总结红外光谱频率与官能团特征吸收峰解读

时间:2019-05-15 09:53:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《总结红外光谱频率与官能团特征吸收峰解读》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《总结红外光谱频率与官能团特征吸收峰解读》。

第一篇:总结红外光谱频率与官能团特征吸收峰解读

红外波谱

分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。

常见官能团的红外吸收频率

整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。

通常,4000~2500处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H键的伸缩振动吸收带,在2500-1900波数范围内常常出现力常数大的三件、累积双键如:-C≡C-,-C≡N,-C=C=C-,-C=C=O,-N=C=O等的伸缩振动吸收带。在1900以下的波数端有-C=C-,-C=O,-C=N-,-C=O等的伸缩振动以及芳环的骨架振动。

1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差别,所以指纹区对于用已知物来鉴别未知物十分重 要。

有机化学有机化合物红外吸收光谱

σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动

一、烷烃

饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动

2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基 C-H的σs。1380 cm-1峰对结构敏感,对于识别甲基很有用。共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基 1380 cm-1 裂分为两个强度几乎相等的两个峰 1385 cm-

1、1375 cm-1 叔丁基 1380 cm-1 裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-

1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σ

4、γC-C在1250—800 cm-1范围内,因特征性不强,用处不大。大于或等于4时,在722 cm-1有一个C-H分子中具有—(CH2)n—链节,n 弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃

烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢 2在3075—3090 cm-1有强峰最易识别。

1670—1620 cm-1。随着取代基的不同,σC=C2、σC=C 吸收峰的位置在吸收峰 的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取

代情况和构型。

RHC=CH2 995~985cm-1(=CH,S)915~905 cm-1(=CH2,S)R1R2C=CH2 895~885 cm-1(S)

(顺)-R1CH=CHR2 ~690 cm-1(反)-R1CH=CHR2 980~965 cm-1(S)R1R2C=CHR3 840~790cm-1(m)

三、炔烃

在IR光谱中,炔烃基团很容易识别,它主要有三种特征吸收。

1、σC 该振动吸收非常特征,吸收峰位置在3300—3310 cm-1,中等强度。σN-H值与σC-H 值相同,但前者为宽峰、后者为尖峰,易于识别。

2、σ CC 一般 C 键的伸缩振动吸收都较弱。一元取代炔烃 σC C 出现在2140—2100 cm-1,二元取代炔烃在2260—2190 cm-1,当两个取代基的性质相差太大时,炔化物极性增强,吸收峰的强度增大。当 处于分子的对称中心时,σ C C

3、σ C H 炔烃变形振动发生在680—610 cm-1。

四、芳烃

芳烃的红外吸收主要为苯环上的C-H键及环骨架中的C=C键振动所引起。芳族化合物主要有三种特征吸收。

1、σAr-H 芳环上C-H吸收频率在3100~3000 cm-1附近,有较弱的三个峰,特征 C=C-H频率相近,但烯烃的吸收峰只有一个。性不强,与烯烃的σ

2、σC=C 芳环的骨架伸缩振动正常情况下有四条谱带,约为1600,1585,1500,1450 cm-1,这是鉴定有无苯环的重要标志之一。

3、δAr-H 芳烃的C-H变形振动吸收出现在两处。1275—960 cm-1为δAr-H,由于吸收较弱,易受干扰,用处较小。另一处是900—650 cm-1的δAr-H吸收较强,是

Ar-H频率越高,识别苯环上取代基位置和数目的极重要的特征峰。取代基越多,δ

见表3-10。若在1600—2000 cm-1之间有锯齿壮倍频吸收(C-H面外和C=C面内弯曲振动的倍频或组频吸收),是进一步确定取代苯的重要旁证。

苯 670cm-1(S)单取代苯 770~730 cm-1(VS),710~690 cm-1(S)1,2-二取代苯 770~735 cm-1(VS)

1,3-二取代苯 810~750 cm-1(VS),725~680 cm-1(m~S)1,4-二取代苯 860~800 cm-1(VS)

五、卤化物

随着卤素原子的增加,σ如C-X降低。C-F(1100~1000 cm-1);C-Cl(750~700 cm-1);C-Br(600~500 cm-1);C-I(500~200 cm-1)。此外,C-X吸收峰的频率容易受到邻近基团的影响,吸收峰位置变化较大,尤其是含氟、含氯的化合物

变化更大,而且用溶液法或液膜法测定时,常出现不同构象引起的几个伸缩吸收带。因此IR光谱对含卤素有机化合物的鉴定受到一定限制。

六、醇和酚

醇和酚类化合物有相同的羟基,其特征吸收是O-H和C-O键的振动频率。

1、σO-H 一般在3670~3200 cm-1区域。游离羟基吸收出现在3640~3610 cm-1,峰形尖锐,无干扰,极易识别(溶剂中微量游离水吸收位于3710 cm-1)。OH是个强极性基团,因此羟基化合物的缔合现象非常显著,羟基形成氢键的缔合峰一般出现在3550~3200 cm-1。1,2-环戊二醇 顺式异构体 P47 0.005mol/L(CCl4)3633 cm-1(游离),3572 cm-1(分子内氢键)。

0.04 mol/L(CCl4)3633 cm-1(游离),3572 cm-1(分子内氢键)~3500cm-1(分子间氢键)。

2、σC-O和δO-H C-O键伸缩振动和O-H面内弯曲振动在1410—1100 cm-1处有 C-O强吸收,当无其它基团干扰时,可利用σ的频率来了解羟基的碳链取代情况(伯醇在1050cm-1,仲醇在1125cm-1,叔醇在1200cm-1,酚在1250cm-1)。

