第一篇:DR简介(X光机)
DR简介
DR(Digital Radiography),即直接数字化X射线摄影系统,是由电子暗盒、扫描控制器、系统控制器、影像监示器等组成,是直接将X线光子通过电子暗盒转换为数字化图像,是一种广义上的直接数字化X线摄影。而狭义上的直接数字化摄影即DDR(DirectDigit Radiography),通常指采用平板探测器的影像直接转换技术的数字放射摄影,是真正意义上的直接数字化X射线摄影系统。
DR与CR的共同点都是将X线影像信息转化为数字影像信息,其曝光宽容度相对于普通的增感屏-胶片系统体现出某些优势:CR和DR由于采用数字技术,动态范围广,都有很宽的曝光宽容度,因而允许照相中的技术误差,即使在一些曝光条件难以掌握的部位,也能获得很好的图像;CR和DR可以根据临床需要进行各种图像后处理,如各种图像滤波,窗宽窗位调节、放大漫游、图像拼接以及距离、面积、密度测量等丰富的功能,为影像诊断中的细节观察、前后对比、定量分析提供技术支持。对两者的性能比较如下:1.成像原理:DR是一种X线直接转换技术,它利用硒作为X线检测器,成像环节少;CR是一种X线间接转换技术,它利用图像板作为X线检测器,成像环节相对于DR较多。2.图像分辨率:DR系统无光学散射而引起的图像模糊,其清晰度主要由像素尺寸大小决定;CR系统由于自身的结构,在受到X线照射时,图像板中的磷粒子使X线存在着散射,引起潜像模糊;在判读潜像过程中,激光扫描仪的激发光在穿过图像板的深部时产生着散射,沿着路径形成受激荧光,使图像模糊,降低了图像分辨率,因此当前CR系统的不足之处主要为时间分辨率较差,不能满足动态器官和结构的显示。3.DR是今后的发展方向,但就目前而言,DR电子暗盒的结构14 in×17 in(1 in=2.54 cm)由4块⒎5 in ×8 in 所组成,每块的接缝处由于工艺的限制不能做得没缝,且一旦其中一块损坏必将导致4块全部更换,不但费用昂贵,还需改装已有的X线机设备,而CR相对费用较低,且多台X线机可同时使用,无需改变现有设备。4.CR系统更适用于X线平片摄影,其非专用机型可和多台常规X线摄影机匹配使用,且更适用于复杂部位和体位的X线摄影;DR系统则较适用于透视与点片摄影及各种造影检查,由于单机工作时的通量限制,不易取代大型医院中多机同时工作的常规X线摄影设备,但较适用于小医疗单位和诊所的一机多用目的。事实上,CR和DR系统在相当长的一段时间内将是一对并行发展的系统。数字X线机是计算机数字图像处理技术与X射线放射技术相结合而形成的一种先进的X线机。在原有的诊断X线机直接胶片成像的基础上,通过A/D转换和D/A转换,进行实时图像数字处理,进而使图像实现了数字化。它的出现打破了传统X线机的观念,实现了人们梦寐以求的模拟X线图像向数字化X线图像的转变。
特点:
第一,它最突出的优点是分辩率高,图像清晰、细腻,医生可根据需要进行诸如数字减影等多种图像后处理,以期获得理想的诊断效果。
第二,该设备在透视状态下,可实时显示数字图像,医生再根据患者病症的状况进行数字摄影,然后通过一系列影像后处理如边缘增强、放大、黑白翻转、图像平滑等功能,可从中提取出丰富可靠的临床诊断信息,尤其对早期病灶的发现可提供良好的诊断条件。
第三,数字化X线机形成的数字化图像比传统胶片成像所需的X射线计量要少,因而它能用较低的X线剂量得到高清晰的图像,同时也使病人减少了受X射线辐射的危害。
第四,由于它改变了已往传统的胶片摄影方法,可使医院放射线科取消原来的图像管理方式和省去片库房,而可采用计算机无片化档案管理方法取而代之,可节省大量的资金和场地,极大地提高工作效率。此外,由于数字化X线图像的出现,结束了X线图像不能进入医院PACS系统的历史,为医院进行远程专家会诊和网上交流提供了极大的便利。另外,该设备还可进行多幅图像显示,进行图像比较,以利于医生准确判别、诊断。通过图像滚动回放功能,还可为医生回忆整个透视检查过程。
