,那么这条直线与这个平面平行. 4.性质定理:如果一条直线与一个平面平行,____ 的平面和这个平面相交,那么这条直线就和两平面的交线平行.
(四)平面与平面平行
1.两不重合平面有公共点就叫两平面相交,记作口n卢2 Z.若两个平面 一,则称这两个平面为平行平面,“平面口平行于平面p"可以记作“口∥∥.
2.平面与平面平行的判定定理;如果一个平面内有两条 一直线都平行于另一个平面,那么这两个平面平行.3.推论:如果—个平面内有两条____直线分别平行于另—个平面内的两条直线,则这两个平面平行.
4.性质定理:如果两个____平面同时与第三个平面相交,那么它们的交线平行.符号语言表示为:口//p,a(l y=a,pffy=b净_,.。__._一.
5.两个平面平行,其中一个平面内的 一直线平行于另一个平面. 五,空间中的垂直关系
(一)直线与平面垂直
1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为 一,则称这两条直线互相垂直.
2.直线与平面垂直的定义:如果一条直线Z和一个平面口相交于点O,并且Z和这个平面内过点0的直线都垂直,则该直线垂直于这个平面.这条直线叫做平面的——,这个平面叫做直线的____,交点叫做__-。_.。.-。-..-.。_一.
3.点到平面的距离:垂线上任意一点到____间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.
4.判定定理:如果一条直线与平面内的两条直线垂直,则这条直线与这个平面垂直. 5.推论:如果在两条__— 直线中,有一条直线垂直于平面,那么另一条直线也垂直于这个平面。‘
6.性质定理:如果两条直线垂直予同一个平面,那么这两条直线—__-7.如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的—一直线.
(二)平面与平面垂直
1*如果两个相交平面的一与第三个平面垂直,又这两个平面与第三个平面相交所得的两条直线互相____.就称这p个平面互相垂直.
2.如果-个平面过另一个平面的一,则这两个平面互相垂直.
3.如果两个平面互相垂直,那么在—一垂直予它们____
二、的直线垂直于另一个平面. 4.如果p个平面互相垂直,那么经过第一个平面内的 一点垂直于第二AI平面的直线在——平面内.
参考答案
一、(一)1.相同的距离 2.每相邻两个面 3.垂直正多边形 4.有一个公共顶点
5.正多边形底面中心全等底边上的高 6.平行于底面
7.等腰梯形的高斜高侧援
(=)1.矩形的一条边 直焦三角形的一条直角边垂直于底边的腰圆面曲面
(=)1.所有点经过
2.不在同一直线上不共线 3.直线外. . 4.相交 5.平行 6.a 7.有且只有这个点 ’
(三)1.既不平行也不相交 2.不经过该点
四、(一)1.互相平行a//c2.方向相同
(二)不共面顶点边对角线
(三)1.相交ana=A 2.a//a3.不在一个平面内平面内4.经过这条直线
(四)1.没有公共点2.相交3.相交4.平行a//b 5.任意
五、(一)1-直角2.任何垂线垂面垂足3.垂足4.相交5.平行6.平行7.任意条
(二)1.交线垂直2.一条垂线3._AI平面内交线4.第一个
规律探究
1.在正棱锥中,要利用四个直角三角形(高、斜高及底 面边心距组成一个直角三角形,高、侧棱与底面外接圆的 半径组成一个直角三角形,底面的边心距、外接圆半径及 底边一半组成一个直角三角形,侧棱、斜高与底边一半组 成一个直角三角形)进行有关计算. 2.在正棱台中,要充分利用三个直角梯形(高、斜高及上 下底面的边心距组成一个直角梯形,侧棱、斜高及上下底边 的一半组成—个直角梯形,侧梭、高及上下底面外接圆半径组成—个直角梯形)、两个直角三角形(上下底面的边心距,外接圆半径和边的一半)进行有关计算.
3.解与直观图有关的问题时,应熟练掌握斜二测画法的规则,关键是确定宣观图的顶点或其他关键点.因此,尽量把顶点或其他关键点放在轴上或与轴平行的直线上.
4.学习三视图应会选取投射面,正确放置三视图中三个图的位置,掌握三视图之间的联系和规律:正俯长对正,正侧高平齐,俯侧宽相同.
5.棱柱、棱锥、棱台等多面体的表面积可以分别求各面面积,再求和.对于直棱柱、正棱锥、正棱台也可直接利用公式,6.圆柱、圆锥、圆台侧面积就是其侧面展开图的面积,要熟记公式.