七、醚和其它化合物

醚的特征吸收带是C-O-C不对称伸缩振动,出现在1150~1060cm-1处,强度大,C-C骨架振动吸收也出现在此区域,但强度弱,易于识别。醇、酸、酯、内酯的σC-O吸收在此区域,故很难归属。

八、醛和酮

醛和酮的共同特点是分子结构中都含有(C=O),σC=O在1750~1680cm-1范围内,吸收强度很大,这是鉴别羰基的最明显的依据。临近基团的性质不同,吸收峰的位置也有所不同。羰基化合物存在下列共振结构:

-+ A B C=O 键有着双键性 强的A结构和单键性强的B结构两种结构。共轭效应将使σ吸电子的诱导效应使σC=O的吸收峰向高波数C=O吸收峰向低波数一端移动,方向移动。α,β不饱和的羰基化合物,由于不饱和键与C=O的共轭,因此C=O键的吸收峰向低波数移动

σC=O RCH=CHCOR'RCHClCOR' 1685~1665cm-1 1745~1725cm-1 苯乙酮 对氨基苯乙酮 对硝基苯乙酮

σ

σC=O 1691cm-1 1677cm-1 1700cm-1 2700~2900cm-1 区域内,通常在~2820 cm-

1、~2720 cm-1附近各有 一般在

一个中等强度的吸收峰,可以用来区别醛和酮。

九、羧酸

1、σO-H 游离的O-H在~3550 cm-1,缔合的O-H在3300~2500 cm-1,峰形宽而散,强度很大。

2、σC=O 游离的C=O一般在~1760 cm-1附近,吸收强度比酮羰基的吸收强度大,但由于羧酸分子中的双分子缔合,使得C=O的吸收峰向低波数方向移动,一般在1725~1700 cm-1,如果发生共轭,则C=O的吸收峰移到1690~1680 cm-1。

3、σ

4、δC-O O-H 一般在1440~1395 cm-1,吸收强度较弱。一般在1250 cm-1附近,是一强吸收峰,有时会和σC-O重合。

十、酯和内酯

1、σC=O 1750~1735 cm-1处出现(饱和酯σC=O 位于1740cm-1处),受相邻基团的影响,吸收峰的位置会发生变化。

2、σC-O 一般有两个吸收峰,1300~1150 cm-1,1140~1030 cm-1

十一、酰卤

σC=O 由于卤素的吸电子作用,使C=O双键性增强,从而出现在较高波数

C=O变小,处,一般在~1800cm-1处,如果有乙烯基或苯环与C=O共轭,会使σ

一般在1780~1740cm-1处。

十二、酸酐

1、σC=O 由于羰基的振动偶合,导致σ分别处在C=O有两个吸收,1860~1800 cm-1和1800~1750 cm-1区域,两个峰相距60 cm-1。

2、σC-O 为一强吸收峰,开链酸酐的σC-O 在1175~1045 cm-1处,环状酸酐1310~1210 cm-1处。

十三、酰胺

1、σC=O 酰胺的第ⅠⅡⅢ谱带,由于氨基的影响,使得σC=O向低波数位移,伯酰胺1690~1650 cm-1,仲酰胺 1680~1655 cm-1,叔酰胺1670~1630 cm-1。

2、σN-H 一般位于3500~3100 cm-1,伯酰胺 游离位于~3520 cm-1和~3400 cm-1,形成氢键而缔合的位于~3350 cm-1和~3180 cm-1,均呈双峰;仲酰胺 游离位于~3440 cm-1,形成氢键而缔合的位于~3100 cm-1,均呈单峰;叔酰胺无此吸收峰。

3、δN-H 酰胺的第Ⅱ谱带,伯酰胺δN-H位于1640~1600 cm-1;仲酰胺1500~1530 cm-1,强度大,非常特征;叔酰胺无此吸收峰。

4、σC-N 酰胺的第Ⅲ谱带,伯酰胺1420~1400 cm-1,仲酰胺 1300~1260 cm-1,叔酰胺无此吸收峰。

十四、胺

1、σN-H 游离位于3500~3300 cm-1处,缔合的位于3500~3100 cm-1处。含有氨基的化合物无论是游离的氨基或缔合的氨基,其峰强都比缔合的OH峰弱,且谱带稍尖锐一些,由于氨基形成的氢键没有羟基的氢键强,因此当氨基缔合时,吸收峰的位置的变化不如OH那样显著,引起向低波数方向位移一般不大于100cm-1。伯胺 3500~3300 cm-1有两个中等强度的吸收峰(对称与不对称的伸缩振动吸收),仲胺在此区域只有一个吸收峰,叔胺在此区域内无吸收。

2、σ

3、δC-N N-H 脂肪胺位于1230~1030 cm-1处,芳香胺位于1380~1250 cm-1处。位于1650~1500 cm-1处,伯胺的δ仲胺的吸收强度N-H吸收强度中等,较弱。

4、γN-H 位于900~650 cm-1处,峰形较宽,强度中等(只有伯胺有此吸收峰)。主要基团的红外特征吸收峰

下载总结红外光谱频率与官能团特征吸收峰解读word格式文档
下载总结红外光谱频率与官能团特征吸收峰解读.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