数字化X线的临床应用
数字化的图像质量与所含的影像信息量可与传统的X线成像相媲美。图像处理系统可调节对比。故能达到最佳的视觉效果;摄照条件的宽容范围较大;患者接受的X线量减少。图像信息可由磁盘或光盘储存,并进行传输,这些都是数字化图像的优点。
数字化图像与传统X线图像都是所摄部位总体的重迭影像,因此,传统X线能摄照的部位也都可以用DR成像,而且对DR图像的观察与分析也与传统X线相同。所不同的是DR图像是由一定数目的象素所组成。
数字化图像对骨结构、关结软骨及软组织的显示优于传统的X线成像,还可行矿物盐含量的定量分析。数字化图像易于显示纵隔结构如血管和气管。对结节性病变的检出率高于传统的X线成像,但显示肺间质与肺泡病变则不及传统的X线图像。DR在观察肠管积气、气腹和结石等含钙病变优于传统X线图像。
用数字化图像行体层成像优于X线体层摄影。胃肠双对比造影在显示胃小区、微小病变和肠粘膜皱襞上,数字化图像优于传统的X线造影。
DR是一种新的成像技术,在不少方面优于传统的X线成像,但从效益-价格比,尚难于替换传统的X线成像。在临床应用上,DR不像CT与MRI那样不可代替。
第二篇:关于添置DR数字化X光机的申请报告(精选)
关于添置DR数字化X光机的申请报告
尊敬的卫计局领导:
因卫生院发展需要需购置DR数字化X光机,现将购置理由简述如下:
DR是简便、易行、非常普遍的影像检查方法,随着医疗技术的迅速普及,临床医疗技术对循证医学的重视,传统的X光机摄片图像质量差,且工作人员操作流程繁琐,工作效率低,尤其今年的病人增多,工作量大,给临床诊断造成很大不便,随着人民生活质量的提高,对所检查所需设备要求更高,所以我院原有的X光机已经不能满足人民群众的需求,同时也不能满足我院临床医疗发展的需求。
为了满足以上需求,便以工作顺利进行,特向领导申请购置DR数字化X光机1台,并请领导酌情解决资金为谢!
此致敬礼!
曲兰镇卫生院
2018.09.10
第三篇:光模块简介
光模块简介
以太网交换机常用的光模块有SFP,GBIC,XFP,XENPAK。它们的英文全称: SFP:Small Form-factor Pluggable transceiver,小封装可插拔收发器 GBIC:GigaBit Interface Converter,千兆以太网接口转换器小封装可插拔收发器封装
XFP:10-Gigabit small Form-factor Pluggable transceiver 万兆以太网接口
XENPAK: 10 Gigabit EtherNet Transceiver PAcKage万兆以太网接口收发器集合光纤连接器
光纤连接器由光纤和光纤两端的插头组成,插头由插针和外围的锁紧结构组成。根据不同的锁紧机制,光纤连接器可以分为FC型、SC型、LC型、ST型和KTRJ型。
FC连接器采用螺纹锁紧机构,是发明较早、使用最多的一种光纤活动连接器。
SC是一种矩形的接头,由NTT研制,不用螺纹连接,可直接插拔,与FC连接器相比具有操作空间小,使用方便。低端以太网产品非常常见。
LC是由LUCENT开发的一种Mini型的SC连接器,具有更小的体积,已广泛在系统中使用,是今后光纤活动连接器发展的一个方向。低端以太网产品非常常见。
ST连接器是由AT&T公司开发的,用卡口式锁紧机构,主要参数指标与FC和SC连接器相当,但在公司应用并不普遍,通常都用在多模器件连接,与其它厂家设备对接时使用较多。