7.有关旋转体的问题或球与多面体的切、接问题,特别要注意应用轴截面. 8.有关体积的问题,要注意“等积变换”“分割求和” “拼补求差”等解题思路.
9.结合模型,在理解的基础上熟练掌握柱、锥、台的表面积公式和体积公式.
10.球的体积公式和表面积公式是用无限分割的极限思想推导出来的.主要是记忆、掌握公式.
11.求柱、锥、台体的表面积就是求它们的侧面积和底面积之和,对于圆柱、圆锥、圆台,已知上、下底面半径和母线长可以用表面积公式直接求出;对于棱柱、棱锥、棱台没有一般计算公式,可以直接根据条件求各个面的面积.
12.求柱、锥、台体的体积时,根据体积公式,需要具备已知底面积和高两个重要条件,底面积一般可由底 面边长或半径求出,但当高不知道时,求高比较困难,一般要转化勾平面几何知识求出高.
13.证明直线共面可通过先证明其中的两条直线确定一个平面,再证明其余的直线都在这个平面内;也可以利用共面向量定理来证明.证明空间几点共面,可先取不共线的三点确定—个平面,再证明其他的点都在这个平面内’ 14.理解“有且只有一个”的含义,它强调存在性和唯一性两个方面,也称为“确定”平面. 15.求证三点及三点以上的点共线,主要是依据平面的基本性质3,只要证明这些点都是两个平面的公共点' 那么它们都在这两个平面的交线上;求证三条直线或三条以上的直线共点的一般方法是:首先证明其中两条直线交于一点,再证明其余各直线都经过这点-16.平面的基本性质2及其推论是空间中确定平面的依据,也是证明两个平面重合的依据,还为立体几何问题转化为平面几何问题提供了理论依据和具体办法.
17.直线和平面平行时,注意把直线和平面的位置关系转化为直线和直线的位置关系,直线 6
和平面平行的性质定理在应用时,要特别注意“一条直线平行于一个平面,就平行于这个平面的一切直线”的错误结论.
18.以求角为背景考查两个平行平面间的性质,也可以是已知角利用转化和降维的思想方法求锵其他几何参量.19.线面平行和面面平行的判定和性质 20.转化思想方法:直线与平面平行的判定定理和性质定理的实质就是线线平行与线面平行的转化.
21.要能够灵活地作出辅助线或辅助平面来解题.对 此需强调两点;第一,辅助线、辅助面不能随意作,要有理 论根据;第二,辅助线或辅助面有什么性质,一定要以某一 性质定理为依据,决不能凭主观臆断,否则谬误难免.
22.直线与平面垂直,只需这条直线垂直于这个平面 内的两条相交直线,至于这两条相交直线是否和已知直线 有公共点,这无关紧要.
23.三垂线定理及其逆定理是立体几何中的重要定 理,复习运用时要注意:
①弄清定理中所指明的三种垂线,②定理中的直线a-定在某直线的射影所在的平面a内,因此要熟练地掌握直线n在不同位置时的情况.
24.在证明两平面垂直时,一般先从现有直线的平面 中寻找平面的垂线,若这样的直线图中没有明确给出,则 可通过作辅助线来解决,而作辅助线则应有理论根据,并 有利于证明,不能随意添加,如有平面垂直时,一般要用性 质定理,在一个面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直. 25.线面垂直的判定和性质:①依定义,所成角为90。,②判定定理;③性质定理;④其他结论,如,如果两条平行 线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.
26.应用三垂线定理的难点主要是对非水平放置的图 形的辨认,在解证中可按照“一定平面,二定垂线,三找斜 线,射影可见,直线随便”的原则去认定图形.其关键是转化,即把已知的线线垂直转化为所需的线线垂直’也就是斜线和它在平面内的射影的转化,因此,寻找斜线、射影非常重要.
实际应用
3.如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AClBD,垂足为H,PH是四棱锥的高.(I)证明.平面PAC_1_平面PBD:,(Ⅱ)若AB-厢,/APB一/ADB= 60。,求四棱锥 P-ABCD的体积.
参考答案 1.【答案lD【命题立意】本题考查几何体的直观图和三视图的有关知识,考查学生的空间想象能力.【解题思路】由已知条件和直观图(斜二测)可知D正确. 2.【答案】D【命题立意】本题考查空间想象能力及平行与垂直关系的推理与论证.【解题思路】A错,平行直线的平行投影仍可平行;B错'平行于同~直线的两平面可平行或相交;c错,垂直于同一平面的两平面可平行或相交;D正确,空间想象易知垂直于同一平面的两直线平行,