第一篇:机械加工工艺基础知识点总结
机械加工工艺基础知识点总结
一、机械零件的精度
1.了解极限与配合的术语、定义和相关标准。理解配合制、公差等级及配合种类。掌握极限尺寸、偏差、公差的简单计算和配合性质的判断。
1.1基本术语:尺寸、基本尺寸、实际尺寸、极限尺寸、尺寸偏差、上偏差、下偏差、(尺寸)公差、标准公差及等级(20个公差等级,IT01精度最高;IT18最低)、公差带位置(基本偏差,了解孔、轴各28个基本偏差代号)。1.2配合制:
(1)基孔制、基轴制;配合制选用;会区分孔、轴基本偏差代号。(2)了解配合制的选用方法。
(3)配合类型:间隙、过渡、过盈配合
(4)会根据给定的孔、轴配合制或尺寸公差带,判断配合类型。1.3公差与配合的标注(1)零件尺寸标注(2)配合尺寸标注
2.了解形状、位置公差、表面粗糙度的基本概念。理解形位公差及公差带。2.1几何公差概念:
1)形状公差:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。
2)位置公差:位置度、同心度、同轴度。作用:控制形状、位置、方向误差。3)方向公差:平行度、垂直度、倾斜度、线轮廓度、面轮廓度。4)跳动公差:圆跳动、全跳动。2.2几何公差带: 1)几何公差带 2)几何公差形状 3)识读
3.正确选择和熟练使用常用通用量具(如钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺等)及专用量具(如螺纹规、平面样板等),并能对零件进行准确测量。3.1常用量具:
(1)种类:钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺。(2)识读:刻度,示值大小判断。
(3)调整与使用及注意事项:校对零点,测量力控制。3.2专用量具:
(1)种类:螺纹规、平面角度样板。(2)调整与使用及注意事项 3.3量具的保养
(1)使用前擦拭干净
(2)精密量具不能量毛坯或运动着的工伯(3)用力适度,不测高温工件(4)摆放,不能当工具使用(5)干量具清理
(6)量具使用后,擦洗干净涂清洁防锈油并放入专用的量具盒内。
二、金属材料及热处理 1.理解强度、塑性、硬度的概念。
2.了解工程用金属材料的分类,能正确识读常用金属材料的牌号。2.1金属材料分类及牌号的识读: 2.1.1黑色金属:
(1)定义:通常把以铁及以铁碳为主的合金(钢铁)称为黑色金属。
(2)铸铁:灰铸铁HT抗拉强度(σb)200(MPa)、可锻铸铁KT(H黑心、Z珠光体)抗拉强度(σb)300-伸长率06、球墨铸铁QT抗拉强度(σb)400-伸长率18。(3)碳钢:
按含碳量分:低、中、高碳钢。
按质量分:普通、优质、高级优质。按用途分:
普通:Q235A:一般工程用,屈服强度Q数值235等级A。
优质碳素结构钢:45钢:机械零件用,中碳钢,含碳量0.45%);
碳素工具钢:T12:工具钢,用于刃具、量具、模具用钢,含碳量1.2%。铸造碳钢:铸钢ZG屈服强度不低于270-抗拉强度不低于500。(4)合金钢: 按用途分:
合金结构钢:40Cr:合金结构钢,含碳量0.40%,合金含量小于1.5%不标。合金工具钢:9SiCr:合金工具钢,含碳量0.9%,Si、Cr含量小于1.5%;
高速钢(锋钢)W18Cr4V:含碳量0.7-0.8%,钨含量18%,Cr含量4%,V含量小于1.5%。2.1.2有色金属
(1)有色的定义:除黑色金属以外的金属材料,统称为有色金属。(2)了解铝及铝合金。(2)了解铜及铜合金。
3、了解退火、正火、淬火、回火、调质、时效处理的目的、方法及应用。重点放在应用上。
(1)退火:消除铸件、焊接件、冷作件毛坯的应力。(2)时效处理:长时间退火,消除毛坯的应力。
(3)正火:消除锻件毛坯的锻造应力。调整硬度,便于加工。
(4)调质:淬火 回火,综合机械性能。一般安排在粗加工后、精加工前。(5)回火:消除淬火应力。温度越高,钢的强度、硬度下降,而塑性、韧性提高。
4.了解金属表面处理的一般方法。(1)表面淬火
(2)(表层)化学处理:电镀
物理处理:防锈漆因在金属表面外处理,不在此列。
第二篇:机械加工工艺基础教案
三、CA6140型卧式车床主要结构
(一)主轴箱
CA6140车床的主轴箱包括:箱体、主轴部件、传动机构、操纵机构、换向装置、制动装置和润滑装置等。其功用在于支承主轴和传动其旋转,并使其实现起动、停止、变速和换向等。
机床的主轴箱是一个比较复杂的运动部件,它的装配图包括展开图、各种向视图和剖面图,以表示出主轴箱的所有零件及其装配关系。
作。
1、主轴部件
主轴部件是主轴箱最重要的部分,由主轴、主轴轴承和主轴上的传动件、密封件等组成。
主轴前端可安装卡盘,用以夹持工件,并由其带动旋转。主轴的旋转精度、刚度和抗振性等对工件的加工精度和表面粗糙度有直接影响,因此对主轴部件的要求较高。
CA6140型车床的主轴是一个空心阶梯轴。其内孔是用于通过棒料或卸下顶尖时所用的铁棒,也可用于通过气动、液压或电动夹紧驱动装置的传动杆。主轴前端有精密的莫氏6号锥孔,用来安装顶尖或心轴,利用锥面配合的摩擦力直接带动心轴和工件转动。主轴后端的锥孔是工艺孔。
CA6140型卧式车床的主轴部件在结构上做了较大改进,由原来的三支承结构改为两支承结构;由前端轴向定位改为后端轴向定位。前轴承为P级精度的双列短圆柱滚子轴承,用于承受径向力。后轴承为一个推力球轴承和角接触球轴承,分别用于承受轴向力和径向力。
主轴的轴承的润滑都是由润滑油泵供油,润滑油通过进油孔对轴承进行充分润滑,并带走轴承运转所产生的热量。为了避免漏油,前后轴承均采用了油沟式密封装置。主轴旋转时,依靠离心力的作用,把经过轴承向外流出的润滑油甩到轴承端盖的接油槽里,然后经回油孔流回主轴箱。
主轴上装有三个齿轮,前端处为斜齿圆柱齿轮,可使主轴传动平稳,传动时齿轮作用在主轴上的轴向力与进给力方向相反,因此可减少主轴前支承所承受的轴向力。
主轴前端安装卡盘、拨盘或其它夹具的部分有多种结构形式。
2、开停和换向装置
CA6140型卧式车床采用的双向多片式摩擦离合器实现主轴的开停和换向。
其由结构相同的左右两部分组成,左离合器传动主轴正转,右离合器传动主轴反转。摩擦片有内外之分,且相间安装。如果将内外摩擦片压紧,产生摩擦力,轴I的运动就通过内外摩擦片而带动空套齿轮旋转;反之,如果松开,轴I的运动与空套齿轮的运动不相干,内外磨擦片之间处于打滑状态。正转用于切削,需传递的扭矩较大,而反转主要用于退刀,所以左离合器摩擦片数较多,而右离合器摩擦片数较少。
内外摩擦片之间的间隙大小应适当:如果间隙过大,则压不紧,摩擦片打滑,车床动力就显得不足,工作时易产生闷车现象,且摩擦片易磨损。反之,如果间隙过小,起动时费力;停车或换向时,摩擦片又不易脱开,严重时会导致摩擦片被烧坏。同时,由此也可看出,摩擦
离合器除了可传递动力外,还能起过载保险的作用。当机床超载时,摩擦片会打滑,于是主轴就停止转动,从而避免损坏机床。所以摩擦片间的压紧力是根据离合器应传递的额定扭矩来确定的,并可用拧在压套上的螺母9a和9b来调整。
3、制动装置
制动装置功用在于车床停车过程中克服主轴箱中各运动件的惯性,使主轴迅速停止转动,以缩短辅助时间。CA6140型卧式车床采用闸带式制动器实现制动。
制动带6的拉紧程度可由螺钉5进行调整。其调整合适的状态,应是停车时主轴能迅速停
止,而开车时制动带能完全松开。
(二)溜板箱
溜板箱的功用是:将丝杠或光杠传来的旋转运动转变为直线运动并带动刀架进给;控制刀架运动的接通、断开和换向;机床过载时控制刀架停止进给;手动操纵刀架移动和实现快速移动。
因此,溜板箱通常设有以下几种机构:
接通丝杠传动的开合螺母机构;
将光杠的运动传至纵向齿轮齿条和横向进给丝杠的传动机构;
接通、断开和转换纵、横向进给的转换机构;
保证机床工作安全的过载保险装置和互锁机构;
控制刀架运动的操纵机构;
改变纵、横向机动进给运动方向的换向机构;
快速空行程传动机构。
1、纵横向进给操纵机构
CA6140型车床的纵、横机动进给运动的接通、断开和换向,采用一个手柄集中操纵方式。当需要纵、横向移动刀架时,向相应的方向扳动操纵手柄1即可。
2、互锁机构
为了避免损坏机床,必须保证横、纵向机动进给运动和车螺纹进给运动不能同时接通。
为此,CA6140型车床的溜板箱中设有互锁机构。
因此,合上开合螺母后,纵横向机动进给都不能接通。而接通纵向或横向机动进给后,开合螺母都不能合上。
第七章 机械加工质量生产率和经济性
第一节 机械加工质量
机械零件的加工质量包括两个方面:加工精度和表面质量。
一、加工精度
(一)加工精度的概念
加工精度是指加工后的零件在形状、尺寸、表面相互位置等方面与理想零件的符合程度。它由尺寸精度、形状精度和位置精度组成。
尺寸精度:指加工后零件表面本身或表面之间的实际尺寸与理想尺寸之间的符合程度。
形状精度:指加工后零件表面本身的实际形状与理想零件表面形状之间的符合程度。
位置精度:指加工后零件各表面之间的实际位置与理想零件各表面之间的位置的符合程度。
(二)机械加工精度获得的方法
1.尺寸精度的获得方法
1)试切法 这是一种通过试切工件—测量—比较—调整刀具—再试切—……再调整,直至获得要求的尺寸的方法。
2)调整法 是按试切好的工件尺寸、标准件或对刀块等调整确定刀具相对工件定位基准的准确位置,并在保持此准确位置不变的条件下,对一批工件进行加工的方法。
3)定尺寸刀具法 在加工过程中采用具有一定尺寸的刀具或组合刀具,以保证被加工零件尺寸精度的一种方法。
4)自动控制法 通过由测量装置、进给装置和切削机构以及控制系统组成的控制加工系统,把加工过程中的尺寸测量、刀具调整和切削加工等工作自动完成,从而获得所要求的尺寸精度的一种加工方法。
2.形状精度的获得方法
机械加工中获得一定形状表面的方法可以归纳为以下三种。
1)轨迹法 此法利用刀具的运动轨迹形成要求的表面几何形状。刀尖的运动轨迹取决于刀具与工件的相对运动,即成形运动。
用这种方法获得的形状精度取决于机床的成形运动精度。
2)成形法 此法利用成形刀具代替普通刀具来获得要求的几何形状的表面。机床的某些成形运动被成形刀具的刀刃所取代,从而简化了机床结构,提高了生产效率。
用这种方法获得的表面形状精度既取决于刀刃的形状精度,又有赖于机床成形运动的精度。
3)范成法 零件表面的几何形状是在刀具与工件的啮合运动中,由刀刃的包络面形成的。因而刀刃必须是被加工表面的共扼曲面,成形运动间必须保持确定的速比关系,加工齿轮常用此种方法。
3.位置精度的获得方法
在机械加工中,获得位置精度的方法主要有下述两种。
1)一次装夹法 工件上几个加工表面是在一次装夹中加工出来的。
2)多次装夹法 即零件有关表面间的位置精度是由刀具相对工件的成形运动与工件定位基准面(亦是工件在前几次装夹时的加工面)之间的位置关系保证的。在多次装夹法中,又可划分为:
① 直接装夹法 即通过在机床上直接装夹工件的方法。
② 找正装夹法 即通过找正工件相对刀具切削成形运动之间的准确位置的方法。
③ 夹具装夹法 即通过夹具确定工件与刀具切削刃成形运动之间的准确位置的方法。
二、表面质量
(一)表面质量的概念
零件的机械加工质量不仅指加工精度,而且也包括加工表面质量。表面质量是指机械加工后零件表面层的几何结构,以及受加工的影响表面层金属与基体金属性质产生变化的情况。表面层一般只有0.05~0.15mm。
在金属切削过程中,形成加工表面时发生金属的弹性变形和撕裂,同时伴随着切削力和切削热的作用,使整个工艺系统可能产生振动。因此已加工表面不可能是理想的光滑的表面,而是存在着粗糙度、波纹等几何形状误差以及划痕、裂纹等表面缺陷。零件表面层材料的化学和物理性质也发生一系列变化。
表面质量的主要内容包括以下方面:
1.表面的几何形状
2.表面层物理机械性能的变化
由于表面层沿深度的变化,所以表面层物理机械性能的变化主要有:
1)表面层的冷作硬化
2)表面层中残余应力的大小、方向及分布情况
3)表面层金相组织的改变
4)表面层的其它物理机械性能的变化
(二)表面质量对零件使用性能的影响
机械产品之所以要维修,更换某些零件或整个报废,一般不是因为它的零件发生了整体破坏,而是零件之间有相互运动的表面产生过大的磨损,从而改变了机械的性能,使之不能使用。有时即使零件发生了整体断裂,究其原因也往往是首先在零件表面上形成了疲劳裂纹,裂纹不断扩展,从而造成了零件的整体破坏。因此,了解零件的表面质量对其使用性能的影响,正确的提出对零件表面质量的要求是非常重要的。
1.表面粗糙度对耐磨性的影响
零件的耐磨性除与材料的性能、热处理状态和润滑条件有关外,零件自身的表面粗糙度起着十分重要的作用。
2.冷作硬化对耐磨性的影响
冷作硬化可以显著地提高零件表面的耐磨性。
3.表面层应力集中及残余应力对疲劳强度的影响
零件表面微观不平度会在它的“波谷”底部造成应力集中。
4.表面质量对零件耐蚀性能的影响
降低表面粗糙度值可以提高零件的抗腐蚀性能。
5.表面质量对配合性质的影响
对于间隙配合,如果零件表面粗糙度值过大,初期磨损就较严重,导致磨损量加大,从而使配合间隙增大,破坏了原设计要求的配合精度。对于过盈配合,表面粗糙度值过大,装配中,在压入配合的表面上的部分微小波峰被挤平,使实际得到的过盈量比设计要求的小,降低了过盈表面的结合强度,从而影响零件联接的可靠性。
三、提高加工质量的措施
影响零件加工精度的因素很多,为了提高加工质量,保证机械加工精度,生产中采取的工艺措施很多,这里仅举一些实例,作简要说明。
(一)增强工件刚性的工艺措施
生产中常遇到一些零件刚性差,按传统的加工方法则很难达到加工精度,为此需采取工艺措施提高工件的刚性。
(二)采用减振、消振装置
第二节 生产率和经济性
一、生产率
(一)生产率的概念
机械加工的劳动生产率,是指工人在单位时间内加工出合格零件的数目。工艺过程的基本组成单元是工序,因此评价机械加工劳动生产率,主要看各个工序加工的单件工时,即该工序加工完成一个零件所需要的时间,以t单表示。组成:基本时间、辅助时间、服务时间、休息和自然需要时间、准备结束时间。
(二)提高生产率的途径
缩短基本时间、缩短辅助时间、缩短服务时间、缩短准备结束时间。
二、工艺过程的经济性
(一)生产成本和工艺成本
造一个产品或零件所必须的一切费用的总和,称为产品或零件的生产成本。生产成本由两大部分费用组成:即工艺成本和其它费用。
工艺成本是与工艺过程直接有关的费用,约占生产成本的70%~75%,它又包含可变费用(V)和不变费用(C)。
可变费用(V)的组成:材料费;操作工人工资;机床维持费;通用机床折旧费;刀具维持费折旧费;夹具维持费折旧费。它们与年产量直接有关。
不变费用(C)的组成:调整工人工资;专用机床折旧费;专用刀具折旧费;专用夹具折旧费。它们与年产量无直接关系。因为专用机床、专用工装是专门为某种零件加工所用的,不能用于其它零件,所以它们的折旧费、维持费等是确定的,与年产量无直接关系。
从而,一个零件的全年工艺成本E(单位为元/年)为: E = NV + C
(二)工艺成本与年产量的关系
(三)不同工艺方案经济性比较
对不同的工艺方案进行经济性比较时,有下列两种情况:
1.若两种工艺方案的基本投资相近或都采用现有设备时,则工艺成本既作为衡量各方案经济性的重要依据。
2.若两种工艺方案的基本投资相差较大时,必须考虑不同方案的基本投资差额的回收期限。
第五章 其他类型常用机床
第一节 铣床
一、铣床类型与用途
铣床是用于铣削加工的机床。
根据构造特点及用途,铣床的主要类型有:卧式升降台铣床、立式升降台铣床、工作台不升降铣床、圆工作台铣床、龙门铣床、铣床、仿形铣床和各种专门化铣床。