KTRJ的插针是塑料的,通过钢针定位,随着插拔次数的增加,各配合面会发生磨损,长期稳定性不如陶瓷插针连接器。
光纤知识
光纤是传输光波的导体。光纤从光传输的模式来分可分为单模光纤和多模光纤。式射散使得单模光纤的传输频带很宽因而适用与高速,长距离的光纤通迅。
在多模光纤中光传输有多个模式,由于色散或像差,这种光纤的传输性能较差,频带窄,传输速率较小,距离较短。
光纤的特性参数
光纤的结构预制的石英光纤棒拉制而成,通信用的多模光纤和单模光纤的外径都为125μm。
在单模光纤中光传输只有一种基模模式,也就是说光线只沿光纤的内芯进行传输。由于完全避免了模
纤体分为两个区域:纤芯(Core)和包层(Cladding layer)。单模光纤纤芯直径为8~10μm,多模光纤纤芯径有两种标准规格,芯径分别为62.5μm(美国标准)和50μm(欧洲标准)。是指光纤的外径。
接口光纤规格有这样的描述:62.5μm/125μm多模光纤,其中62.5μm就是指光纤的芯径,125μm就
单模光纤使用的光波长为1310nm或1550 nm。
多模光纤使用的光波长多为850 nm。
千兆光口自协商
从颜色上可以区分单模光纤和多模光纤。单模光纤外体为黄色,多模光纤外体为橘红色。千兆光口可以工作在强制和自协商两种模式。802.3规范中千兆光口只支持1000M速率,支持全双工(Full)和半双工(Half)两种双工模式。
自协商和强制最根本的区别就是两者再建立物理链路时发送的码流不同,自协商模式发送的是/C/码,也就是配置(Configuration)码流,而强制模式发送的是/I/码,也就是idle码流。
千兆光口自协商过程
一、两端都设置为自协商模式
双方互相发送/C/码流,如果连续接收到3个相同的/C/码且接收到的码流和本端工作方式相匹配,则返回给对方一个带有Ack应答的/C/码,对端接收到Ack信息后,认为两者可以互通,设置端口为UP状态二、一端设置为自协商,一端设置为强制
自协商端发送/C/码流,强制端发送/I/码流,强制端无法给对端提供本端的协商信息,也无法给对端返回Ack应答,故自协商端DOWN。但是强制端本身可以识别/C/码,认为对端是与自己相匹配的端口,所以直接设置本端端口为UP状态
三、两端均设置为强制模式
双方互相发送/I/码流,一端接收到/I/码流后,认为对端是与自己相匹配的端口,直接设置本端端口为UP状态
光纤是如何工作的?
通讯用光纤由外覆塑料保护层的细如毛发的玻璃丝组成。玻璃丝实质上由两部分组成:核心直径为9到62.5μm,外覆直径为125μm的低折射率的玻璃材料。虽然按所用的材料及不同的尺寸而分还有一些其它种类的光纤,但这里提到的是最常见的那几种。光在光纤的芯层部分以“全内反射”方式进行传输,也就是指光线 进入光纤的一端后,在芯层和包层界面之间来回反射,进而传输到光纤另一端。芯径为62.5μm,包层外径为125μm的光纤称为62.5/125μm 光纤。
多模和单模光纤的区别?
多模:
可以传播数百到上千个模式的光纤,称为多模(MM)光纤。根据折射率在纤芯和包层的径向分布情况,又可分为阶跃多模光纤和渐变多模光纤。
几乎所有的多模光纤尺寸均为50/125μm或62.5/125μm,并且带宽(光纤的信息传输量)通常为200MHz到2GHz。多模光端机通过多模光纤可进行长达5公里的传输。以发光二极管或激光器为光源。
单模:
只能传播一个模式的光纤称为单模光纤。标准单模(SM)光纤折射率分布和阶跃型光纤相似,只是纤芯直径比多模光纤小得多。
单模光纤的尺寸为9-10/125μm,并且较之多模光纤具有无限量带宽和更低损耗的特性。而单模光端机多用于长距离传输,有时可达到150至200公里。采用LD或光谱线较窄的LED作为光源。区别与联系:
使用光缆时传输损耗如何?
这取决于传输光的波长以及所使用光纤的种类。
850nm波长用于多模光纤时: 3.0分贝/公里 单模设备通常既可在单模光纤上运行,亦可在多模光纤上运行,而多模设备只限于在多模光纤上运行。
1310nm波长用于多模光纤时: 1.0分贝/公里 1310nm波长用于单模光纤时: 0.4分贝/公里
1550nm波长用于单模光纤时: 0.2分贝/公里
何为GBIC?
GBIC是Giga Bitrate Interface Converter的缩写,是将千兆位电信号转换为光信号的接口器件。GBIC设计上可以为热插拔使用。GBIC是一种符合国际标准的可互换产品。采用 GBIC接口设计的千兆位交换机由于互换灵活,在市场上占有较大的市场分额。
何为SFP?
SFP是SMALL FORM PLUGGABLE的缩写,可以简单的理解为GBIC的升级版本。SFP模块体积比GBIC模块减少一半,可以在相同的面板上配置多出一倍以上的端口数 量。SFP模块的其他功能基本和GBIC一致。有些交换机厂商称SFP模块为小型化GBIC(MINI-GBIC)。
未来的光模块必须支持热插拔,即无需切断电源,模块即可以与设备连接或断开,由于光模块是热插拔式的,网络管理人员无需关闭网络就可升级和扩展系统,对在线用户不会造成什么影响。热插拔性也简化了总的维护工作,并使得最终用户能够更好地管理他们的收发模块。同时,由于这种热交换性能,该模块可使网络管理人员能够根据网络升级要求,对收发成本、链路距离以及所有的网络拓扑进行总体规划,而无需对系统板进行全部替换。支持这热插拔的光模块目前有GBIC和SFP,由于SFP与SFF的外型大小差不多,它可以直接插在电路板上,在封装上较省空间与时间,且应用面相当广,因此,其未来发展很值得期待,甚至有可能威胁到SFF的市场。
何为SFF?
SFF(Small Form Factor)小封装光模块采用了先进的精密光学及电路集成工艺,尺寸只有普通双工SC(1X9)型光纤收发模块的一半,在同样空间可以增加一倍的光端口数,可以增加线路端口密度,降低每端口的系统成本。又由于SFF小封装模块采用了与铜线网络类似的KT-RJ接口,大小与常见的电脑网络铜线接口相同,有利于现有以铜缆为主的网络设备过渡到更高速率的光纤网络以满足网络带宽需求的急剧增长。
网络连接设备接口类型 BNC接口
BNC接口是指同轴电缆接口,BNC接口用于75欧同轴电缆连接用,提供收(RX)、发(TX)两个通道,它用于非平衡信号的连接。
光纤接口
光纤接口是用来连接光纤线缆的物理接口。通常有SC、ST、LC、FC等几种类型。对于10Base-F连接来说,连接器通常是ST类型,另一端FC连的是光纤步线架。FC是Ferrule Connector的缩写,其外部加强方式是采用金属套,紧固方式为螺丝扣。ST接口通常用于10Base-F,SC接口通常用于100Base-FX和GBIC,LC通常用于SFP。
RJ-45接口
RJ-45接口是以太网最为常用的接口,RJ-45是一个常用名称,指的是由IEC(60)603-7标准化,使用由国际性的接插件标准定义的8个位置(8针)的模块化插孔或者插头。
RS-232接口
RS-232-C接口(又称 EIA RS-232-C)是目前最常用的一种串行通讯接口。它是在1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换 接口技术标准”。该标准规定采用一个25个脚的DB25连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。
RJ-11接口
RJ-11接口就是我们平时所说的电话线接口。RJ-11是用于西部电子公司(Western Electric)开发的接插件的通用名称。其外形定义为6针的连接器件。原名为WExW,这里的x表示“活性”,触点或者打线针。例如,WE6W 有全部6个触点,编号1到6, WE4W 界面只使用4针,最外面的两个触点(1和6)不用,WE2W 只使用中间两针(即电话线接口用)。