铣床是一种用途广泛的机床。它可以加工平面(水平面、垂直面、阶台面)、沟槽(键槽、T型槽、燕尾槽等)、分齿零件(齿轮、链轮、棘轮、花键轴等)、螺旋形表面(螺纹、螺旋槽)及各种曲面。此外,还可用于对回转体表面及内孔进行加工,以及进行切断工作等。
二、各类铣床主要特点
铣床使用的是旋转的多齿刀具,生产效率较高。但是,由于铣削加工为断续切削,铣刀的每个刀齿的切削层参数随时都在变化,所以铣削力的大小和方向也在不断变化,容易引起机床振动。因此,铣床在结构上要求有较高的刚度和抗振性。
(一)万能升降台铣床
万能升降台铣床的主轴为水平布置,属卧式升降台铣床,主要用于铣削平面、沟槽和成形表面。
在工作台和床鞍之间有一层回转盘,它可以相对床鞍在水平面内调整±45°偏转,改变工作台的移动方向,从而可加工斜槽、螺旋槽等。
此外,还可换用立式铣头,插头等附件,扩大机床的加工范围。
(二)立式升降台铣床
立式升降台铣床与卧式升降台铣床的主要区别在于安装铣刀的机床主轴是垂直于工作台面。除立铣头外其它主要组成部件与卧式升降台铣床相同。铣头可以在垂直平面内调整角度,主轴可沿其轴线方向进给或调整位置。
立式铣床用于加工平面、沟槽、台阶,还可铣削斜面、螺旋面、模具型腔和凸模成形表面等。
(三)其他常用铣床
1、龙门铣床
龙门铣床是一种大型的高效通用机床,它在结构上呈柜架式布局,具有较高的刚度及抗振性。主要用于大中型工件的平面、沟槽加工。可以进行粗铣、半精铣和精铣加工。
2、工作台不升降铣床
工作台不升降铣床一般为立式布局,工作台不作升降运动,机床的垂直进给运动由安装在立柱上的主轴箱作升降运动来实现。这种铣床由于工作台层次少,刚性好,适用于加工外形为中等或大尺寸的工件。
工作台不升降铣床根据工作台面的形状,可分为矩形工作台式和圆形工作台式两类。
第二节 钻床和镗床
钻床和镗床都是加工内孔的机床,主要用于加工外形复杂,没有对称旋转轴线的工件,如杠杆、盖板、箱体、机架等零件上的单孔或孔系。
一、钻床
钻床类机床的主要工作是用孔加工刀具进行各种类型的孔加工。主要用于钻孔和扩孔,也可以用来铰孔、攻螺纹、锪沉头孔及锪凸台端面。
钻床分为坐标镗钻床、深孔钻床、摇臂钻床、台式钻床、立式钻床、卧式钻床、铣钻床、中心孔钻床等。
(一)立式钻床
立式钻床是钻床中应用较广的一种,其特点是主轴轴线垂直布置,且位置固定,需调整工件位置,使被加工孔中心线对准刀具的旋转中心线。由刀具旋转实现主运动,同时沿轴向移动作进给运动。因此,立式钻床适用于加工中、小型工件。
多轴立式钻床是立式钻床的一种,可对孔进行不同内容的加工或同时加工多个孔,大大提高了生产效率。
台式钻床实质上是一种加工小孔的立式钻床,结构简单小巧,使用方便,适于加工小型零件上的小孔。
(二)摇臂钻床
对于体积和质量都比较大的工件,在立式钻床上加工很不方便,此时可以选用摇臂钻床进行加工。
主轴箱可沿摇臂上的导轨横向调整位置,摇臂可沿立柱的圆柱面上、下调整位置,还可绕立柱转动。加工时,工件固定不动,靠调整主轴的位置,使其中心对准被加工孔的中心,并快速夹紧,保持准确的位置。摇臂钻床广泛地应用于单件和中、小批生产中,加工大、中型零件。
如果要加工任意方向和任意位置的孔和孔系,可以选用万向摇臂钻床,机床主轴可在空间绕二特定轴线作回转。机床上端还有吊环,可以吊放在任意位置。故它适于加工单件、小批生产的大中型工件。
为了提高钻削加工效率,目前正在发展钻削加工中心。集钻孔、攻螺纹和铣削于一体,可得到很高的加工精度和生产率。
二、镗床
镗床类机床主要工作是用镗刀进行镗孔,也可进行铣平面、车凸缘、切螺纹等工作。有卧式镗床、立式镗床、落地镗床、金刚镗床和坐标镗床等多种类型。
(一)卧式镗床
卧式镗床又称万能镗床,可以进行孔加工、车端面、车凸缘、车螺纹和铣平面等。尤其适于加工箱体零件中尺寸较大、精度较高且相互位置要求严格的孔系。
(二)落地镗床
为适应某些庞大而笨重工件的加工,产生了落地镗床。
落地镗床具有万能性大、集中操纵、移动部件的灵敏度高、操作方便等特点。
为提高生产效率和加工精度,在落地镗床的基础上还发展了以铣削为主的铣镗床。
(三)坐标镗床
坐标镗床主要用于镗削高精度的孔,特别适用于加工相互位置精度很高的孔系,如钻模、镗模和量具等零件上的精密孔加工。
坐标镗床制造精度很高,具有良好的刚度和抗振性,最主要特点是具有坐标位置的精密测量装置,加工时,按直角坐标来精确定位。
坐标镗床还可钻孔、扩孔、铰孔等工作。也可以用于精密刻度、划线、及孔距和直线尺寸的测量等工作。所以坐标镗床是一种万能性很强的精密机床。
坐标镗床有立式的和卧式的,立式坐标镗床又有单柱和双柱之分,以适应不同的加工需要。
金刚镗床是一种高速精镗床,采用很高的切削速度、极小的背吃刀量和进给量,可加工出质量很高的表面。适于成批、大量生产中,加工精密孔。
第四章 典型机床工作运动分析
二、CA6140型卧式车床传动系统分析
机床的加工过程中,需要有多少个运动就应该有多少条传动链。所有这些传动链和它们之间的相互联系就组成了一台机床的传动系统。分析传动系统也就是分析各传动链,分析各传动链时,应按下述步骤进行:
(1)根据机床所具有的运动,确定各传动链两端件。
(2)根据传动链两端件的运动关系,确定计算位移量。
(3)根据计算位移量及传动链中各传动副的传动比,列出运动平衡式。
(4)根据运动平衡式,推导出传动链的换置公式。
传动链中换置机构的传动比一经确定,就可根据运动平衡式计算出机床执行件的运动速度或位移量。
要实现机床所需的运动,CA6140型卧式车床的传动系统需具备以下传动链:实现主运动的主传动链;
实现螺纹进给运动的螺纹进给传动链;
实现纵向进给运动的纵向进给传动链;
实现横向进给运动的横向进给传动链;
实现刀架快速退离或趋近工件的快速空行程传动链。
(一)主运动传动链
1、传动路线
CA6140型卧式车床主运动,是由主电动机经三角皮带传至主轴箱中的轴I,轴I上装有一个双向多片式摩擦离合器M1,用以控制主轴的启动停止和换向。轴I的运动经离合器M1和轴II--III间变速齿轮传至轴III,然后分两路传递给主轴。
(1)高速传动路线 主轴VI上的滑移齿轮Z50处于左边位置,运动经齿轮副直接传给主轴。
(2)中低速传动路线 主轴VI上的滑移齿轮Z50处于右边位置,且使齿式离合器M2接合,运动经轴III-IV-V间的背轮机构和齿轮副传给主轴。
传动路线是分析和认识机床的基础,常用的方法是“抓两端,连中间”:首先找到传动链的两端件,然后按照运动传递或联系顺序,从一个端件到另一个端件,依次分析各传动轴之间的传动结构和运动传递关系。
2、主轴的转速级数与转速计算
根据传动系统图和传动路线表达式,主轴正转可获得2´3´(2´2-1)+2´3=24级不同转速。同理,主轴反转12级。
主轴的转速可按下列运动平衡式计算:
n主
主轴反转一般不用来进行车削,而是为了在车螺纹时,使刀架在主轴与刀架之间的传动链不脱开的情况下退回至起始位置,以免下次走刀发生“乱扣”现象.同时为了节省退刀时间,主轴反转转速高于正转转速。
(二)螺纹进给运动传动链
CA6140型卧式车床螺纹进给运动传动链,可以保证机床车削公制、英制、模数制和径节制四种标准螺纹。
此外,还可以车削大导程、非标准和较精密的螺纹。这些螺纹可以是右旋的,也可以是左旋的。不同标准的螺纹用不同的参数表示其螺距。
无论车削哪一种螺纹,都必须在加工中保证主轴每转一转,刀具准确地移动被加工螺纹一个导程的距离。由此可列出螺纹进给传动链的运动平衡式:
1(主轴)×u0×ux×L丝=L工
由上式可知,被加工螺纹的导程正比于传动链中换置机构的可变传动比。为此,车削不同标准和不同导程的各种螺纹时,必须对螺纹进给传动链进行适当调整,使其传动比根据不同种类螺纹的标准数列作相应改变。
公制螺纹是我国常用的螺纹,在国家标准中已规定了其标准螺距值。公制螺纹的标准螺距是按分段等差数列的规律排列的(参见表4-6),为此,螺纹进给传动链的变速机构也应按分段等差数列的规律变换其传动比。这一要求是通过适当调整进给箱中的变速机构来实现的。
车削公制螺纹时,进给箱中的离合器M3、M4脱开,M5接合。其运动由主轴VI经齿轮副,轴IX至轴XI间的左右螺纹换向机构,挂轮,传至进给箱的轴XII,然后再经齿轮副,轴XIII--XIV间的滑移齿轮变速机构(基本螺距机构),齿轮副传至轴XV,接下去再经轴XV—XVII间的两组滑移齿轮变速机构(增倍机构)和离合器M5传动丝杠XVIII旋转。合上溜板箱中的开合螺母,使其与丝杠啮合,便带动了刀架纵向移动。其传动路线表达式如下:
其中,u基为轴XIII-XIV间变速机构的可变传动比,共8种:26/
28、28/
28、32/
28、36/
28、19/
14、20/
14、33/
21、36/21,即6.5/
7、7/
7、8/
7、9/
7、9.5/
7、10/
7、11/
7、12/7。它们近似按等差数列的规律排列,是获得各种螺纹导程的基本机构,故通常称之为基本螺距机构,或基本组。
u倍为轴XV-XVII间变速机构的可变传动比,共4种:28/35×(35/28)、28/35×(15/48)、18/45×(35/28)、18/45×(15/48),即1、1/
2、1/
4、1/8。它们按倍数关系排列,用于扩大机床车削螺纹导程的种数,一般称之为增倍机构,或增倍组。
根据传动系统图或传动链的传动路线表达式,可列出车削公制螺纹的运动平衡式:
L=kP=1(主轴)u基u倍´12 化简得:
L=7u基u倍
由此可得8´4=32种导程值,其中符合标准的只有20种(见表4-6)
由上述可知,利用基本组中各传动副传动,可以车削出按等差数列规律排列的基本导程值;经过增倍组后,又可把由基本组得到的8种基本导程值按1:2:4:8的关系增大或缩小,两种变速机构的不同组合,便可得到常用的、按分段等差数列的规律排列的标准导程(或螺距)的公制螺纹。
加工其它不同种类和标准的螺纹时,只要通过离合器不同的离合状态和挂轮适当组合即可。
(三)机动进给传动链
实现一般车削时刀架机动进给的纵向和横向进给传动链,由主轴至进给箱中轴XVII的传动路线与车公制或英制常用螺纹的传动路线相同,其后运动经齿轮副传至光杠XIX(此时离合器M5脱开,齿轮Z28与轴XIX 齿轮Z56 啮合),再由光杠经溜板箱中的传动机构,分别传至光杠齿轮齿条机构和横向进给丝杠XXVII,使刀架作纵向或横向机动进给,其纵向机动进给传动路线表达式如下:
溜板箱中的双向牙嵌式离合器M8、M9和齿轮传副组成的两个换向机构,分别用于变换纵向和横向进给运动的方向。利用进给箱中的基本螺距机构和增倍机构,以及进给传动链的不同传动路线,可获得纵向和横向进给量各64种。纵向和横向进给传动链的两端件的计算位移为:
纵向进给:主轴转一转———刀架纵向移动f 纵(单位:mm)
横向进给:主轴转一转———刀架横向移动f 横(单位:mm)
由传动分析可知,横向机动进给在其与纵向机动进给传路线一致时,所得的横向进给量是纵向进给量的一半。
(四)刀架的快速移动传动路线
刀架的快速移动是使刀具机动地快速退离或接近加工部位,以减轻工人的劳动强度和缩短辅助时间。当需要快速移动时,可按下快速移动按钮,装在溜板箱中的快速电动机(0.25kW,2800r/min)的运动便经齿轮副传至轴XX,然后再经溜板箱中与机动进给相同的传动路线传至刀架,使其实现纵向和横向的快速移动。
了节省辅助时间及简化操作,在刀架快速移动过程中光杠仍可继续传动,不必脱开进给传动链。这时,为了避免光杠和快速电动机同时传动轴XX而导致其损坏,在齿轮Z56 及轴XX之间装有超越离合器,即可避免二者发生的矛盾。
超越离合器结构原理如教材图4-4所示。
第二节 金属切削原理及其应用
金属的切削过程是一个复杂的过程,在这一过程中形成切屑、产生切削力、切削热与切削温度,刀具磨损等许多现象,研究这些现象及变化规律,对于合理使用与设计刀具,夹具和机床,保证加工质量,减少能量消耗,提高生产率和促进生产技术发展都有很重要的意义。
一、切削变形
(一)切削变形特点和切屑的种类
如图所示,金属压缩实验,当金属试件受挤压时,在其内部产生主应力的同时,还将在与作用力大致成45°方向的斜截面产生最大切应力,在切应力达到屈服强度时将在此方向剪切滑移。
金属刀具切削时相当于局部压缩金属的压块,使金属沿一个最大剪应力方向产生滑移。
如图所示当切屑层达到切削刃OA(OA代表始滑移面)处时,切应力达到材料屈服强度,产生剪切滑移,切削层移到OM面上,剪切滑移终止,并离开切削刃后形成了切屑,然后沿前面流出。
始滑移面OA与终滑移面OM之间的变形区称为第一变形区,宽度很窄(约0.02~0.2mm),故常用OM剪切面亦称滑移面来表示,它与切削速度的夹角称为剪切角φ。
当切屑沿前面流出时,由于受到前面挤压和摩擦作用,在前面摩擦阻力的作用下,靠近前面的切屑底层金属再次产生剪切变形。使切屑底层薄的一层金属流动滞缓,流动滞缓的一层金属称为滞流层,这一区域又称为第二变形区。
工件已加工表面受到钝圆弧切削刃的挤压和后面的摩擦,使已加工表面内产生严重变形,已加工表面与后面的接触区称为第三变形区。
这三个变形区不是独立的,而是有着紧密的联系和相互影响。
根据被切的金属剪切滑移后形成切屑的外形不同,可将切屑分成以下四种类型。
1.带状切屑
2.节状切屑(挤裂切屑)
3.粒状切屑(单元切屑)
4.崩碎切屑
切屑的形态随切削条件的不同可互相转化。
(二)切削变形程度的表示方法
(三)刀具前面上的摩擦与积屑瘤
切屑流经刀具前面时,在高压力的作用下产生剧烈的摩擦并产生很高的温度,刀屑接触区可分成粘结区和滑动区两部分。
粘结区的摩擦为内摩擦,切削时由于高压和高温作用,切屑底部流速要比切屑的上层缓慢,从而在切屑底部形成了一个滞流层,内摩擦就是滞流层与其上层金属在切屑内部的摩擦,这部分的切向力等于被切材料的剪切屈服点,它不同于金属接触面滑动摩擦。
滑动区的摩擦为外摩擦,即滑动摩擦,摩擦力的大小与摩擦系数和法向正压力有关,而与接
触面积大小无关。在粘结区内,切应力是常数,且等于材料的剪切屈服强度,在滑动区内则随着距离切削刃越远而逐渐减小,在整个接触区内平均正应力亦随着距切削刃越远而减小。在刀屑间的两种摩擦中,力的大小一般占总摩擦力的85%左右,所以研究前面摩擦中应以内摩擦为主。
由于刀屑接触面的粘结摩擦及滞流作用,在中速或较低的切削速度切削塑性金属材料时,经常在刀具前面粘结一些工件材料,形成一个硬度很高的楔块,这楔块称为积屑瘤。
从实验得知,积屑瘤的金相组织与工件母材料相比未发生相变,它是受了强烈塑性变形的被切材料的堆积物,剧烈的加工硬化使之硬度大幅提高。它是逐渐形成的,经过一个生成、长大、脱落的周期性过程。
积屑瘤的存在可代替刀刃切削,并对切削刃有一定的保护作用;同时增大了实际工作前角,减小了切削变形。但由它堆积的钝圆弧刃口造成挤压和过切现象,使加工精度降低,积屑瘤脱落后粘附在已加工表面上恶化表面粗糙度,所以,在精加工时应避免积屑瘤产生。
影响积屑瘤的主要因素有工件材料,切削层、刀具前角及切削液等,工件材料塑性越大,刀屑间摩擦系数和接触长度越大,容易生成积屑瘤。
切削速度对切屑瘤影响很大,切削速度很低时,由于摩擦系数较小,很少产生积屑瘤。在切削速度υc=20m/min左右,切削温度约为300℃时,最易产生积屑瘤,且高度最大。切削速度是通过平均温度和平均摩擦系数影响积屑瘤的。
减小进给量,增大刀具前角,提高刃磨质量,合理选用切削液,使摩擦和粘结减少,均可达到抑制积屑瘤的作用。
(四)已加工表面变形和加工硬化
任何刀具的切削刃都很难磨得绝对锋利,当在钝圆弧切削刃和其邻近的狭小后面的切削挤压摩擦下,切屑晶体向下滑动绕过刃口形成已加工表面。使已加工表面层的金属晶粒发生扭曲挤紧,破碎等,构成了已加工表面上的变形区。
已加工表面经过严重塑性变形而使表面原硬度增高,这种现象称为加工硬化(冷硬)。
金属材料经硬化后在表面上会出现细微裂纹和残余应力,从而降低了加工质量和材料的疲劳强度,增加下道工序加工困难,加速刀具磨损,所以在切削时应设法避免或减轻加工硬化现象。
(五)影响切削变形的因素
切削变形的程度主要决定于剪切角和摩擦系数大小。
影响切削变形的主要因素有工件材料,前角,切削用量。
工件材料的强度、硬度越高,刀屑间正压力则增大,平均正应力会增加,因此,摩擦系数下降,剪切角增大,切削变形减小。而切削塑性较高的材料,则变形较大。
刀具前角越大,切削刃越锋利,使剪切角增大,变形系数减小,因此,切削变形减小。
切削速度对切削变形的影响,切削速度是通过切削温度和积屑瘤影响切屑变形的。切削速度在3~20m/min范围内提高,积屑瘤高度随着增加,刀具实际前角增大,故变形系数减小。当20m/min 左右时,积屑瘤高度最高,ξ值最小。在20~40m/minn范围内提高,积屑瘤逐渐消失,刀具实际剪切角减小,ξ增大。当>40m/min 时,由于切削温度逐渐升高,变形系数ξ减小。切削铸铁等脆性金属时,一般不产生积屑瘤,随着切削速度的增大,变形系数则缓慢地减小。
进给量增大,使切削厚度增加,正压力增大,平均正应力增大,因此,μ下降,剪切角φ增大,使ξ减小。同时,由于各切削层的变形和应力分布不均匀,近前发面处的金属变形和应力大,离前刀面越远的金属层变形和应力越小。切削厚度增加,近前刀面处发生剧烈变形层增加不多,切削平均变形减小,使变形系数变小。
二、切削力
(一)切削力的来源和分解
切削过程中,刀具施加于工件使工件材料产生变形,并使多余材料变为切屑所需的力称为切削力
而工件低抗变形施加于刀具称为切削抗力,在分析切削力以及切削机理时,切削力与切削抗力意义相同。
刀具切削工件时,由于切屑与工件内部产生弹性,塑性变形抗力,切屑与工件对刀具产生摩擦阻力,形成刀具对工件作用一个合力F,由于其大小,方向不易确定。
因此,为了便于测量、计算及研究,通常将合力F分解成三个分力。
(二)工作功率
(三)计算切削力的经验公式
(四)单位切削力和单位切削功率
(五)影响切削力的主要因素
1.工件材料的影响,工件材料的硬度和强度越高,虽然切削变形会减小,但由于剪切屈服强度增高,产生的切削力会越大;工件材料强度相同时,塑性和韧性越高,切削变形越大,切削与刀具间摩擦增加,切削力会越大。切削铸铁时变形小,摩擦小,故产生的切削力小。
2.切削用量的影响 进给量、背吃刀量增大,二者都会使切削力增大,而实际上背吃刀量对切削力的影响要比进给量大。其主要原因在于,αp增大一倍时,切削厚度hD 不变,而切削宽度bD 则增大一倍,切削刃上的切削负荷也随之增大一倍,即变形力和摩擦成倍增加,最终导致了切削力以成倍增加;f增大一倍时,切削宽度bD不变,只是切削厚度hD增大一倍,平均变形减小,故切削力增加不到一倍。
切削速度对切削力的影响:切削塑性金属时,在40m/min时,由于积屑瘤的产生与消失,使刀具前角增大或减小,引起变形系数的变化,导致了切削力的变化;当>40m/min,切削温度升高,使平均摩擦系数下降,切削力也随之下降。切削灰铸铁等脆性材料时,塑性变形很小,且刀屑间的摩擦也很小,因此,υc对影响不大。
3.刀具几何参数的影响 前角对Fc影响较大。前角增大,切削变形减小,故切削力减小。主偏角对进给力Ff和背向力Fp影响较大,当кr增大时Ff增大而Fp 则减小。刃倾角对背切削力FP影响较大,因为λs由正值向负值变化时,会使顶向工件轴线的背向力增大。
此外刀尖圆弧半径,刀具磨损程度等因素对切削力也有一定的影响。
三、切削温度与切削液
由它引起的切削温度的升高会影响刀具磨损和耐用度,同时抑制了切削速度的提高,还将导致工件、机床,刀具和夹具的热变形,降低零件的加工精度和表面质量。
(一)切削热的产生和传散
提高切削速度,由摩擦生成的热量增多,但切屑带走的热量也增加,在刀具中热量减少,在工件中热量更少,所以高速切削时,切屑温度很高,在工件和刀具中温度较低,这有利于加工顺利进行。
(二)切削区温度分布和切削温度的测量
切削区温度一般是指切屑,工件和刀具按触表面上的平均温度,在正交平面内刀具、工件和切屑中温度分布规律如图2—19所示。
刀具与切屑接触面摩擦大,不易散热,产生的温度值最高;切屑带走热量最多,它的平均温度高于刀具、工件上的平均温度。
切削温度测量方法很多,目前以利用物体的热电效应来进行温度测量的热电偶法应用较多,其测量简单方便。
(三)影响切削温度的因素
切削温度的高低决定于产生热量多少和传散热量快慢两方面因素。切削时影响产生热量和传散热量的因素有:切削用量、工件材料的性能,刀具几何参数和冷却条件等。
切削用量对切削温度的影响,当υc、αp和f增加时,由于切削变形功和摩擦功增大,所以切削温度升高。其中切削速度影响最大,当υc增加一倍时,由于摩擦生热增多,切削温度约增加32%,进给量f的影响次之,当f增加一倍,切削温度约增加18%,因为f增加切削变形增加较少,并且改善了散热条件,故热量增加不多。背吃刀量αp影响最小,αp增加一倍时,切削温度约增加7%,这是因为αp增加使切削宽度增加,增大了热量的传散面积。
工件材料主要是通过硬度、强度和导热系数影响切削温度。
刀具几何参数中影响切削温度最明显的因素是前角γo和主偏角κr,其次是刀尖圆弧半径rε。前角γo增大,切削变形和摩擦产生的热较少,故切削温度下降,但 γo 过大散热变差,使切削温度升高。主偏角κr减少,切削变形摩擦增加,但κr减小切削宽度增大,改善了散热条件,由于散热起主要作用,故切削温度下降。增大刀尖圆弧半径能增大散热面积,降低切削温度。
刀具磨损后,刀具后面与已加工表面摩擦加大,切削刃变钝,使刃区前方对切屑的挤压作用增大,切屑变形增大,会使切削温度升高。在加工时,使用切削液也是降低切削温度的重要措施。
(四)切削液的选用
在切削过程中,合理使用切削液能有效减少切削刃,降低切削温度,从而能延长刀具寿命,改善已加工表面质量和精度。
1.切削液的作用
冷却作用、润滑作用、清洗作用、防锈作用等。
2.切削液的种类及选用
(1)水溶液 一般常用于粗加工和普通磨削加工中。
(2)乳化液 一般材料的粗加工常用乳化液,难加工材料的切削,常使用极压乳化液。
(3)切削油 一般材料的精加工常使用切削油,如普通精车、螺纹精加工等。
第三篇:机械加工工艺教案
第1章
金属切削加工基础
备课时间:09-2-14
上课时间:09-2-16 教学目的:
1、新学期刚开始,充分调动学生的积极性,并讲解学习本课程的方法与技巧。
2、掌握切削运动的类型、切削用量三要素的概念。教学重点:切削用量三要素 课时:2课时 授课内容:
1.1.1 切削运动
金属切削加工是用切削工具将坯料或工件上的多余材料切除,以获得合乎设计要求的工件的一种加工方法。
(复习金属切削加工和数控加工在机械制造中的地位)1.1 切削运动及切削要素
机床为实现切削加工所必需具有的加工工件与工件间的相对运动。它包括主运动和进给运动。
主运动(复习什么是主运动)
主运动的速度即切削速度:主运动的线速度。
dwnvc 1000
(分析推导过程,分析根据工件材料查表时只能查到切削速度,而不能直接查到转速的原因)
(二)进给运动
进给运动速度:指切削刃选定点相对于工件进给运动的瞬时速度,用vf表示 例:外圆车削时,进给运动速度常常用进给量f来表述,单位:mm / r
刨削时,进给运动速度用每一行程多少毫米来表述,单位为mm / str。
铣削时,进给运动速度常用每齿进给量f来表述,单位:mm/z
进给速度vf、进给量f、每齿进给量fz 和刀具齿数Z之间的关系如下:
vf = nf
1.1.2 切削时形成的表面
车削加工过程中工件上有三个不断变化着的表面:(1)待加工表面(2)已加工表面(3)过渡表面 1.1.3
切削用量(1)切削速度vc(2)背吃刀量ap(分析车削和铣削的ap有什么不同)(3)进给量f(解释切削用量三要素对加工的影响。)
备课时间:09-2-18
上课时间:09-2-19 教学目的:
1、掌握刀具的组成及几何角度的确定方法
2、熟悉刀具的工作角度对加工的影响。
教学重点:几何角度的确定方法。
教学难点:刀具的工作角度对加工的影响。课时:2课时 授课内容:
1.2 刀具组成及几何角度
(首先让学生传递着观察车刀)1.刀具切削部分的组成要素 刀杆:起夹持作用 刀头:(三面)前刀面:切屑流过的表面
主后刀面:刀具上与加工表面相对的表面
副后刀面:刀具上与已加工表面相对的表面
(两刃)
主切削刃:刀具上前刀面与主后刀面的交线
副切削刃:刀具上前刀面与副后刀面的交线
(一尖)
主切削刃与副切削刃的交点
(结合刀具实物和图片与学生一起分析并提问)2.车刀切削角度的坐标平面
基面Pr:通过主切削刃上的某一点,与主运动方向相垂直的平面。
车刀的基面平行于刀体底面。
切削平面Ps:通过主切削刃上的某一点,与过渡表面相切并垂直于基面的平面。正交平面Po:通过主切削刃上的某一点,并同时垂直于基面和切削平面的平面。(结合幻灯片与学生一起分析并提问)3.刀具的主要标注角度 1)前角(0)
前刀面和基面之间的夹角。2)后角(0)
主后刀面和切削平面之间的夹角。
(直接分析出前角和后角的正、负、零。并要求学生在车刀上分析出前角和后角的正、负时的形状,及其大、小对加工的影响。)3)主偏角(kr)
主切削刃与进给方向间的夹角 4)副偏角(kr’)
负切削刃与进给方向的夹角 5)刃倾角(S)
主切削刃与基面之间的夹角。在切削平面内度量
4、刀具的工作角度
进给运动对刀具工作角度的影响
使刀具实际工作后角减小,工作前角增大
刀具安装高低对刀具工作角度的影响
刀杆中心面(线)不垂直于进给运动方向的影响
由此分析出刀具的安装方法:
1、刀尖的高度应与工件中心的高度一致。
2、刀杆中心面(线)应垂直于进给运动方向。
备课时间:09-2-22
上课时间:09-2-23 教学目的:
1、了解切削层参数
2、掌握切屑的形成过程及切屑种类
3、熟悉积屑瘤的形成及其对切削加工的影响。
教学难点:切屑的形成过程。
教学重点:切屑种类和积屑瘤的形成及其对切削加工的影响。课时:2课时 授课内容:
5、切削层参数
(1)切削层公称厚度hD :垂直于过渡表面的切削层尺寸。
切削层截面的切削厚度为: hD = f sinκr
(2)切削层公称宽度bD
切削层截面的公称切削宽度为:bD = ap/sinκr(3)切削层公称横截面积
AD=hD bD= f sinκr.ap/sinκr= f ap
1.3 金属的切削过程
金属在切削过程中,会出现一系列物理现象,如金属变形、切削力、切削热、刀具磨损等,这些都是以切屑形成过程为基础而生产中出现的许多问题,如积屑瘤、振动、卷屑、断屑等,都与切削过程密切相关。1.3.1.切屑的形成过程及切屑种类
1、切屑形成过程:对塑性金属进行切削时,切屑的形成过程就是切削层金属的变形过程。
2、切屑的类型及切屑控制
类型:带状切屑、挤裂切屑、单元切屑、崩碎切屑
(预习第10页表1-1,总结出哪种切屑较好,怎样控制切屑的类型。)
切屑控制:
“不可接受”的切屑:切削条件恶劣导致。影响主要有拉伤工件的已加工表面;划伤机床;造成刀具的早期破损;影响操作者的安全。
切屑控制:在切削加工中采取适当的措施来控制切屑的卷曲、流出与折断,使形成“可接受”的良好屑形。
“可接受”的切屑标准:不妨碍正常的加工;不影响操作者的安全;易于清理、存
放和搬运。
(1)切屑的形态可随切削条件不同而改变
(2)可控制切削条件,使切屑形态向有利于生产的方面转化,保证切削加工的顺利进行和工件的加工质量:增大前角、提高切削速度、减小进给量 3.积屑瘤
在一定的切削速度和保持连续切削的情况下,加工塑性材料时,在刀具前刀面常常粘结一块剖面呈三角状的硬块,这块金属被称为积屑瘤。(1)积屑瘤的形成
切削过程中,由于金属的挤压和强烈摩擦,使切屑与前刀面之间产生很大的应力和很高的切削温度。当应力和温度条件适当时,切屑底层与前刀面之间的摩擦力很大,使得切屑底层流出速度变得缓慢,形成一层很薄的“滞流层”,当滞流层与前刀面的摩擦阻力超过切屑内部的结合力时,滞流层的金属与切屑分离而粘附在切削刃附近形成积屑瘤.(2)积屑瘤对切削加工的影响 有利方面:保护刀具、增加工作前角
不利方面:影响工件尺寸精度、影响工件表面粗造度(3).积屑瘤的控制
影响积屑瘤的因素:工件材料、切削用量、刀具前角、切削液等
控制措施:通过热处理,提高零件材料的硬度,降低材料的加工硬化。
要避免在中温、中速加工塑性材料
增大前角可减小切削变形,降低切削温度,减小积屑瘤的高度 采用润滑性能优良的切削液可减少甚至消除积屑瘤
3、鳞刺的形成
低速加工塑性金属材料时在已加工表面常会出现一种鳞片状毛刺,成为鳞刺。 成因:低速切削形成挤裂或单元切屑时,刀、屑间摩擦发生周期性变化使切屑在前面上周期性停留代替刀具推挤切削层造成金属的积聚,使以加工表面产生拉应力而导裂,并使切削厚度向切削线以下而形成鳞刺
4、已加工表面的变形
切屑经过刀刃钝圆B点后,受到后刀面BC段的挤压和摩擦,经过BC段后,这部分金属开始弹性恢复,恢复高度为△h,在恢复过程中又与后刀面CD部分产生摩擦,这部分切削层在OB,BC,CD段的挤压和摩擦后,形成了已加工表面的加工质量。所以说第三变形区对工件加工表面质量产生很大影响。
备课时间:09-2-25
上课时间:09-2-26 教学目的:
1、掌握刀具材料的基本要求及常用刀具材料。
2、熟悉切削力、切削热和切削温度及其对刀具寿命的影响。
教学重点和难点:刀具材料的基本要求及常用刀具材料。课时:2课时 授课内容:
1.4 刀具材料
概
述:刀具材料是指刀具上参与切削部分的材料。1.4.1 刀具材料的基本要求(1)高硬度
(2)高强度与强韧性
(3)较强的耐磨性和耐热性(4)优良导热性
(5)良好的工艺性与经济性 1.4.2 常用刀具材料
刀具材料种类很多,常用的有:工具钢(包括碳素工具钢、)、硬质合金、陶瓷金刚石(天然和人造)、立方氮化硼、碳素工具钢和合金工具钢,因其耐热性很差,目前仅用于手工工具。
1、高速钢
高速钢是一种含有钨、钼、钒等合金元素较多的工具钢,也称为锋钢或白钢. 特点:
1)强度高,抗弯强度为硬质合金的2~3倍;
2)韧性高,比硬质合金高几十倍;
3)硬度HRc63以上,且有较好的耐热性;
4)可加工性好,热处理变形较小。
应用:常用于制造各种复杂刀具(如钻头、丝锥、拉刀、成型刀具、齿轮刀具等)。
2、硬质合金
硬质合金是用高硬度、高熔点的金属碳化物粉末和金属粘结剂(如Co、Ni、Mo等)经高压成型后,再在高温下烧结而成的粉末冶金制品。
优点
硬质合金的硬度、耐磨性、耐热性都很高,允许的切削速度远高于高速钢,且能切削诸如淬火钢等硬材料。 不足(与高速钢相比):
其抗弯强度较低、脆性较大,抗振动和冲击性能也较差。
硬质合金因其切削性能优良而被广泛用来制作各种刀具。在我国,绝大多数车刀、面铣刀和深孔钻都采用硬质合金制造。
3、陶瓷刀具材料
陶瓷材料比硬质合金具有更高的硬度(HRA91~95)和耐热性,在1200℃的温度下仍能切削,耐磨性和化学惰性好,摩擦系数小,抗粘结和扩散磨损能力强,因而能以更高的速度切削,并可切削难加工的高硬度材料。主要缺点是性脆、抗冲击韧性差,抗弯强度低。
4、立方氮化硼
它是一种人工合成的新型刀具材料。它是利用超高温高压技术制成的一种无机超硬材料。立
方氮化硼在高温、其硬度很高,可达8000~9000HV,仅次于金刚石,但热稳定性远高于金刚石,并且与元素亲和力小,它的最大的优点是在高温1200℃~1300℃时也不会与铁族金属起反应。因此既能胜任淬火钢、冷硬铸铁的粗车和精车,又能胜任高温合金、热喷涂材料、硬质合金及其他难加工材料的高速切削。超高速加工的首选刀具材料
5、金刚石
分为人造和天然两种,是目前已知最硬的,硬度约为HV10000,故其耐磨性好,不足之处是抗弯强度和韧性差,对铁的亲和作用大,故金刚石刀具不能加工黑色金属,在800℃时,金刚石中的碳与铁族金属发生扩散反应,刀具急剧磨损。金刚石价格昂贵,刃磨困难,应用较少。主要用作磨具及磨料,有时用于修整砂轮。
总结:材料的韧性则是高速钢最高,金刚石最低
材料的硬度、耐磨性,金刚石最高,递次降低到高速钢。
课时八
1.5 切削力、切削热和切削温度 1.5.1
切削力的来源
1、切削层金属、切屑和工件表面层金属的弹性
变形、塑性变形所产生的抗力;
2、刀具与切屑、工件表面间的摩擦阻力。
1.5.2 切削分力及其作用
1、主切削力Fc :切削合力在切削速度方向上的分力,垂直于基面,是计算机床动力、校核机床和夹具强度及刚度的重要依据
2、背向力Fp
切削合力在切削深度方向上的分力,与切深方向相反,它能使工件弯曲和引起震动,对加工质量影响较大。
3、进给力Ff
切削合力在进给方向上的分力;与进给方向平行,但方向相反,是设计和校验进给机构强度的依据。
4、影响切削力的因素
工件材料: 被加工工件材料的强度、硬度越高,切削力增大。强度相近的材料,如其塑性(伸长率)较大,切削力增大。切削脆性材料时,其切削力一般低于塑性材料。
切削用量:切削深度ap或进给量f加大,均使切削力增大,但两者的影响程度不同,ap 的影响更大一些。切削速度: 加工塑性金属时,在中速和高速下,切削力一般随着切削速度的增大而减小。刀具几何参数
1.5.5
切削热和切削温度
1.切削热的产生传出及影响 a.切削热的来源
切屑层的金属发生弹性变形、塑性变形而产生大量的热 切屑与刀具前刀面产生的摩擦 工件与刀具后刀面产生的摩擦 b.切削热的传导
传入切屑,约占总热量的50%~86%,对切削加工无不利影响
传入工件,约占总热量的40%~10%,会使工件膨胀或伸长,产生尺寸和形状误差,影响加工精度
传入刀具,约占总热量的9%~3%,使刀具温度升高,硬度下降,磨损加快,耐用度降
传入周围介质,约占总热量的1%,对切削加工无不利影响 2.切削温度及其影响因素
切削温度:是指刀具表面上切屑和刀具接触处的平均温度。
其高低取决于切削时产生热量的多少和传导条件的好坏,切削用量、工件材料、刀具材料及角度等对切削温度均有影响 3.降低切削温度的措施
(1)选择合理的几何角度和切削用量(2)使用切削液 1.6 刀具的磨损和寿命
一.刀具的磨损形式
1、前刀面磨损(月牙洼磨损)2.后万面磨损
3.前刀面和后刀面同时磨损
二、刀具磨损过程
初期磨损阶段、正常磨损阶段、急剧磨损阶段
三、刀具寿命(1)定义
刃磨或换刃后的刀具,自开始切削直到磨损量达到磨钝标准为止的切削时间,称为刀具寿命,符号用T,单位用min或s。
(2)刀具寿命与切削用量的关系
切削用量对刀具寿命T 的影响程度与切削用量对切削温度θ的影响程度是一致的,切削速度对刀具寿命的影响最大,其次是进给量,背吃刀量的影响很小。
备课时间:09-3-1
上课时间:09-3-2 教学目的:
1、掌握切削液的作用及选用原则
2、掌握前角的选用方法和原则。
教学难点:刀具几何角度的确定。
教学重点:刀具的组成及几何角度的确定方法。课时:2课时 授课内容:
1.7 工件材料的切削加工性和切削液
1.7.1切削加工性的概念和衡量指标
材料的切削加工性是指材料被切削加工的难易程度。材料加工的难易程度要由具体的加工要求及切削条件而定。通常精加工时以能较好的保证加工质量为工件材料切削加工性的主要指标;自动加工则以断屑的难易程度为材料切削加工性的主要指标 衡量材料切削加工性的指标 1.一定刀具寿命下的切削速度 vTvT越大,材料的切削加工性越好。2.相对加工性 kr
为统一标准起见,取正火状态下的45钢作基准材料,刀具寿命为60 min,这时的切削速度为基准(写作(v60)j),而将其它材料的(v 60)与其相比,这个比值Kr称为相对加工性:
vkr60(v60)j
材料具有良好的切削加工性。kr1
3.已加工表面质量
凡较容易获得好的表面质量的材料,其切削加工性较好;反之则较差。精加工时,常以此为衡量指标。
4.切屑的控制或断屑的难易
凡切屑较容易控制或易于断屑的材料,其切削加工性较好;反之则较差。在自动机床或自动线上加工时,常以此为衡量指标。5.切削力
在相同切削条件下,凡切削力较小的材料,其切削加工性较好;反之则较差。在粗加工中,当机床刚性或动力不足时,常以此为衡量指标。(衡量材料切削加工性的指标5项内容,须提问) 影响材料切削加工性的因素 1.物理性能
材料的导热性愈好、一定刀具耐用度下的切削速度愈 高,材料的切削加工性愈好。2.材料的力学性能
材料的强度、硬度愈高,切削力愈大,切削温度愈高,刀具磨损加剧,— 切削加工性愈差。
材料的塑性、韧性愈高,切削时切屑的变形加大,摩擦力提高,切削力愈大,切削温度愈高,刀具磨损加剧,— 切削加工性愈差。1.7.2 改善材料切削加工性的途径 1.调整材料的化学成分
在钢中加入 S、Pb 等元素,可有效的改善材料的切削加工性。——“易切削钢”。2.热处理
1.7.3
切削液 1.切削液的作用(1)润滑作用(2)冷却作用(3)清洗作用(4)防锈作用
2、切削液的种类 ①、切削油 ②、乳化液 ③、水溶液
3.切削液的选用原则(1)粗加工
粗加工时,切削用量大,产生的切削热量多,容易使刀具迅速磨损。此类加工一般
采用冷却作用为主的切削液,如离子型切削液或3%~5%乳化液。
切削速度较低时,刀具以机械磨损为主,宜选用润滑性能为主的切削液; 速度较高时,刀具主要是热磨损,应选用冷却为主的切削液。
硬质合金刀具耐热性好,热裂敏感,可以不用切削液。如采用切削液,必须连续、充分浇注,以免冷热不均产生热裂纹而损伤刀具。
(2)精加工
精加工时,切削液的主要作用:提高工件表面加工质量和加工精度。
加工一般钢件,在较低的速度(6.0m/min~30m/min)情况下,宜选用润滑性能好的极压切削油或10%~12%极压乳化液,以减小刀具与工件之间的摩擦和粘结,抑制积屑瘤。注意:
A、加工铜材料时,不宜采用含硫切削液,因为硫对铜有腐蚀作用。
B、加工铝时,也不适于采用含硫与氯的切削液,因为这两种元素宜与铝形成强度高于铝的化合物,反而增大刀具与切屑间的摩擦。也不宜采用水溶液,因高温时水会使铝产生针孔。
1.8 刀具几何参数的合理选择
刀具几何参数的合理选择:是指在保证加工质量的前提下,选择能提高切削效率,降低生产成本,获得最高刀具耐用度的刀具几何参数。
刀具几何参数内容:
刀具几何角度(如前角、后角、主偏角等)、 刀面形式(如平面前刀面、倒棱前刀面等) 切削刃形状(直线形、圆弧形)1.前角和前刀面形状的选择 前角的功用:
(1)影响切削变形和切削力的大小(2)影响加工表面质量(3)影响刀具寿命
(4)影响切屑形态和断屑效果。(1)前角的选择:
在选择刀具前角时首先应保证刀刃锋利,同时也要兼顾刀刃的强度与耐用度。
刀具前角的合理选择,主要由刀具材料、工件材料、加工条件决定。
① 刀具材料
强度和韧性大的刀具材料可以选择大的前角,而脆性大的刀具甚至取负的前角。
② 工件材料
加工钢件等塑性材料时,切屑沿前刀面流出时和前刀面接触长度长,压力与摩擦较大,为减小变形和摩擦,一般采用选择大的前角。
加工脆性材料时,切屑为碎状,切屑与前刀面接触短,切削力主要集中在切削刃附近,受冲击时易产生崩刃,因此刀具前角相对塑性材料取得小些或取负值,以提高刀刃的强度。
③ 加工条件
粗加工时,一般取较小的前角;
精加工时,宜取较大的前角,以减小工件变形与表面粗糙度; 带有冲击性的断续切削比连续切削前角取得小。
总之,前角选择的原则是在满足刀具耐用度的前提下,尽量选取较大前角。
刀具的合理前角参考值见P34表1-7
2、前刀面形状、刃区形状及其参数的选择
①、前刀面形状
A、正前角锋刃平面型
特点:刃口较锋利,但强度差,γo不能太大,不易折屑。
主要用于高速钢刀具,精加工。B、带倒棱的正前角平面型
特点:切削刃强度及抗冲击能力强,同样条件下可以采用较大的前角,提高了刀具耐用度。
主要用于硬质合金刀具和陶瓷刀具,加工铸铁等脆性材料。
C、负前角平面型
特点:切削刃强度较好,但刀刃较钝,切削变形大。
主要用于硬脆刀具材料。加工高强度高硬度材料,如淬火钢。 图示类型负前角后部加有正前角,有利于切屑流出。 D、曲面型
特点:有利于排屑、卷屑和断屑,而且前角较大,切削变形小,所受切削力也较小。 在钻头、铣刀、拉刀等刀具上都有曲面前面。
备课时间:09-3-4
上课时间:09-3-5 教学目的:
1、掌握后角、主偏角、刃倾角的选择原则和方法。
2、掌握切削用量的选择原则和方法。
教学重点、难点:切削用量的选择原则和方法。课时:2课时 授课内容:
2.后角及形状的选择(1)后角的功用 :
A、减小刀具后刀面与加工表面的摩擦;
B、当前角固定时,后角的增大与减小能增大和减小刀刃的锋利程度,改变刀刃的散热,从而影响刀具的耐用度。(2)后角的选择
后角大小取决于:切削厚度、工件材料、工艺系统刚度。切削厚度(进给量)越大,后角越小; 工件材料越软、塑性越大,后角越大; 工艺系统刚度较差时,适当减小后角
副后角的作用与后角类似,它用来减少副后面与已加工表面之间的摩擦,一般刀具将副后角制成与后角相同。1.8.4、主、副偏角的功用及其选择
1、主、副偏角的功用
主偏角影响切削层的形状,切削刃的工作长度和单位切削刃上的负荷。减少κr,主切削刃单位长度上的负荷减少,刀具磨损小,耐用。
副偏角影响已加工表面的粗糙度和刀尖强度,减少κr´,减少表面的粗糙度的数值,还可提高刀具强度。过小,会使副切削刃与已加工面的摩擦增加,引起震动,降低表面质量。2.主、副偏角的选择
主偏角主要根据加工条件和工艺系统刚性来选择
副偏角主要考虑表面粗糙度、刀尖强度和散热面积来选择。3.主偏角的选择
A、主偏角κr的增大或减小对切削加工有利的一面(主偏角κr减小,能提高刀具耐用度。)
在背吃刀量ap与进给量f 不变时,主偏角κr减小将使切削厚度hD减小,切削宽度bD增加,参加切削的切削刃长度也相应增加,切削刃单位长度上的受力减小,散热条件也得到改善。
主偏角κr减小时,刀尖角增大,刀尖强度提高,刀尖散热体积增大。
B、主偏角κr的增大或减小对切削加工不利的一面(主偏角的减小对刀具耐用度和加工精度产生不利影响。)
因为根据切削力分析可以得知,主偏角κr减小,将使背向力Fp增大,从而使切削时产生的挠度增大,降低加工精度。同时背向力的增大将引起振动。主偏角κr 选择原则 :
①、工艺系统刚性较好时(工件长径比lw/dw < 6),主偏角κr可以取小值。 ②、工艺系统刚性较差时(工件长径比lw/dw = 6-12),或带有冲击性的切削,主偏角κr可以取大值,一般κr=75o~93o,甚至主偏角κr可以大于90o,以避免加工时振动。
硬质合金刀具车刀的主偏角多为60o~75o。
③、根据工件加工要求选择。
当车阶梯轴时,κr =90o;同一把刀具加工外圆、端面和倒角时,κr =45o。
课时十二
4、副偏角的选择
副偏角κrˊ的大小对刀具耐用度和加工表面粗糙度的影响:
A、副偏角的减小,将可降低残留物面积的高度,提高理论表面粗糙度值, B、副偏角减小刀尖强度增大,散热面积增大,提高刀具耐用度。
C、副偏角太小会使刀具副后刀面与工件的摩擦,使刀具耐用度降低,另外引起加工中振动。
①、工艺系统刚性好时,加工高强度高硬度材料,一般κrˊ=5o~10o;加工外圆及端面,能中间切入,κrˊ=45o。
②、工艺系统刚度较差时,粗加工、强力切削时,κrˊ=10o~15o;车台阶轴、细长轴、薄壁件,κrˊ=5o~10o。 ③、切断切槽,κrˊ=1o~2o。
副偏角的选择原则是:在不影响摩擦和振动的条件下,应选取较小的副偏角。1.8.5
刃倾角的选择
(1)λs对切屑流出方向的影响
当λs为负值时,切屑将流向已加工表面,并形成长螺卷屑,容易损害加工表面。
但切屑流向机床尾座,不会对操作者产生大的影响。粗车时采用负值的λs。 当λs为正值,切屑将流向机床床头箱,影响操作者工作,并容易缠绕机床的转动部件,影响机床的正常运行精车时采用正值的λs。(2)刃倾角对刀尖的影响
刃倾角λs的变化能影响刀尖的强度和抗冲击性能。
当λs取负值时,刀尖在切削刃最低点,切削刃切入工件时,切入点在切削刃或前刀面,保护刀尖免受冲击,增强刀尖强度。
一般大前角刀具通常选用负的刃倾角,既可以增强刀尖强度,又避免刀尖切入时产生的冲击。
(3)刃倾角对切削分力的影响
刃倾角负值越大,切深抗力越大,当工艺系统刚性较差时,容
易引起振动。 1.8.6.刀尖形状的选择
刀尖是刀具强度和散热条件都很差的地方。切削过程中,刀尖切削温度较高,非常容易磨损,因此增强刀尖,可以提高刀具耐用度。刀尖对已加工表面粗糙度有很大影响。
(1)直线过渡刃的优点:
主偏角κr和副偏角κrˊ的减小,都可以增强刀尖强度,但同时也增大了背向力Fp,使得工件变形增大并引起振动。但如在主、副切削刃之间磨出直线过渡刃。则既可增大刀尖角,又不会使背向力Fp增加多少 (2)圆弧状刀尖的圆弧半径取值
增大rε,刀具的磨损和破损都可减小,不过,此时背向力Fp也会增大,容易引起振动。考虑到脆性大的刀具对振动敏感因素,一般硬质合金刀具和陶瓷刀具的刀尖圆弧半径rε值较小;
硬质合金车刀和陶瓷车刀,一般rε=0.2~2㎜,高速钢刀具,rε =0.5~5 ㎜。精加工rε选取比粗加工小。
(3)
修光刃
精加工时,还可修磨出κrε=0o,宽度b=(1.2~1.5)f 与进给方向平行的修光刃,切除掉残留面积。
这种修光刃能在进给量较大时,还能获得较高的表面加工质量。修光刃 常用于端铣刀
1.9 切削用量的选择
1)切削用量对加工质量的影响
当切削速度增大时,切削力减小,可减小或避免积屑瘤,有利于提高加工质量 进给量增大使工件残留面积的高度显著增大,表面更粗糙。
切削深度增大,时切削力和工件变形增大,可能引起振动,使零件的加工精度和表面质量下降。
2)切削用量对刀具耐用度的影响
在切削用量中,切削速度对刀具耐用度的影响最大,进给量次之,切削深度影响最小 3)选择切削用量的原则
粗加工:首先选择大的切削深度,其次选择较大的进给量,最后确定合理的切削速度。精加工:一般取较小的切削深度和进给量,尽可能选择较高的切削速度。 对切削用量三要素选择方法
(1)背吃刀量的选择
粗加工时(表面粗糙度Ra50~12.5μm):在允许的条件下,尽量一次切除该工序的全部余量。如分两次走刀,则第一次背吃刀量尽量取大,第二次背吃刀量尽量取小些。
半精加工时(表面粗糙度Ra6.3~3.2μm),背吃刀量一般为0.5~2㎜。) 精加工时(表面粗糙度Ra1.6~0.8μm),背吃刀量为0.1~0.4㎜。
(2)进给量的选择
粗加工时,进给量主要考虑工艺系统所能承受的最大进给量。
精加工和半精加工时,最大进给量主要考虑加工精度和表面粗糙度。另外还要考虑工件材料,刀尖圆弧半径、切削速度等。
P39 表1-8、1-9.(3)切削速度的选择 切削速度的选取原则是:
粗车时,应选较低的切削速度,精加工时选择较高的切削速度;
加工材料强度硬度较高时,选较低的切削速度,反之取较高切削速度; 刀具材料的切削性能越好,切削速度越高。可查表1-11得到
第四篇:机械加工工艺规程
机械加工工艺规程
10.1 工艺过程
10.1.1 生产过程与工艺过程(1)生产过程
生产过程是指把原材料(半成品)转变为成品的全过程.机械产品的生产过程,一般包括: ①生产与技术的准备,如工艺设计和专用工艺装备的设计和制造,生产计划的编制,生产资料的准备;②毛坯的制造,如铸造,锻造,冲压等;③零件的加工,如切削加工,热处理,表面处理等;④产品的装配,如总装,部装,调试检验和油漆等;⑤生产的服务,如原材料,外购件和工具的供应,运输,保管等.机械产品的生产过程一般比较复杂,目前很多产品往往不是在一个工厂内单独生产,而是由许多专业工厂共同完成的.例如:飞机制造工厂就需要用到许多其他工厂的产品(如发动机,电器设备,仪表等),相互协作共同完成一架飞机的生产过程.因此,生产过程即可以指整台机器的制造过程,也可以是某一零部件的制造过程.(2)工艺过程
工艺过程是指在生产过程中改变生产对象的形状,尺寸,相对位置和性质等,使其成为成品或半成品的过程.如毛坯的制造,机械加工,热处理,装配等均为工艺过程.在工艺过程中,若用机械加工的方法直接改变生产对象的形状,尺寸和表面质量,使之成为合格零件的工艺过程,称为机械加工工艺过程.同样,将加工好的零件装配成机器使之达到所要求的装配精度并获得预定技术性能的工艺过程,称为装配工艺过程.机械加工工艺过程和装配工艺过程是机械制造工艺学研究的两项主要内容.10.1.2 机械加工工艺过程的组成
机械加工工艺过程是由一个或若干个顺序排列的工序组成的,而工序又可分为若干个安装,工位,工步和走刀,毛坯就是依次通过这些工序的加工而变成为成品的.(1)工序
工序是指一个或一组工人,在一个工作地点对一个或同时对几个工件所连续完成的那一部分工艺过程.区分工序的主要依据,是工作地点(或设备)是否变动和完成的那部分工艺内容是否连续.如图 4.1所示的零件,孔1需要进行钻孔和铰孔,如果一批工件中,每个工件都是在一台机床上依次地先钻孔,而后铰孔,则钻孔和铰孔就构成一个工序.如果将整批工件都是先进行钻孔,然后整批工件再进行铰孔,这样钻孔和铰孔就分成两个工序了.工序不仅是组成工艺过程的基本单元,也是制订工时定额,配备工人,安排作业和进行质量检验的依据.通常把仅列出主要工序名称的简略工艺过程称为工艺路线.(2)安装与工位
工件在加工前,在机床或夹具上先占据一正确位置(定位),然后再夹紧的过程称为装夹.工件(或装配单元)经一次装夹后所完成的那一部分工艺内容称为安装.在一道工序中可以有一个或多个安装.工件加工中应尽量减少装夹次数,因为多一次装夹就多一次装夹误差,而且增加了辅助时间.因此生产中常用各种回转工作台,回转夹具或移动夹具等,以便在工件一次装夹后,可使其处于不同的位置加工.为完成—定的工序内容,一次装夹工件后,工件(或装配单元)与夹具或设备的可动部分一起相对刀具或设备固定部分所占据的每一个位置,称为工位.图4.2所示为一种利用回转工作台在—次装夹后顺序完成装卸工件,钻孔,扩孔和铰孔四个工位加工的实例.(3)工步与走刀
1)工步 工步是指被加工表面(或装配时的连接表面)和切削(或装配)工具不变的情况下所连续完成的那一部分工序.一个工序可以包括几个工步,也可以只有一个工步.一般来说,构成工步的任一要素(加工表面,刀具及加工连续性)改变后,即成为一个新工步.但下面指出的情况应视为一个工步.①对于那些一次装夹中连续进行的若干相同的工步应视为一个工步.如图 4.1所示,两孔1的加工,可以作为一个工步.② 为了提高生产率,有时用几把刀具同时加工一个或几个表面,此时也应视为一个工步.称为复合工步.2)走刀 在一个工步内,若被加工表面切去的金属层很厚,需分几次切削,则每进行一次切削就是一次走刀.一个工步可以包括一次走刀或几次走刀.10.1.3 机械加工生产类型和特点(1)生产纲领
企业在计划期内生产的产品的数量和进度计划称为生产纲领.零件的年生产纲领.可按下式计算 N=Qn(1+a%+b%)
式中 N——零件的年生产纲领,件/年;Q——产品的年生产纲领,台/年;n——每台产品中该零件的数量,件/台;a%--备品的百分率;b%--废品的百分率.生产纲领的大小对生产组织形式和零件加工过程起着重要的作用,它决定了各工序所需专业化和自动化的程度,决定了所应选用的工艺方法和工艺装备.(2)生产类型和工艺特点
企业(或车间,工段,班组,工作地)生产专业化程度的分类称为生产类型.生产类型一般可分为:单件生产,成批生产,大量生产三种.1)单件生产 单件生产的基本特点是:生产的产品种类繁多,每种产品的产量很少,而且很少重复生产.例如,重型机械产品制造和新产品试制等都属于单间生产.2)成批生产 成批生产的基本特点是:分批的生产相同的产品,生产呈周期性重复.如机床制造,电机制造等属于成批生产,成批生产又可按其批量大小分为小批量生产,中批量生产,大批量生产三种类型.其中,小批量生产和大批生产的工艺特点分别与单件生产和大量生产的工艺特点类似;中批量生产的工艺特点.介于小批生产和大批生产之间.3)大量生产 大量生产的基本特点是:产量大,品种少,大多数工作长期重复的进行某个零件的某一道工序的加工.例如,汽车,拖拉机,轴承等的制造都属于大量生产.生产类型的划分除了与生产纲领有关外,还应考虑产品的大小及复杂程度,生产类型不同,产品制造的工艺方法,所用的设备和工艺装备以及生产的组织形式等均不同.大批大量生产应尽可能采用高效率的设备和工艺方法,以提高生产率;单件小批生产应采用通用设备和工艺装备,也可采用先进的数控机床,以降低各类生产类型的生产成本.10.2 机械加工工艺规程 10.2.1 概述
机械加工工艺规程是规定零件机械加工工艺过程和操作方法等的工艺文件之一,它是在具体的生产条件下,把较为合理的工艺过程和操作方法,按照规定的形式书写成工艺文件,经审批后用来指导生产.机械加工工艺规程一般包括以下内容:工件加工的工艺路线,各工序的具体内容及所用的设备和工艺装备,工件的检验项目及检验方法,切削用量,时间定额等.10.2.1.1 机械加工艺规程的作用(1)是指导生产的重要技术文件
工艺规程是依据工艺学原理和工艺试验,经过生产验证而确定的,是科学技术和生产经验的结晶.所以,它是获得合格产品的技术保证,是指导企业生产活动的重要文件.正因为这样,在生产中必须遵守工艺规程,否则常常会引起产品质量的严重下降,生产率显著降低,甚至造成废品.但是,工艺规程也不是固定不变的,工艺人员应总结工人的革新创造,可以根据生产实际情况,及时地汲取国内外的先进工艺技术,对现行工艺不断地进行改进和完善,但必须要有严格的审批手续.(2)是生产组织和生产准备工作的依据
生产计划的制订,产品投产前原材料和毛坯的供应,工艺装备的设计,制造与采购,机床负荷的调整,作业计划的编排,劳动力的组织,工时定额的制订以及成本的核算等,都是以工艺规程作为基本依据的.(3)是新建和扩建工厂(车间)的技术依据
在新建和扩建工厂(车间)时,生产所需要的机床和其它设备的种类,数量和规格,车间的面积,机床的布置,生产工人的工种,技术等级及数量,辅助部门的安排等都是以工艺规程为基础,根据生产类型来确定.除此以外,先进的工艺规程也起着推广和交流先进经验的作用,典型工艺规程可指导同类产品的生产.10.2.1.2 工艺规程制订的原则
工艺规程制订的原则是优质,高产和低成本,即在保证产品质量的前提下,争取最好的经济效益.在具体制定时,还应注意下列问题: 1)技术上的先进性 在制订工艺规程时,要了解国内外本行业工艺技术的发展,通过必要的工艺试验,尽可能采用先进适用的工艺和工艺装备.2)经济上的合理性 在一定的生产条件下,可能会出现几种能够保证零件技术要求的工艺方案.此时应通过成本核算或相互对比,选择经济上最合理的方案,使产品生产成本最低.3)良好的劳动条件及避免环境污染 在制订工艺规程时,要注意保证工人操作时有良好而安全的劳动条件.因此,在工艺方案上要尽量采取机械化或自动化措施,以减轻工人繁重的体力劳动.同时,要符合国家环境保护法的有关规定,避免环境污染.产品质量,生产率和经济性这三个方面有时相互矛盾,因此,合理的工艺规程应用该处理好这些矛盾,体现这三者的统一.10.2.1.3 制订工艺规程的原始资料 1)产品全套装配图和零件图.2)产品验收的质量标准.3)产品的生产纲领(年产量).4)毛坯资料 毛坯资料包括各种毛坯制造方法的技术经济特征;各种型材的品种和规格,毛坯图等;在无毛坯图的情况下,需实际了解毛坯的形状,尺寸及机械性能等.5)本厂的生产条件 为了使制订的工艺规程切实可行,一定要考虑本厂的生产条件.如了解毛坯的生产能力及技术水平;加工设备和工艺装备的规格及性能;工人技术水平以及专用设备与工艺装备的制造能力等.6)国内外先进工艺及生产技术发展情况 工艺规程的制订,要经常研究国内外有关工艺技术资料,积极引进适用的先进工艺技术,不断提高工艺水平,以获得最大的经济效益.7)有关的工艺手册及图册.10.2.1.4 制订工艺规程的步骤
1)计算年生产纲领,确定生产类型.2)分析零件图及产品装配图,对零件进行工艺分析.3)选择毛坯.4)拟订工艺路线.5)确定各工序的加工余量,计算工序尺寸及公差.6)确定各工序所用的设备及刀具,夹具,量具和辅助工具.7)确定切削用量及工时定额.8)确定各主要工序的技术要求及检验方法.9)填写工艺文件.在制订工艺规程的过程中,往往要对前面已初步确定的内容进行调整,以提高经济效益.在执行工艺规程过程中,可能会出现前所未料的情况,如生产条件的变化,新技术,新工艺的引进,新材料,先进设备的应用等,都要求及时对工艺规程进行修订和完善.10.2.1.5 工艺文件的格式
将工艺规程的内容,填入一定格式的卡片,即成为生产准备和施工依据的工艺文件.常用的工艺文件格式有下列几种:(1)综合工艺过程卡片
这种卡片以工序为单位,简要地列出了整个零件加工所经过的工艺路线(包括毛坯制造,机械加工和热处理等),它是制订其它工艺文件的基础,也是生产技术准备,编排作业计划和组织生产的依据.在这种卡片中,由于各工序的说明不够具体,故一般不能直接指导工人操作,而多作生产管理方面使用.但是,在单件小批生产中,由于通常不编制其它较详细的工艺文件,而是以这种卡片指导生产.机械加工工艺卡片是以工序为单位,详细说明整个工艺过程的工艺文件.它是用来指导工人生产和帮助车间管理人员和技术人员掌握整个零件加工过程的一种主要技术文件,广泛用于成批生产的零件和小批生产中的重要零件.(3)机械加工工序卡片
机械加工工序卡片是根据工艺卡片为毎一道工序制订的.它更详细地说明整个零件各个工序的加工要求,是用来具体指导工人操作的工艺文件.在这种卡片上,要画出工序简图,注明该工序每一工步的内容,工艺参数,操作要求以及所用的设备和工艺装备.工序简图就是按一定比例用较小的投影绘出工序图,可略去图中的次要结构和线条,主视图方向尽量与零件在机床上的安装方向相一致,本工序的加工表面用粗实线或红色粗实线表示,零件的结构,尺寸要与本工序加工后的情况相符合,并标注出本工序加工尺寸及上下偏差,加工表面粗糙度和工件的定位及夹紧情况.用于大批量生产的零件.10.2.2 零件的工艺分析
在制订零件的机械加工工艺规程时,首先要对照产品装配图分析零件图,熟悉该产品的用途,性能及工作条件,明确零件在产品中的位置,作用及相关零件的位置关系;了解并研究各项技术条件制定的依据,找出其主要技术要求和技术关键,以便在拟定工艺规程时采用适当的措施加以保证.然后着重对零件进行结构分析和技术要求的分析.10.2.2.1 零件结构分析
零件的结构分析主要包括以下三方面:(1)零件表面的组成和基本类型
尽管组成零件的结构多种多样,但从形体上加以分析,都是由一些基本表面和特形表面组成的.基本表面有内外圆柱表面,圆锥表面和平面等;特形表面主要有螺旋面,渐开线齿形表面,圆弧面(如球面)等.在零件结构分析时,根据机械零件不同表面的组合形成零件结构上的特点,就可选择与其相适应的加工方法和加工路线,例如外圆表面通常由车削或磨削加工;内孔表面则通过钻,扩,铰,镗和磨削等加工方法获得.机械零件不同表面的组合形成零件结构上的特点.在机械制造中,通常按零件结构和工艺过程的相似性,将各类零件大致分为轴类零件,套类零件,箱体类零件,齿轮类零件和叉架类零件等.(2)主要表面与次要表面区分
根据零件各加工表面要求的不同,可以将零件的加工表面划分为主要加工表面和次要加工表面;这样,就能在工艺路线拟定时,做到主次分开以保证主要表面的加工精度.(3)零件的结构工艺性
所谓零件的结构工艺性是指零件在满足使用要求的前提下,制造该零件的可行性和经济性.功能相同的零件,其结构工艺性可以有很大差异.所谓结构工艺性好,是指在现有工艺条件下,既能方便制造又有较低的制造成本.10.2.2.2 零件的技术要求分析
零件图样上的技术要求,既要满足设计要求,又要便于加工,而且齐全和合理.其技术要求包括下列几个方面: 1)加工表面的尺寸精度,形状精度和表面质量;2)各加工表面之间的相互位置精度;3)工件的热处理和其它要求,如动平衡,镀铬处理,去磁等.零件的尺寸精度,形状精度,位置精度和表面粗糙度的要求,对确定机械加工工艺方案和生产成本影响很大.因此,必须认真审查,以避免过高的要求使加工工艺复杂化和增加不必要的费用.在认真分析了零件的技术要求后,结合零件的结构特点,对零件的加工工艺过程便有一个初步的轮廓.加工表面的尺寸精度,表面粗糙度和有无热处理要求,决定了该表面的最终加工方法,进而得出中间工序和粗加工工序所采用的加工方法.如,轴类零件上 IT7 级精度,表面粗糙度 R a 1.6 μ m 的轴颈表面,若不淬火,可用粗车,半精车,精车最终完成;若淬火,则最终加工方法选磨削,磨削前可采用粗车,半精车(或精车)等加工方法加工.表面间的相互位置精度,基本上决定了各表面的加工顺序.10.2.3 毛坯的选择
毛坯的确定,不仅影响毛坯制造的经济性,而且影响机械加工的经济性.所以在确定毛坯时,既要考虑热加工方面的因素,也要兼顾冷加工方面的要求,以便从确定毛坯这一环节中,降低零件的制造成本.10.2.3.1 机械加工中常用毛坯的种类
毛坯的种类很多,同一种毛坯又有多种制造方法,机械制造中常用的毛坯有以下几种:(1)铸件
形状复杂的零件毛坯,宜采用铸造方法制造.目前铸件大多用砂型铸造,它又分为木模手工造型和金属模机器造型.木模手工造型铸件精度低,加工表面余量大,生产率低,适用于单件小批生产或大型零件的铸造.金属模机器造型生产率高,铸件精度高,但设备费用高,铸件的重量也受到限制,适用于大批量生产的中小铸件.其次,少量质量要求较高的小型铸件可采用特种铸造(如压力铸造,离心制造和熔模铸造等).(2)锻件
机械强度要求高的钢制件,一般要用锻件毛坯.锻件有自由锻造锻件和模锻件两种.自由锻造锻件可用手工锻打(小型毛坯), 机械锤锻(中型毛坯)或压力机压锻(大型毛坯)等方法获得.这种锻件的精度低,生产率不高,加工余量较大,而且零件的结构必须简单;适用于单件和小批生产,以及制造大型锻件.模锻件的精度和表面质量都比自由锻件好,而且锻件的形状也可较为复杂,因而能减少机械加工余量.模锻的生产率比自由锻高得多,但需要特殊的设备和锻模,故适用于批量较大的中小型锻件.(3)型材
型材按截面形状可分为:圆钢,方钢,六角钢,扁钢,角钢,槽钢及其它特殊截面的型材.型材有热轧和冷拉两类.热轧的型材精度低,但价格便宜,用于一般零件的毛坯;冷拉的型材尺寸较小,精度高,易于实现自动送料,但价格较高,多用于批量较大的生产,适用于自动机床加工.(4)焊接件
焊接件是用焊接方法而获得的结合件,焊接件的优点是制造简单,周期短,节省材料,缺点是抗振性差,变形大,需经时效处理后才能进行机械加工.除此之外,还有冲压件,冷挤压件,粉末冶金等其它毛坯.10.2.3.2 毛坯种类选择中应注意的问题(1)零件材料及其力学性能
零件的材料大致确定了毛坯的种类.例如材料为铸铁和青铜的零件应选择铸件毛坯;钢质零件形状不复杂,力学性能要求不太高时可选型材;重要的钢质零件,为保证其力学性能,应选择锻件毛坯.(2)零件的结构形状与外形尺寸
形状复杂的毛坯,一般用铸造方法制造.薄壁零件不宜用砂型铸造;中小型零件可考虑用先进的铸造方法;大型零件可用砂型铸造.一般用途的阶梯轴,如各阶梯直径相差不大,可用圆棒料;如各阶梯直径相差较大,为减少材料消耗和机械加工的劳动量,则宜选择锻件毛坯.尺寸大的零件一般选择自由锻造;中小型零件可选择模锻件;一些小型零件可做成整体毛坯.(3)生产类型
大量生产的零件应选择精度和生产率都比较高的毛坯制造方法,如铸件采用金属模机器造型或精密铸造;锻件采用模锻,精锻;型材采用冷轧或冷拉型材;零件产量较小时应选择精度和生产率较低的毛坯制造方法.(4)现有生产条件
确定毛坯的种类及制造方法,必须考虑具体的生产条件,如毛坯制造的工艺水平,设备状况以及对外协作的可能性等.(5)充分考虑利用新工艺,新技术和新材料
随着机械制造技术的发展,毛坯制造方面的新工艺,新技术和新材料的应用也发展很快.如精铸,精锻,冷挤压,粉末冶金和工程塑料等在机械中的应用日益增加.采用这些方法大大减少了机械加工量,有时甚至可以不再进行机械加工就能达到加工要求,其经济效益非常显著.我们在选择毛坯时应给予充分考虑,在可能的条件下,尽量采用.10.2.3.3 毛坯形状和尺寸的确定
毛坯形状和尺寸,基本上取决于零件形状和尺寸.零件和毛坯的主要差别,在于在零件需要加工的表面上,加上一定的机械加工余量,即毛坯加工余量.毛坯制造时,同样会产生误差,毛坯制造的尺寸公差称为毛坯公差.毛坯加工余量和公差的大小,直接影响机械加工的劳动量和原材料的消耗,从而影响产品的制造成本.所以现代机械制造的发展趋势之一,便是通过毛坯精化,使毛坯的形状和尺寸尽量和零件一致,力求作到少,无切削加工.毛坯加工余量和公差的大小,与毛坯的制造方法有关,生产中可参考有关工艺手册或有关企业,行业标准来确定.在确定了毛坯加工余量以后,毛坯的形状和尺寸,除了将毛坯加工余量附加在零件相应的加工表面上外,还要考虑毛坯制造,机械加工和热处理等多方面工艺因素的影响.下面仅从机械加工工艺的角度,分析确定毛坯的形状和尺寸时应考虑的问题.(1)工艺搭子的设置
有些零件,由于结构的原因,加工时不易装夹稳定,为了装夹方便迅速,可在毛坯上制出凸台,即所谓的工艺搭子.工艺搭子只在装夹工件时用,零件加工完成后,一般都要切掉,但如果不影响零件的使用性能和外观质量时,可以保留.(2)整体毛坯的采用
在机械加工中,有时会遇到如磨床主轴部件中的三瓦轴承,发动机的连杆和车床的开合螺母等类零件.为了保证这类零件的加工质量和加工时方便,常做成整体毛坯,加工到一定阶段后再切开.(3)合件毛坯的采用
为了便于加工过程中的装夹,对于一些形状比较规则的小形零件,如 T 形键,扁螺母,小隔套等,应将多件合成一个毛坯,待加工到一定阶段后或者大多数表面加工完毕后,再加工成单件.图5.3a 为 T815 汽车上的一个扁螺母.毛坯取一长六方钢, 图 5.3b 表示在车床上先车槽,倒角;图 5.3c 表示在车槽及倒角后,用 24.5mm 的钻头钻孔.钻孔的同时也就切成若干个单件.合件毛坯,在确定其长度尺寸时,既要考虑切割刀具的宽度和零件的个数,还应考虑切成单件后,切割的端面是否需要进一步加工,若要加工,还应留有一定的加工余量.在确定了毛坯种类,形状和尺寸后,还应绘制一张毛坯图,作为毛坯生产单位的产品图样.绘制毛坯图,是在零件图的基础上,在相应的加工表面上加上毛坯余量.但绘制时还要考虑毛坯的具体制造条件,如铸件上的孔,锻件上的孔和空档,法兰等的最小铸出和锻出条件;铸件和锻件表面的起模斜度(拔模斜度)和圆角;分型面和分模面的位置等.并用双点划线在毛坯图中表示出零件的表面,以区别加工表面和非加工表面.10.2.4 工艺路线的拟订
工艺路线的拟订是制订工艺规程的关键,它制订的是否合理,直接影响到工艺规程的合理性,科学性和经济性.工艺路线拟订的主要任务是选择各个表面的加工方法和加工方案,确定各个表面的加工顺序以及工序集中与分散的程度,合理选用机床和刀具,确定所用夹具的大致结构等.关于工艺路线的拟订,经过长期的生产实践已总结出一些带有普遍性的工艺设计原则,但在具体拟订时,特别要注意根据生产实际灵活应用.10.2.4.1 表面加工方案的选择
(1)各种加工方法所能达到的经济精度及表面粗糙度
为了正确选择表面加工方法,首先应了解各种加工方法的特点和掌握加工经济精度的概念.任何一种加工方法可以获得的加工精度和表面粗糙度均有一个较大的范围.例如,精细的操作,选择低的切削用量,可以获得较高的精度,但又会降低生产率,提高成本;反之,如增大切削用量提高生产率,虽然成本降低了,但精度也降低了.所以对一种加工方法,只有在一定的精度范围内才是经济的,这一定范围的精度是指在正常的加工条件下(采用符合质量的标准设备,工艺装备和标准技术等级的工人,不延长加工时间)所能保证的加工精度.这一定范围的精度称为经济精度.相应的粗糙度称为经济表面粗糙度.各种加工方法所能达到的加工经济精度和表面粗糙度,以及各种典型表面的加工方案在机械加工手册中都能查到.这里要指出的是,加工经济精度的数值并不是一成不变的,随着科学技术的发展,工艺技术的改进,加工经济精度会逐步提高.(2)选择表面加工方案时考虑的因素
选择表面加工方案,一般是根据经验或查表来确定,再结合实际情况或工艺试验进行修改.表面加工方案的选择,应同时满足加工质量,生产率和经济性等方面的要求,具体选择时应考虑以下几方面的因素: 1)选择能获得相应经济精度的加工方法 例如加工精度为 IT7 ,表面粗糙度为 Ra0.4 m 的外圆柱面,通过精细车削是可以达到要求的,但不如磨削经济.2)零件材料的可加工性能 例如淬火钢的精加工要用磨削,有色金属圆柱面的精加工为避免磨削时堵塞砂轮,则要用高速精细车或精细镗(金刚镗).3)工件的结构形状和尺寸大小 例如对于加工精度要求为 IT7 的孔,采用镗削,铰削,拉削和磨削均可达到要求.但箱体上的孔,一般不宜选用拉孔或磨孔,而宜选择镗孔(大孔)或铰孔(小孔).4)生产类型 大批量生产时,应采用高效率的先进工艺,例如用拉削方法加工孔和平面,用组合铣削或磨削同时加工几个表面,对于复杂的表面采用数控机床及加工中心等;单件小批生产时,宜采用刨削,铣削平面和钻,扩,铰孔等加工方法,避免盲目地采用高效加工方法和专用设备而造成经济损失.5)现有生产条件 充分利用现有设备和工艺手段,发挥工人的创造性,挖掘企业潜力,创造经济效益.10.2.4.2 加工阶段的划分(1)划分方法
零件的加工质量要求较高时,都应划分加工阶段.一般划分为粗加工,半精加工和精加工三个阶段.如果零件要求的精度特别高,表面粗糙度很细时,还应増加光整加工和超精密加工阶段.各加工阶段的主要任务是: 1)粗加工阶段 主要任务是切除毛坯上各加工表面的大部分加工余量,使毛坯在形状和尺寸上接近零件成品.因此,应采取措施尽可能提高生产率.同时要为半精加工阶段提供精基准,并留有充分均匀 的加工余量,为后续工序创造有利条件.2)半精加工阶段 达到一定的精度要求,并保证留有一定的加工余量,为主要表面的精加工作准备.同时完成一些次要表面的加工(如紧固孔的钻削,攻螺纹,铣键槽等).3)精加工阶段 主要任务是保证零件各主要表面达到图纸规定的技术要求.4)光整加工阶段 对精度要求很高(IT6 以上),表面粗糙度很小(小于 R a 0.2 m)的零件,需安排光整加工阶段.其主要任务是减小表面粗糙度或进一步提高尺寸精度和形状精度.(2)划分加工阶段的原因
1)保证加工质量的需要 零件在粗加工时,由于要切除掉大量金属,因而会产生较大的切削力和切削热,同时也需要较大的夹紧力,在这些力和热的作用下,零件会产生较大的变形.而且经过粗加工后零件的内应力要重新分布,也会使零件发生变形.如果不划分加工阶段而连续加工,就无法避免和修正上述原因所引起的加工误差.加工阶段划分后,粗加工造成的误差,通过半精加工和精加工可以得到修正,并逐步提高零件的加工精度和表面质量,保证了零件的加工要求.2)合理使用机床设备的需要 粗加工一般要求功率大,刚性好,生产率高而精度不高的机床设备.而精加工需采用精度高的机床设备,划分加工阶段后就可以充分发挥粗,精加工设备各自性能的特点,避免以粗干精,做到合理使用设备.这样不但提高了粗加工的生产效率,而且也有利于保持精加工设备的精度和使用寿命.3)及时发现毛坯缺陷 毛坯上的各种缺陷(如气孔,砂眼,夹渣或加工余量不足等),在粗加工后即可被发现,便于及时修补或决定报废,以免继续加工后造成工时和加工费用的浪费.4)便于安排热处理 热处理工序使加工过程划分成几个阶段,如精密主轴在粗加工后进行去除应力的人工时效处理,半精加工后进行淬火,精加工后进行低温回火和冰冷处理,最后再进行光整加工.这几次热处理就把整个加工过程划分为粗加工——半精加工——精加工——光整加工阶段.在零件工艺路线拟订时,一般应遵守划分加工阶段这一原则,但具体应用时还要根据零件的情况灵活处理,例如对于精度和表面质量要求较低而工件刚性足够,毛坯精度较高,加工余量小的工件,可不划分加工阶段.又如对一些刚性好的重型零件,由于装夹吊运很费时,也往往不划分加工阶段而在一次安装中完成粗精加工.还需指出的是,将工艺过程划分成几个加工阶段是对整个加工过程而言的,不能单纯从某一表面的加工或某一工序的性质来判断.例如工件的定位基准,在半精加工阶段甚至在粗加工阶段就需要加工得很准确,而在精加工阶段中安排某些钻孔之类的粗加工工序也是常有的.10.2.4.3 工序的划分
工序集中就是零件的加工集中在少数工序内完成,而每一道工序的加工内容却比较多;工序分散则相反,整个工艺过程中工序数量多,而每一道工序的加工内容则比较少.(1)工序集中的特点
① 有利于采用高生产率的专用设备和工艺装备,如采用多刀多刃,多轴机床,数控机床和加工中心等,从而大大提高生产率.② 减少了工序数目,缩短了工艺路线,从而简化了生产计划和生产组织工作.③ 减少了设备数量,相应地减少了操作工人和生产面积.④ 减少了工件安装次数,不仅缩短了辅助时间,而且在一次安装下能加工较多的表面,也易于保证这些表面的相对位置精度.⑤ 专用设备和工艺装置复杂,生产准备工作和投资都比较大,尤其是转换新产品比较困难.(2)工序分散特点 ① 设备和工艺装备结构都比较简单,调整方便,对工人的技术水平要求低.② 可采用最有利的切削用量,减少机动时间.③ 容易适应生产产品的变换.④ 设备数量多,操作工人多,占用生产面积大.工序集中和工序分散各有特点;在拟订工艺路线时,工序是集中还是分散,即工序数量是多还是少,主要取决于生产规模和零件的结构特点及技术要求.在一般情况下,单件小批生产时,多将工序集中.大批量生产时,既可采用多刀,多轴等高效率机床将工序集中,也可将工序分散后组织流水线生产;目前的发展趋势是倾向于工序集中.10.2.4.4 工序顺序的安排(1)机械加工工序的安排
1)基准先行 零件加工一般多从精基准的加工开始,再以精基准定位加工其它表面.因此,选作精基准的表面应安排在工艺过程起始工序先进行加工,以便为后续工序提供精基准.例如轴类零件先加工两端中心孔,然后再以中心孔作为精基准,粗,精加工所有外圆表面.齿轮加工则先加工内孔及基准端面,再以内孔及端面作为精基准,粗,精加工齿形表面.2)先粗后精 精基准加工好以后,整个零件的加工工序,应是粗加工工序在前,相继为半精加工,精加工及光整加工.按先粗后精的原则先加工精度要求较高的主要表面,即先粗加工再半精加工各主要表面,最后再进行精加工和光整加工.在对重要表面精加工之前,有时需对精基准进行修整,以利于保证重要表面的加工精度,如主轴的高精度磨削时,精磨和超精磨削前都须研磨中心孔;精密齿轮磨齿前,也要对内孔进行磨削加工.3)先主后次 根据零件的功用和技术要求.先将零件的主要表面和次要表面分开,然后先安排主要表面的加工,再把次要表面的加工工序插入其中.次要表面一般指键槽,螺孔,销孔等表面.这些表面一般都与主要表面有一定的相对位置要求,应以主要表面作为基准进行次要表面加工,所以次要表面的加工一般放在主要表面的半精加工以后,精加工以前一次加工结束.也有放在最后加工的,但此时应注意不要碰伤已加工好的主要表面.4)先面后孔 对于箱体,底座,支架等类零件,平面的轮廓尺寸较大,用它作为精基准加工孔,比较稳定可靠,也容易加工,有利于保证孔的精度.如果先加工孔,再以孔为基准加工平面,则比较困难,加工质量也受影响.(2)热处理工序的安排
热处理可用来提高材料的力学性能,改善工件材料的加工性能和消除内应力,其安排主要是根据工件的材料和热处理目的来进行.热处理工艺可分为两大类:预备热处理和最终热处理.1)预备热处理 预备热处理的目的是改善加工性能,消除内应力和为最终热处理准备良好的金相组织.其热处理工艺有退火,正火,时效,调质等.① 退火和正火.退火和正火用于经过热加工的毛坯.含碳量高于 0.5 %的碳钢和合金钢,为降低其硬度易于切削,常采用退火处理;含碳量低于 0.5 %的碳钢和合金钢,为避免其硬度过低切削时粘刀,而采用正火处理.退火和正火尚能细化晶粒,均匀组织,为以后的热处理做准备.退火和正火常安排在毛坯制造之后,粗加工之前进行.② 时效处理.时效处理主要用于消除毛坯制造和机械加工中产生的内应力.为减少运输工作量,对于一般精度的零件,在精加工前安排一次时效处理即可.但精度要求较高的零件(如坐标镗床的箱体等),应安排两次或数次时效处理工序.简单零件一般可不进行时效处理.除铸件外,对于一些刚性较差的精密零件(如精密丝杠),为消除加工中产生的内应力,稳定零件加工精度,常在粗加工,半精加工之间安排多次时效处理.有些轴类零件加工,在校直工序后也要安排时效处理.③ 调质.调质即是在淬火后进行高温回火处理,它能获得均匀细致的回火索氏体组织,为以后的表面淬火和渗氮处理时减少变形做准备,因此调质也可作为预备热处理.由于调质后零件的综合力学性能较好,对某些硬度和耐磨性要求不高的零件,也可作为最终热处理工序.2)最终热处理 最终热处理的目的是提高硬度,耐磨性和强度等力学性能.① 淬火.淬火有表面淬火和整体淬火.其中表面淬火因为变形,氧化及脱碳较小而应用较广,而且表面淬火还具有外部强度高,耐磨性好,而内部保持良好的韧性,抗冲击力强的优点.为提高表面淬火零件的机械性能,常需进行调质或正火等热处理作为预备热处理.其一般工艺路线为:下料一锻造一正火(退火)一粗加工一调质一半精加工一表面淬火一精加工.② 渗碳淬火.渗碳淬火适用于低碳钢和低合金钢,先提高零件表层的含碳量,经淬火后使表层获得高的硬度,而心部仍保持一定的强度和较高的韧性和塑性.渗碳分整体渗碳和局部渗碳.局部渗碳时对不渗碳部分要采取防渗措施(镀铜或镀防渗材料).由于渗碳淬火变形大,且渗碳深度一般在 0.5~2mm 之间,所以渗碳工序一般安排在半精加工和精加工之间.其工艺路线一般为:下料一锻造一正火一粗,半精加工一渗碳淬火一精加工.当局部渗碳零件的不渗碳部分,采用加大余量后切除多余的渗碳层的工艺方案时,切除多余渗碳层的工序应安排在渗碳后,淬火前进行.③ 渗氮处理.渗氮是使氮原子渗入金属表面获得一层含氮化合物的处理方法.渗氮层可以提高零件表面的硬度,耐磨性,疲劳强度和抗蚀性.由于渗氮处理温度较低,变形小,且渗氮层较薄(一般不超过 0.6 ~ 0.7mm),因此渗氮工序应尽量靠后安排,常安排在精加工之间进行.为减小渗氮时的变形,在切削后一般需进行消除应力的高温回火.(3)检验工序的安排
检验工序一般安排在粗加工后,精加工前;送往外车间前后;重要工序和工时长的工序前后;零件加工结束后,入库前.(4)其它工序的安排
1)表面强化工序 如滚压,喷丸处理等,一般安排在工艺过程的最后.2)表面处理工序 如发蓝,电镀等一般安排在工艺过程的最后.3)探伤工序 如 X 射线检查,超声波探伤等多用于零件内部质量的检查,一般安排在工艺过程的开始.磁力探伤,荧光检验等主要用于零件表面质量的检验,通常安排在该表面加工结束以后.4)平衡工序 包括动,静平衡,一般安排在精加工以后.在安排零件的工艺过程中,不要忽视去毛刺,倒棱和清洗等辅助工序.在铣键槽,齿面倒角等工序后应安排去毛刺工序.零件在装配前都应安排清洗工序,特别在研磨等光整加工工序之后,更应注意进行清洗工序,以防止残余的磨料嵌入工件表面,加剧零件在使用中的磨损.10.2.5 加工余量的确定
10.2.5.1 加工余量的概念及其影响因素
在选择了毛坯,拟订出加工工艺路线之后,就需确定加工余量,计算各工序的工序尺寸.加工余量大小与加工成本有密切关系,加工余量过大不仅浪费材料,而且增加切削工时,增大刀具和机床的磨损,从而增加成本;加工余量过小,会使前一道工序的缺陷得不到纠正,造成废品,从而也使成本增加,因此,合理地确定加工余量,对提高加工质量和降低成本都有十分重要的意义.(1)加工余量的概念
在机械加工过程中从加工表面切除的金属层厚度称为加工余量.加工余量分为工序余量和加工总余量.工序余量是指为完成某一道工序所必须切除的金属层厚度,即相邻两工序的工序尺寸之差.加工总余量是指由毛坯变为成品的过程中,在某加工表面上所切除的金属层总厚度,即毛坯尺寸与零件图设计尺寸之差.由于毛坯尺寸和各工序尺寸不可避免地存在公差,因此无论是加工总余量还是工序余量实际上是个变动值,因而加工余量又有基本余量,最大余量和最小余量之分,通常所说的加工余量是指基本余量.加工余量,工序余量的公差标注应遵循“入体原则”即:“毛坯尺寸按双向标注上,下偏差;被包容表面尺寸上偏差为零,也就是基本尺寸为最大极限尺寸(如轴);对包容面尺寸下偏差为零,也就是基本尺寸为最小极限尺寸(如内孔).加工过程中,工序完成后的工件尺寸称为工序尺寸.由于存在加工误差,各工序加工后的尺寸也有一定的公差,称为工序公差.工序公差带的布置也采用”入体原则“法.表示加工余量及其公差的关系,不论是被包容面还是包容面,其加工总余量均等于各工序余量之和.Z = Z + Z + Z + …
加工余量还有双边余量和单边余量之分,平面加工余量是单边余量,它等于实际切削的金属层厚度.对于外圆和孔等回转表面,加工余量是指双边余量,即以直径方向计算,实际切削的金属为加工余量数值的一半.(2)确定加工余量应考虑的因素
为切除前工序在加工时留下的各种缺陷和误差的金属层,又考虑到本工序可能产生的安装误差而不致使工件报废,必须保证一定数值的最小工序余量.为了合理确定加工余量,首先必须了解影响加工余量的因素.影响加工余量的主要因素有: 1)前工序的尺寸公差 由于工序尺寸有公差,上工序的实际工序尺寸有可能出现最大或最小极限尺寸.为了使上工序的实际工序尺寸在极限尺寸的情况下,本工序也能将上工序留下的表面粗糙度和缺陷层切除,本工序的加工余量应包括上工序的公差.2)前工序的形状和位置公差 当工件上有些形状和位置偏差不包括在尺寸公差的范围内时,这些误差又必须在本工序加工纠正,在本工序的加工余量中必须包括它.3)前工序的表面粗糙度和表面缺陷 为了保证加工质量,本工序必须将上工序留下的表面粗糙度和缺陷层切除.4)本工序的安装误差 安装误差包括工件的定位误差和夹紧误差,若用夹具装夹,还应有夹具在机床上的装夹误差.这些误差会使工件在加工时的位置发生偏移,所以加工余量还必须考虑安装误差的影响.10.2.5.2 确定加工余量的方法
确定加工余量的方法有 3 种:分析计算法,经验估算法和查表修正法.(1)分析计算法
本方法是根据有关加工余量计算公式和一定的试验资料,对影响加工余量的各项因素进行分析和综合计算来确定加工余量.用这种方法确定加工余量比较经济合理,但必须有比较全面和可靠的试验资料.目前,只在材料十分贵重,以及军工生产或少数大量生产的工厂中采用.(2)经验估算法
本方法是根据工厂的生产技术水平,依靠实际经验确定加工余量.为防止因余量过小而产生废品,经验估计的数值总是偏大,这种方法常用于单件小批量生产.(3)查表修正法
此法是根据各工厂长期的生产实践与试验研究所积累的有关加工余量数据,制成各种表格并汇编成手册,确定加工余量时,查阅有关手册,再结合本厂的实际情况进行适当修正后确定,目前此法应用较为普遍.10.2.6 工序尺寸及其公差的确定
机械加工过程中,工件的尺寸在不断地变化,由毛坯尺寸到工序尺寸,最后达到设计要求的尺寸.在这个变化过程中,加工表面本身的尺寸及各表面之间的尺寸都在不断地变化,这种变化无论是在一个工序内部,还是在各个工序之间都有一定的内在联系.应用尺寸链理论去揭示它们之间的内在关系,掌握它们的变化规律是合理确定工序尺寸及其公差和计算各种工艺尺寸的基础,因此,本节先介绍工艺尺寸链的基本概念,然后分析工艺尺寸链的计算方法以及工艺尺寸链的应用.10.2.6.1 工艺尺寸链的概念(1)工艺尺寸链的定义
在零件的加工过程中,为了加工和检验的方便,有时需要进行一些工艺尺寸的计算.为使这种计算迅速准确,按照尺寸链的基本原理,将这些有关尺寸以一定顺序首尾相连排列成一封闭的尺寸系统,即构成了零件的工艺尺寸链,简称工艺尺寸链.(2)工艺尺寸链的组成
① 环 组成工艺尺寸链的各个尺寸都称为工艺尺寸链的环.② 封闭环 工艺尺寸链中间接得到的环称为封闭环.封闭环以下角标” 0 “表示,如” A 0 “,” L “.③ 组成环 除封闭环以外的其它环都称为组成环.组成环分增环和减环两种.④ 增环 当其余各组成环保持不变,某一组成环增大,封闭环也随之增大,该环即为增环.一般在该环尺寸的代表符号上,加一向右的箭头表示.⑤ 减环 当其余各组成环保持不变,某一组成环增大,封闭环反而减小,该环即为减环.一般在该尺寸的代表符号上,加一向左的箭头表示.(3)工艺尺寸链的特征
① 关联性 组成工艺尺寸链的各尺寸之间必然存在着一定的关系,相互无关的尺寸不组成工艺尺寸链.工艺尺寸链中每一个组成环不是增环就是减环,其尺寸发生变化都要引起封闭环的尺寸变化.对工艺尺寸链中的封闭环尺寸没有影响的尺寸,就不是该工艺尺寸链的组成环.② 封闭性 尺寸链必须是一组首尾相接并构成一个封闭图形的尺寸组合,其中应包含一个间接得到的尺寸.不构成封闭图形的尺寸组合就不是尺寸链.(4)建立工艺尺寸链的步骤
① 确定封闭环 即加工后间接得到的尺寸.② 查找组成环 从封闭环一端开始,按照尺寸之间的联系,首尾相连,依次画出对封闭环有影响的尺寸,直到封闭环的另一端,形成一个封闭图形,就构成一个工艺尺寸链.查找组成环必须掌握的基本特点为:组成环是加工过程中”直接获得“的,而且对封闭环有影响.③ 按照各组成环对封闭环的影响,确定其为增环或减环 确定增环或减环可先给封闭环任意规定一个方向,然后沿此方向,绕工艺尺寸链依次给各组成环画出箭头,凡是与封闭环箭头方向相同的就是减环,相反的就是增环.10.2.6.2 工艺尺寸链的计算
尺寸链的计算方法有两种:极值法与概率法.极值法是从最坏情况出发来考虑问题的,即当所有增环都为最大极限尺寸而减环恰好都为最小极限尺寸,或所有增环都为最小极限尺寸而减环恰好都为最大极限尺寸,来计算封闭环的极限尺寸和公差.事实上,一批零件的实际尺寸是在公差带范围内变化的.在尺寸链中,所有增环不一定同时出现最大或最小极限尺寸,即使出现,此时所有减环也不一定同时出现最小或最大极限尺寸.概率法解尺寸链,主要用于装配尺寸链,其计算方法在装配中讲授.10.2.6.3 工序尺寸及其公差的确定(1)基准重合时工序尺寸及公差的确定
当零件定位基准与设计基准(工序基准)重合时,零件工序尺寸及其公差的确定方法是:先根据零件的具体要求确定其加工工艺路线,再通过查表确定各道工序的加工余量及其公差,然后计算出各工序尺寸及公差;计算顺序是:先确定各工序余量的基本尺寸,再由后往前逐个工序推算,即由工件上的设计尺寸开始,由最后一道工序向前工序推算直到毛坯尺寸.(2)测量基准与设计基准不重合时工序尺寸及其公差的计算
在加工中,有时会遇到某些加工表面的设计尺寸不便测量,甚至无法测量的情况,为此需要在工件上另选一个容易测量的测量基准,通过对该测量尺寸的控制来间接保证原设计尺寸的精度.这就产生了测量基准与设计基准不重合时,测量尺寸及公差的计算问题.(3)定位基准与设计基准不重合时工序尺寸计算
在零件加工过程中有时为方便定位或加工,选用不是设计基准的几何要素作定位基准,在这种定位基准与设计基准不重合的情况下,需要通过尺寸换算,改注有关工序尺寸及公差,并按换算后的工序尺寸及公差加工.以保证零件的原设计要求.(4)中间工序的工序尺寸及其公差的求解计算
在工件加工过程中,有时一个基面的加工会同时影响两个设计尺寸的数值.这时,需要直接保证其中公差要求较严的一个设计尺寸,而另一设计尺寸需由该工序前面的某一中间工序的合理工序尺寸间接保证.为此,需要对中间工序尺寸进行计算.(5)保证应有渗碳或渗氮层深度时工艺尺寸及其公差的计算
零件渗碳或渗氮后,表面一般要经磨削保证尺寸精度,同时要求磨后保留有规定的渗层深度.这就要求进行渗碳或渗氮热处理时按一定渗层深度及公差进行(用控制热处理时间保证),并对这一合理渗层深度及公差进行计算.10.2.7 机械加工的生产率及技术经济分析 10.2.7.1 机械加工时间定额的组成(1)时间定额的概念
所谓时间定额是指在一定生产条件下,规定生产一件产品或完成一道工序所需消耗的时间.它是安排作业计划,核算生产成本,确定设备数量,人员编制以及规划生产面积的重要依据.(2)时间定额的组成
1)基本时间 T 基本时间是指直接改变生产对象的尺寸,形状,相对位置以及表面状态或材料性质等工艺过程所消耗的时间.对于切削加工来说,基本时间就是切除金属所消耗的时间(包括刀具的切入和切出时间在内).2)辅助时间T 辅助时间是为实现工艺过程所必须进行的各种辅助动作所消耗的时间.它包括:装卸工件,开停机床,引进或退出刀具,改变切削用量,试切和测量工件等所消耗的时间.基本时间和辅助时间的总和称为作业时间.它是直接用于制造产品或零部件所消耗的时间.辅助时间的确定方法随生产类型而异.大批大量生产时,为使辅助时间规定得合理,需将辅助动作分解,再分别确定各分解动作的时间,最后予以综合;中批生产则可根据以往统计资料来确定;单件小批生产常用基本时间的百分比进行估算.3)布置工作地时间 T 布置工作地时间是为了使加工正常进行,工人照管工作地(如更换刀具,润滑机床,清理切屑,收拾工具等)所消耗的时间.它不是直接消耗在每个工件上的.而是消耗在一个工作班内的时间,再折算到每个工件上的.一般按作业时间的 2% ~ 7% 估算.4)休息与生理需要时间 T 休息与生理需要时间是工人在工作班内恢复体力和满足生理上的需要所消耗的时间.T 是按一个工作班为计算单位,再折算到每个工件上的.对机床操作工人一般按作业时间的 2% 估算.以上四部分时间的总和称为单件时间 T ,即 T = T +T + T + T
5)准备与终结时间T 准备与终结时间是指工人为了生产一批产品或零部件,进行准备和结束工作所消耗的时间.在单件或成批生产中,每当开始加工一批工件时,工人需要熟悉工艺文件,领取毛坯,材料,工艺装备,安装刀具和夹具,调整机床和其它工艺装备等所消耗的时间以及加工一批工件结束后,需拆下和归还工艺装备,送交成品等所消耗的时间.T 既不是直接消耗在每个工件上的,也不是消耗在一个工作班内的时间,而是消耗在一批工件上的时间.因而分摊到每个工件的时间为T / n ,其中 n 为批量.故单件和成批生产的单件工时定额的计算公式 T 应为: T = T +T / n
大批大量生产时,由于 n 的数值很大,T / n ≈ 0,故不考虑准备终结时间,即: T = T 10.2.7.2 提高机械加工生产率的途径
劳动生产率是指工人在单位时间内制造的合格产品的数量或制造单件产品所消耗的劳动时间.劳动生产率是一项综合性的技术经济指标.提高劳动生产率,必须正确处理好质量,生产率和经济性三者之间的关系.应在保证质量的前提下,提高生产率,降低成本.劳动生产率提高的措施很多,涉及到产品设计,制造工艺和组织管理等多方面,这里仅就通过缩短单件时间来提高机械加工生产率的工艺途径作一简要分析.由式(5.8)所示的单件时间组成,不难得知提高劳动生产率的工艺措施可有以下几个方面:(1)缩短基本时间
在大批大量生产时,由于基本时间在单位时间中所占比重较大,因此通过缩短基本时间即可提高生产率.缩短基本时间的主要途径有以下几种: 1)提高切削用量 增大切削速度,进给量和背吃刀量,都可缩短基本时间,但切削用量的提高受到刀具耐用度和机床功率,工艺系统刚度等方面的制约.随着新型刀具材料的出现,切削速度得到了迅速的提高,目前硬质合金车刀的切削速度可达 200m/min ,陶瓷刀具的切削速度达 500m/min.近年来出现的聚晶人造金刚石和聚晶立方氮化硼刀具切削普通钢材的切削速度达 900m/min.在磨削方面,近年来发展的趋势是高速磨削和强力磨削.国内生产的高速磨床和砂轮磨削速度已达 60m/s ,国外已达 90~120m/s;强力磨削的切入深度已达 6~12mm ,从而使生产率大大提高.2)采用多刀同时切削每把车刀实际加工长度只有原来的三分之一;每把刀的切削余量只有原来的三分之一;用三把刀具对同一工件上不同表面同时进行横向切入法车削.显然,采用多刀同时切削比单刀切削的加工时间大大缩短.3)多件加工 这种方法是通过减少刀具的切入,切出时间或者使基本时间重合,从而缩短每个零件加工的基本时间来提高生产率.多件加工的方式有以下三种: ① 顺序多件加工.即工件顺着走刀方向一个接着一个地安装,这种方法减少了刀具切入和切出的时间,也减少了分摊到每一个工件上的辅助时间.②平行多件加工.即在一次走刀中同时加工 n 个平行排列的工件.加工所需基本时间和加工一个工件相同,所以分摊到每个工件的基本时间就减少到原来的 1/n ,其中 n 是同时加工的工件数.这种方式常见于铣削和平面磨削.③平行顺序多件加工.这种方法为顺序多件加工和平行多件加工的综合应用,.这种方法适用于工件较小,批量较大的情况.4)减少加工余量 采用精密铸造,压力铸造,精密锻造等先进工艺提高毛坯制造精度,减少机械加工余量,以缩短基本时间,有时甚至无需再进行机械加工,这样可以大幅度提高生产效率.(2)缩短辅助时间
辅助时间在单件时间中也占有较大比重,尤其是在大幅度提高切削用量之后,基本时间显著减少,辅助时间所占比重就更高.此时采取措施缩减辅助时间就成为提高生产率的重要方向.缩短辅助时间有两种不同的途径,一是使辅助动作实现机械化和自动化,从而直接缩减辅助时间;二是使辅助时间与基本时间重合,间接缩短辅助时间.1)直接缩减辅助时间 采用专用夹具装夹工件,工件在装夹中不需找正,可缩短装卸工件的时间.大批大量生产时,广泛采用高效气动,液动夹具来缩短装卸工件的时间.单件小批生产中,由于受专用夹具制造成本的限制,为缩短装卸工件的时间,可采用组合夹具及可调夹具.此外,为减小加工中停机测量的辅助时间,可采用主动检测装置或数字显示装置在加工过程中进行实时测量,以减少加工中需要的测量时间.主动检测装置能在加工过程中测量加工表面的实际尺寸,并根据测量结果自动对机床进行调整和工作循环控制,例如磨削自动测量装置.数显装置能把加工过程或机床调整过程中机床运动的移动量或角位移连续精确地显示出来,这些都大大节省了停机测量的辅助时间.2)间接缩短辅助时间 为了使辅助时间和基本时间全部或部分地重合,可采用多工位夹具和连续加工的方法.(3)缩短布置工作地时间
布置工作地时间,大部分消耗在更换刀具上,因此必须减少换刀次数并缩减每次换刀所需的时间,提高刀具的耐用度可减少换刀次数.而换刀时间的减少,则主要通过改进刀具的安装方法和采用装刀夹具来实现.如采用各种快换刀夹,刀具微调机构,专用对刀样板或对刀样件以及自动换刀装置等,以减少刀具的装卸和对刀所需时间.例如在车床和铣床上采用可转位硬质合金刀片刀具,既减少了换刀次数,又可减少刀具装卸,对刀和刃磨的时间.(4)缩短准备与终结时间
缩短准备与终结时间的途径有二:第一,扩大产品生产批量,以相对减少分摊到每个零件上的准备与终结时间;第二,直接减少准备与终结时间.扩大产品生产批量,可以通过零件标准化和通用化实现,并可采用成组技术组织生产.10.2.7.3 机械加工技术经济分析的方法
制订机械加工工艺规程时,在同样能满足工件的各项技术要求下,一般可以拟订出几种不同的加工方案,而这些方案的生产效率和生产成本会有所不同.为了选取最佳方案就需进行技术经济分析.所谓技术经济分析就是通过比较不同工艺方案的生产成本,选出最经济的加工工艺方案.生产成本是指制造一个零件或一台产品所必须的一切费用的总和.生产成本包括两大类费用:第一类是与工艺过程直接有关的费用叫工艺成本,约占生产成本的 70% ~ 75%;第二类是与工艺过程无关的费用,如行政人员工资,厂房折旧,照明取暧等.由于在同一生产条件下与工艺过程无关的费用基本上是相等的,因此对零件工艺方案进行经济分析时,只要分析与工艺过程直接有关的工艺成本即可.(1)工艺成本的组成
工艺成本由可变费用和不变费用两大部分组成.1)可变费用 可变费用是与年产量有关并与之成正比的费用,用” V “表示(元 / 件).包括:材料费,操作工人的工资,机床电费,通用机床折旧费,通用机床修理费,刀具费,通用夹具费.2)不变费用 不变费用是与年产量的变化没有直接关系的费用.当产量在一定范围内变化时,全年的费用基本上保持不变,用” S "表示(元 / 年).包括:机床管理人员,车间辅助工人,调整工人的工资,专用机床折旧费,专用机床修理费,专用夹具费.(2)工艺成本的计算 1)零件的全年工艺成本 E = V N +S
式中 E ——零件(或零件的某工序)全年的工艺成本(元 / 年);V ——可变费用(元 / 件);N ——年产量(件 / 年);S ——不变费用(元 / 年).由上述公式可见,全年工艺成本 E 和年产量 N 成线性关系.它说明全年工艺成本的变化Δ E与年产量的变化Δ N 成正比;又说明 S 为投资定值,不论生产多少,其值不变.2)零件的单件工艺成本
单件工艺成本 E 与年产量 N 呈双曲线关系.在曲线的 A 段, N 很小,设备负荷也低,即单件小批生产区,单件工艺成本 E 就很高,此时若产量 N 稍有增加(Δ N)将使单件成本迅速降低(ΔE).在曲线 B 段, N 很大,即大批大量生产区.此时曲线渐趋水平,年产量虽有较大变化,而对单件工艺成本的影响却很小.这说明对于某一个工艺方案,当 S 值(主要是专用设备费用)一定时,就应有一个与此设备能力相适应的产量范围.产量小于这个范围时,由于 S/N 比值增大,工艺成本就增加.这时采用这种工艺方案显然是不经济的,应减少使用专用设备数,即减少 S 值来降低工艺成本.当产量超过这个范围时,由于 S/N 比值变小,这时就需要投资更大而生产率更高的设备,以便减少 V 而获得更好的经济效益.10.3 典型零件机械加工工艺过程 10.3.1 轴类零件加工分析(1)轴类零件加工的工艺路线 1)基本加工路线
外圆加工的方法很多,基本加工路线可归纳为四条.① 粗车—半精车—精车
对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线.② 粗车—半精车—粗磨—精磨
对于黑色金属材料,精度要求高和表面粗糙度值要求较小,零件需要淬硬时,其后续工序只能用磨削而采用的加工路线.③ 粗车—半精车—精车—金刚石车
对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车.④ 粗车—半精—粗磨—精磨—光整加工
对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线.2)典型加工工艺路线
轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法.对普通精度的轴类零件加工,其典型的工艺路线如下: 毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽,沟槽)—热处理—磨削—终检.(1)轴类零件的预加工
轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺.校直 毛坯在制造,运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校值,(2)轴类零件加工的定位基准和装夹
1)以工件的中心孔定位 在轴的加工中,零件各外圆表面,锥孔,螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则.中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则.当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面.2)以外圆和中心孔作为定位基准(一夹一顶)用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大.粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工.这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法.3)以两外圆表面作为定位基准 在加工空心轴的内孔时,(例如:机床上莫氏锥度的内孔加工),不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准.当工件是机床主轴时,常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差.4)以带有中心孔的锥堵作为定位基准 在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准.锥堵或锥套心轴应具有较高的精度,锥堵和锥套心轴上的中心孔即是其本身制造的定位基准,又是空心轴外圆精加工的基准.因此必须保证锥堵或锥套心轴上锥面与中心孔有较高的同轴度.在装夹中应尽量减少锥堵的安装此书,减少重复安装误差.实际生产中,锥堵安装后,中途加工一般不得拆下和更换,直至加工完毕.图 10.1 锥堵和锥套心轴 a)锥堵 b)锥套心轴
10.3.2 典型套筒类零件的加工工艺分析 10.3.2.1 典型零件的工艺分析(1)轴承套加工工艺分析
图 10.2 所示为 1 轴承套,材料为 ZQSn6-6-3 ,每批数量为 400 只.加工时,应根据工件的毛坯材料,结构形状,加工余量,尺寸精度,形状精度和生产纲领,正确选择定位基准,装夹方法和加工工艺过程,以保证达到图样要求.其主要技术要求为: 34mmjs7 外圆对 22mmH7 孔的径向圆跳动公差为 0.01mm;左端面对 22mmH7 孔的轴线垂直度公差为 0.01mm.由此可见,该零件的内孔和外圆的尺寸精度和位置精度要求均较高.图 10.2 轴承套
该轴承套属于短套,其直径尺寸和轴向尺寸均不大,粗加工可以单件加工,也可以多件加工.由于单件加工时,每件都要留出工件备装夹的长度,因此原材料浪费较多,所以这里采用多件加工的方法.该轴承套的材料为 ZQSn6-6-3.其外圆为 IT7 级精度,采用精车可以满足要求;内孔的精度也是 IT7 级,铰孔可以满足要求.内孔的加工顺序为钻—车孔—铰孔.(2)液压缸加工工艺分析
图 10.3 所示某液压缸零件图,生产纲领为成批生产.该液压缸属长套筒类零件,与前述短套类零件在加工方法及工件安装方式上都有较大差别.该液压缸内孔与活塞相配,因此表面粗糙度,形状及位置精度要求都较高.毛坯可选用无缝钢管,如果为铸件,其组织应紧密,无砂眼,针孔及疏松缺陷.必要时要用泵验漏.该液压缸为成批生产.图 10.3 液压缸简图
该零件长而壁薄,为保证内外圆的同轴度,加工外圆时参照空心主轴的装夹方法.即采用双顶尖顶孔口 1 o 30 1 的锥面或一头夹紧一头用中心架支承.加工内孔与一般深孔加工时的装夹方法相同,多采用夹一头,另一端用中心架托住外圆.孔的粗加工采用镗削,半精加工多采用铰削(浮动铰孔).该液压缸内孔的表面质量要求很高,内孔精加工后需滚压.也有不少套筒类零件以精细镗,珩磨,研磨等精密加工作为最终工序.内孔经滚压后,尺寸误差在 0.01mm 以内,表面粗糙度为 Ra0.16 或更小,且表面经硬化后更为耐磨.但是目前对铸造液压缸尚未采用滚压工艺,原因是铸件表面的缺陷(如疏松,气孔,砂眼,硬度不均匀等),哪怕是很微小,都对滚压有很大影响,会导致滚压加工产生适得其反的效果.10.3.2.2 保证表面相互位置精度的方法及防止加工中工件变形的措施(1)保证表面相互位置精度的方法
套类零件内外表面的同轴度以及端面与孔轴线的垂直度要求一般都较高,一般可用以下方法来满足: ① 在 1 次安装中完成内外表面及端面的全部加工,这样可消除工件的安装误差并获得很高的相互位置精度.但由于工序比较集中,对尺寸较大的套筒安装不便,故多用于尺寸较小的轴套车削加工.② 主要表面的加工分在几次安装中进行(先加工孔),先加工孔至零件图尺寸,然后以孔为精基准加工外圆.由于使用的夹具(通常为心轴)结构简单,而且制造和安装误差较小,因此可保证较高的相互位置精度,在套筒类零件加工中应用较多.③ 主要表面的加工分在几次安装中进行(先加工外圆)先加工外圆至零件图尺寸,然后以外圆为精基准完成内孔的全部加工.该方法工件装夹迅速可靠,但一般卡盘安装误差较大,使得加工后工件的相互位置精度较低.如果欲使同轴度误差较小,则须采用定心精度较高的夹具,如弹性膜片卡盘,液性塑料夹头,经过修磨的三爪自定心卡盘和软爪等.(2)防止套类零件变形的工艺措施
套类零件的结构特点是孔的壁厚较薄,薄壁套类零件在加工过程中,常因夹紧力.切削力和热变形的影响而引起变形.为防止变形常采取—些工艺措施: 1)将粗,精加工分开进行 为减少切削力和切削热的影响,使粗加工产生的变形在精加工中得以纠正.2)减少夹紧力的影响 在工艺上采取以下措施减少夹紧力的影响: ① 采用径向夹紧时,夹紧力不应集中在工件的某一径向截面上,而应使其分布在较大的面积上,以减小工件单位面积上所承受的夹紧力.如可将工件安装在一个适当厚度的开口圆环中,在连同此环一起夹紧.也可采用增大接触面积的特殊卡爪.以孔定位时,宜采用张开式心轴装夹.② 夹紧力的位置宜选在零件刚性较强的部位,以改善在夹紧力作用下薄壁零件的变形.③ 改变夹紧力的方向,将径向夹紧改为轴向夹紧.④ 在工件上制出加强刚性的工艺凸台或工艺螺纹以减少夹紧变形,加工时用特殊结构的卡爪夹紧,加工终了时将凸边切去.3)减小切削力对变形的影响 ① 增大刀具主偏角和主前角,使加工时刀刃锋利,减少径向切削力.② 将粗,精加工分开,使粗加工产生的变形能在精加工中得到纠正,并采取较小的切削用量.③ 内外圆表面同时加工,使切削力抵销.4)热处理放在粗加工和精加工之间 这样安排可减少热处理变形的影响.套类零件热处理后一般会产生较大变形,在精加工时可得到纠正,但要注意适当加大精加工的余量.
第五篇:机械加工复习知识点
什么是生产过程?生产过程由哪些部分组成? 什么是工艺过程?
什么是工序、安装、工位、工步、和走刀? 什么是生产纲领?生产类型分几类?
什么是机械加工工艺规程?工艺规程有何作用? 制定工艺规程的原则是什么?
制定工艺规程的主要依据是什么? 制定工艺规程的步骤有哪些?
毛坯有哪些种类?选择毛坯应考虑哪些因素? 什么是基准?基准有哪些分类? 精基准如何选择?粗基准如何选择? 表面加工方法的选择要考虑哪些问题?
加工阶段如何划分?划分加工阶段的作用是什么? 工序集中与分散有何特点?
加工顺序如何安排?有何好处? 热处理如何安排?
零件加工的一般工艺路线是什么?
单件小批量易选专用夹具还是通用夹具? 粗、精加工如何选前角γ和后角α? 工艺系统刚度差如何选主偏κγ? 刀具主偏角κν有哪些影响? 什么是小批量生产?
高速钢和硬质合金钢应如何选择前角γ和后角α? 现在工艺过程的基本单元叫什么?
脆性材料和塑性材料如何选前角γ和后角α? 什么叫工序?
单件小批量生产适用工序集中还是分散? 高速钢和硬质合金钢刀具哪个需加切削液? 精加工中刮伤工件是由切屑种类引起的吗? 什么是准备性工作?
毛坯生产成本与产量有何关系?
试切法和划线法适用于何种类型的生产? 挤裂切屑是如何形成的?
在大批量生产中应选用何种机床? 有无积屑瘤分别适用哪个加工阶段?
车外圆和磨外圆那个力大?哪个力最小? 磨外圆时主运动是哪部件的运动?
钻削加工主运动和进给运动分别是哪个部件的运动?什么是切削运动?什么是主运动?什么是进给运动?什么是切削用量?
确定刀具角度的参考系有哪两类?
构成刀具角度的参考平面主要有哪些? 正交平面参考系有哪些平面构成? 什么是金属的切削过程?
切屑的类型有哪些?如何控制? 什么是积屑瘤?它是如何形成的? 影响切削变形的因素是什么? 影响切削力的主要因素是什么? 影响切削温度的主要因素是什么? 刀具磨损的形式有哪些? 刀具磨损的原因有哪些? 什么是刀具的磨钝标准?
什么是刀具的寿命?
刀具几何参数的合理选择是什么? 如何选择切削用量? 背吃刀量如何测量?
背吃刀量和进给量一定时,切削厚度和宽度的比值由谁决定?
垂直于过渡表面度量的切削层尺寸称为什么? 车刀的工作前角与标注前角有何关系?
加工碳素钢工件易选用那个牌号的硬质合金钢? 游标卡尺有何特点?
前角、后角大小有何影响?
影响切削层参数、切削分力分配、刀尖强度及散热的刀具角度是什么?
影响刀具刀尖强度和切削流向的角度是什么? 影响刀具刀刃工作长度的角是那些?
轴类零件加工时的两个顶尖中心孔是属于什么定位基准?
大批生产箱体类零件选一面两空定位属于什么定位原则?
选用毛坯类型和制造方法。选用自为基准有何目的?
刀具材料应具有哪些性能?代号如何表达?
硬质合金钢、高速钢和其他刀具材料有何特点? 车刀按用途分为那些刀? 车刀按结构分为那些刀? 孔加工刀具分为哪些?
什么叫夹具?夹具有何作用?
工件的装夹方法按其实现工件定位的方式分为哪两种?
用专用夹具装夹工件有何优点? 按夹具的通用特性分为哪几类? 什么是六点定位原则?
什么是完全定位、不完全定位、欠定位和过定位? 定位的方法和定位元件有哪些? 对夹紧装置的基本要求有哪些? 夹紧力的确定原则是什么? 常用的夹紧机构有哪些?
铣床夹具按工件的进给方式一般为哪几类?什么是顺铣和逆铣?
车床夹具的主要类型有哪些?
因其工艺系统变性的热源有哪几类? 什么是工艺规程?
什么是系统误差?分为哪几种共? 评定冷作硬化的三项指标是什么?
零件机械加工的一般工艺路线是什么? 简述影响切削温度的因素是什么? 简述影响切削变形的因素是什么? 精基准的选择原则是什么? 粗基准的选择原则是什么?
工序尺寸及公差的确定分为哪两类?