CWDM 与 DWDM
随着Internet的IP数据业务高速增长,造成对传输线路带宽的需求不断加大。虽然DWDM(密集波分复用)技术作为最有效的解决线路带宽扩容的方法,但是CWDM(粗波分复用)技术比DWDM在系统成本、可维护性等方面具有优势。
CWDM与DWDM皆属于波分复用技术,都可以将不同波长的光偶合到单芯光纤中去,一起传输。
CWDM的ITU最新标准为G.695,规定了从1271nm到1611nm之间间隔为20nm的18个波长通道,考虑到普通G.652光纤的水峰影响,一般使用16个通道。因为通道间隔大所以,合分波器件以及激光器都比DWDM器件便宜。
DWDM的通道间隔根据需要有0.4nm,0.8nm,1.6nm等不同间隔,间隔较小、需要额外的波长控制器件,所以基于DWDM技术的设备较之基于CWDM技术的设备价格高。
PIN光电二极管是在掺杂浓度很高的P型、N型半导体之间,加一层轻掺杂的N型材料,称为I(Intrinsic,本征的)层。由于是轻掺杂,电子浓度很低,经扩散后形成一个很宽的耗尽层,这样可以提高其响应速度和转换效率。
APD 雪崩光电二极管,它不但具有光/电转换作用,而且具有内部放大作用,其放大作用是靠管子内部的雪崩倍增效应完成的。APD是有增益的光电二极管,在光接收机灵敏度要求较高的场合,采用APD有利于延长系统的传输距离。
第四篇:普朗-放射科设备dr拍片机操作注意事项
dr拍片机是医院放射科必备的医疗设备之一,它是一款数字剪影X线拍片机,不仅照射剂量低,对人体辐射极小,而且分辨率非常高,曝光成像时间极短,有效地使得病人的检查速度明显提高,降低了病人等待的时间。
(PLX9600A型数字化医用X射线摄影系统)
PLX9600A型数字化医用X射线摄影系统适用于放射科对于不同体型、不同部位、不同年龄的病患者进行身体各部位的数字化摄影诊断。性能特点描述
1、碘化铯、非晶硅平板探测器,采用先进的制造工艺、具有超强的稳定性。
2、17”×17”有效探测面积,可满足各个部位的拍摄需要。
3、双工作站配置,采集、处理分工协作,大幅提高工作效率,加大使用通量,最大限度的发挥使用效能。
4、工作站采用国际先进的专业医学图像处理技术,中文操作界面,具有完善的DR图像处理功能。
5、高分辨率专业医用显示器,分辨率高,图像品质卓越。
6、采用千兆网与DR探测器连接,图像采集安全快捷;国际Dicom3.0标准接口,方便联入PACS系统,进行传输、打印。
7.自主研发60kHz大功率高频高压发生器,实现1ms超短曝光时间,性能优越,国际一流。
8、kV、mAs两钮制,kV、mA、s三钮制及AEC自动曝光三种摄影模式,可自行选择,更好的满足不同使用者的专业要求。
9、人体图形化操作界面,真彩色触摸液晶屏,数字化智能控制系统,操作简单方便。
10、设有多部位、多体位、多体型的成人、儿童等人体特征摄影参数设置,同时用户可自由修改及存储,使操作更为简便。
11、具备多重自动保护及故障代码提示功能,维修更方便。
12、自主研发新型悬吊臂机架与探测器胸片架系统,具备八个维度自由运动,满足站立和平卧各种摄影摆位要求。
13、机械运动采用全自动的数码控制驱动技术,设有常用体位的一键定位功能,且球管自动跟踪探测器,联动的各运动系统操作高效便捷,方便医生的使用。
14、运动控制采用大尺寸彩色液晶触摸屏操作及按键双控制方式,并实时显示各维度运动的角度和距离,便于医生准确定位。
15、机械运动方式采用天轨和地轨方式双轨运行方式,增大机器移动覆盖范围。
16、机器钢丝绳定期检修功能。
第五篇:DR报告单
眉 山 市 东 方 医 院 DR数字X线检查报告书
DR号:35138 姓 名:李建成 性 别:男 年 龄:21 科 别:内科 住院号:/ 病 室:/ 床 号:/ 门诊号:/ 检查部位:胸部 检查方法:正侧位投照 检查所见: