圆锥的体积教学设计优秀
圆锥的体积教学设计优秀1
教学内容:
练习四第4~12题和第23页思考题
教学目标:
1.使学生进步理解、掌握圆锥的体积计算方法,能根据不同的条件计算出圆锥的体积。
2.提高学生解决生活中实际问题的能力。
3.养成良好的学习习惯。
教学重点:
进步掌握圆锥体积的计算方法。
教学难点:
圆柱和圆锥体积之间的联系与区别。
教学过程:
一、复习旧知
1.复习体积计算。
(1)提问:圆锥的体积怎样计算?
(2)口答下列各圆锥的体积。
①底面积3平方分米,高2分米。
②底面积4平方厘米,高4.5厘米。
2.引入新课。
今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的。方法解决一些简单的'实际问题。
二、教学新课
组织练习。
1.做练习四第4题。
学生独立计算。
2.做练习四第5题。
把等底等高的圆柱体积和圆锥体积相互转化,从已知的圆柱体积得出相应的圆锥体积,从已知的圆锥体积得出相应的圆柱体积,继续加强对等底等高圆柱和圆锥体积关系的理解。
3.做练习四第6题。
出示第6题的图。
引导分析:根据图示的各个立体图形的底面直径与高,寻找与圆锥体积相等的圆柱,可以从圆锥体积是等底等高圆柱体积的1/3,推理出体积相等的圆柱与圆锥,如果底面积相等,圆锥的高是圆柱的3倍圆柱的高是圆锥的1/3;如果高相等,圆锥的底面积是圆柱的3倍圆柱的底面积是圆锥的1/3。还要注意到,大圆的直径是小圆的3倍小圆直径是大圆的1/3,大圆的面积则是小圆的9倍小圆的面积是大圆的1/9。
4.做练习四第7题。
(1)提问:圆锥体积最大时与圆柱的关系是什么?(等底等高)
接着让学生独立练习。
(2)让学生自主地提出其他问题,进一步的掌握圆锥和圆柱的关系。
5.做练习四第8题。
联系实际,解决问题。
6.做练习四第9题。
让学生动手操作,理解三角形绕它的两条高旋转一周形成两个大小不同的圆锥。在此基础上让学生独立计算。
7.做练习四第12题。
出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第115页图制作的圆锥,求出它的体积来。
三、课堂小结
这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算方法,有时候还可以计算出圆锥形物休的重量。
四、布置作业
1.练习四第10.11题。
2.学有余力学生完成思考题。
圆锥的体积教学设计优秀2
教学内容:
教材第11~17页圆锥的认识和体积计算、例1。
教学要求:
l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:
长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的 的教具。
教学重点:
掌握圆锥的特征。
教学难点:
理解和掌握圆锥体积的计算公式。
教学过程:
一、铺垫孕伏:
1. 说出圆柱的体积计算公式。
2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)
二、自主探究:
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第16页插图,和学生举的.例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1) 圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2) 认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?
4.学生练习。
口答练习三第1题。
5.教学圆锥高的测量方法。(见课本第17页有关内容)
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)
(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积13=底面积高13
用字母表示:V= 13 Sh
(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以 13 ?
8.教学例l
(1)出示例1
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
圆锥的体积教学设计优秀3
教学内容:教材第20页例2、练一练。
教学要求:使学生进步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:
教学重点:进步掌握圆锥的体积计算方法。
教学难点:根据不同的条件计算圆锥的体积。
教学过程:
一.铺垫孕伏:
1.口算。
2.复习体积计算。
(1)提问:圆锥的体积怎样计算?
(2)口答下列各圆锥的体积:①底面积3平方分米,高2分米。
②底面积4平方厘米,高4.5厘米。
3.引入新课。
今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。
二、自主探究:
l.教学例2。
出示例题,让学生读题。提问:你们认为这道题要先求什么,再求这堆沙的重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的`数据怎样获得?指名板演,其他学生做在练习本上,集体订正。
2.组织练习。
(1)做练一练。
指名一人板演,其余学生做在练习本上,集体订正。
(2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后
学生做在练习本上。集体订正。
(3)讨论练习三第7题。
底面周长相等,底面积就相等吗?
三、课堂小结
这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。
四、布置作业
1.练习三第5题及数训。
2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。
3.思考练习三第8、9题。
圆锥的体积教学设计优秀4
教学内容:
教科书第20~21页例5及相应的 试一试,练一练和练习四的第1~3题。
教学目标:
1.组织学生参与实验,从而推导出圆锥体积的计算公式。
2.会运用圆锥的体积计算公式计算圆锥的体积。
3.培养学生观察、比较、分析、综合的能力以及初步的空间观念。
4.以小组形式参与学习过程,培养学生的合作意识。
5.渗透转化的数学思想。
教学重点:
理解和掌握圆锥体积的计算公式。
教学难点:
理解圆柱和圆锥等底等高时体积间的倍数关系。
教学资源:
等底等高的圆柱和圆锥容器一套,一些沙或米等。
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.我们已经知道了哪些立体图形体积的求法?(学生回答时老师出示相应的教具---长方体,正方体圆柱体,然后板书相应的计算公式。)
2.我们是用什么方法推出圆柱体积的计算公式的?(是把圆柱体转化为长方体来推导的。板书:转化)
3.(出示教具)大家觉得这个圆锥与哪个立体图形的关系最近呢?(老师比较学生指出的圆柱与圆锥的底和高,引导学生发现这个圆柱与圆锥等底等高。)
4.大家觉得我们今天要研究的圆锥的体积可能转化为什么图形来研究比较简单呢?能说说自己的理由吗?
5.它们的体积之间到底有什么关系呢?
二、实验操作、推导圆锥体积计算公式。
1.课件出示例5。
(1)通过演示使学生知道什么叫等底等高。
(2)让学生猜想:图中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的'关系?
(3)实验操作,发现规律。
(用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的。关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。
2.教师课件演示
3.学生讨论实验情况,汇报实验结果。
4.启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积 1/3=底面积高1/3
用字母表示:V= 1/3Sh
小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以1/3 ?
5.教学试一试
(1)出示题目
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、发散练习、巩固推展
1.做练一练第1.2题。
指名一人板演,其余学生做在练习本上。集体订正,强调要乘以1/3 。
2.做练习四第1.2题。
学生做在课本上。之后学生反馈。错的要求说明理由。
四、小结
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
学生交流
五、作业
练习四第3题。
圆锥的体积教学设计优秀5
教学目标:
1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。
2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。
3、培养学生的合作意识及主动探索知识的精神。
教学重点:
让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=1/3sh,并感受到计算公式的简便。
教学难点:能利用不同方法计算不同物体的体积。知识的活学活用。
教学准备:
1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。6
2、教学软件。
教学流程:
一、创设情景,激趣引新。
1、首先教师手中拿一圆柱体问:同学们,老师想知道这个圆柱体的体积你们能帮助我吗?
(学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)
2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:那老师这里还有一个圆锥体,它的.体积应该怎样计算呢?你们知道吗?(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。
〈设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。从而产生学习新知的欲望。〉
二、小组合作,探究学习。
1、动手操作,测量圆锥体的体积。
要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。测量物体是容器的厚度不计。
〈全体学生在动手操作,互相商量解决问题的办法。教师巡回指导。课堂呈现小组探究学习的热烈场面。〉
3、分组汇报不同的方法。
〈学生在汇报时可边讲解边示范〉
方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的。体积也就是圆锥体的体积。
方法二:利用手中的一立方厘米的小木块进行估算。
方法三:受《曹冲称象》的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。
方法四:把圆锥体内装满大米、沙子或水,然后将它到入与它等底等高的圆柱体容器里。发现到了3次正好到慢。也就是说,圆锥体的体积等于与它等底等高的圆柱体的三分之一。用字母表示为:v=1/3sh
〈设计意图:通过讨论研究和动手操作,发展学生的创新能力,和解决实际问题的能力。〉
(1)在讲解第四个方法时,教师可以向学生质疑,在操作此过程时有一个非常重要的前提条件是什么?为什么圆锥体的体积等于与它等底等高圆柱体体积的三分之一?
(2)学生再次在小组内操作探究。
(3)汇报结论。
(4)微机演示。
当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。
〈设计意图:通过学生探究与微机演示,使学生直观的感受圆锥体与圆柱体之间关系。加深对圆锥体体积计算公式的理解。〉
4、评价以上各种办法
同学们的结论是用公式计算比较方便。
三、解决实际问题
(问题一)
1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要保留整数)
2、汇报结果。
先测量出圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:1/3x[3.14x(10/2)x10]262立方厘米(忽略厚度,即把溶剂可看作体积)
(问题二)
1、现知道手中的圆锥体每立方厘米约装0.9克大米,计算这个圆锥体容器可装多少克大米?
2、汇报结果。
用每立方厘米装大米的克数乘圆锥的体积。算式:0.9x262236克
3、验证计算结果
用称称一称,比较一下结果。
4、讨论两次结果为什么不同。
由于测量时厚度不计,计算时是近似值。都存在误差。
〈设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。〉
(问题三)
利用圆锥体积公式计算。
(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
(问题四)
计算不规则物体体积或容积。(直说出计算的方法即可)
1、用什么方法计算出葫芦能装多少水?
2、胡萝卜的体积怎样计算?
3、不规则的零件体积计算?
〈设计意图:结合生活实际让学生感受到数学与生活的联系。及解决实际问题的不同方法及策略,培养创新能力。〉
四、总结全课
说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。
圆锥的体积教学设计优秀6
【教材分析】
本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。
【设计理念】
数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
【教学目标】
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的'体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
【教学重点】
圆锥体积公式的理解,并能运用公式求圆锥的体积。
【教学难点】
圆锥体积公式的推导
【学情分析】
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的知识教学,他们一定能表现出极大的热情。
【教法学法】
试验探究法小组合作学习法
【教具学具准备】
多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)
【教学课时】
2课时
【教学流程】
第一课时
一、回顾旧知识
1、你能计算哪些规则物体的体积?
2、你能说出圆锥各部分的名称吗?
【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。
二、创设情景激发激情
展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?
【设计意图】以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)
三、试验探究合作学习(探讨圆柱与圆锥体积之间的关系)
探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?
1、猜想:猜想它们的底、高之间各有什么关系?
2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;
3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)
4、教师介绍数学专用名词:等底等高
【设计意图】通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。
探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?
1、大胆猜想:等底等高圆柱与圆锥体积之间的关系
2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)
3、小组汇报试验结论(提醒学生汇报出试验步骤)
教学预设:
(1)圆椎的体积是圆柱体积的3倍;
(2)圆锥的体积是圆柱体积的三分之一;
(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。
4、通过学生汇报的试验结论,分析归纳总结试验结论。
5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)
【设计意图】通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。
探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。
1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?
2、观察老师的试验,你发现了不等底等高的圆柱与圆锥的体积之间还有三分之一的关系吗?
3、学生通过观看试验汇报结论。
4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。
5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。
【设计意图】通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。
四、实践运用提升技能
1、判断题:【题目内容见多媒体展示】独立思考---抽生汇报---说明理由---师生评议
2、口答题:【题目内容见多媒体展示】独立思考---抽生汇报---学生评议
3、拓展运用:【课本例题3】学生分析题意---小组合作解答---学生解答展示---师生评议
【设计意图】通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。
五、谈谈收获:
这节课你学到了什么呢?
六、课堂作业:
1、做在书上作业:练习四第4、7题
2、坐在作业本上作业:练习四第3题
【课后反思】
【板书设计】
圆锥的体积教学设计优秀7
圆锥的体积教学目的:使同学初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展同学的空间观念。
学具准备:等底等高的圆柱和圆锥8组,比圆柱体积多的沙土
教学过程:
一、复习
1、圆锥有什么特征?
使同学进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名同学回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
二、导人新课
我们已经学过圆柱体积的计算公式,那么圆锥的体积是不是和圆柱体积有关呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积
三、新课
1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名同学叙述圆柱体积计算公式的推导过程,使同学明确求圆柱的体积是通过切拼生长方体来求得的`。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让同学讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的。圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么一起的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
同学分组实验。
汇报实验结果。先在圆锥里装满沙土,然后倒入圆柱。正好3次可以倒满。
多指名说
接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3 × 圆柱体积
师:圆柱的体积等于什么?
生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?
引导同学想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积= 1/3 ×底面积×高
师:用字母应该怎样表示?
然后板书字母公式:V=1/3 SH
师:在这个公式里你觉得哪里最应该注意?
2、巩固练习
(1)已知圆柱和圆锥等底等高。圆柱的体积是45立方厘米,圆锥的体积是( )立方厘米。已知圆柱和圆锥等底等高。圆锥的体积是20立方厘米,圆柱的体积是( )立方厘米。
(2)求下面圆锥的体积。
已知底面面积是9.6平方米,高是2米。
底面半径是4厘米,高是3.5厘米。
底面直径是4厘米,高是6厘米。
在列式时注意什么?( ) 在计算时,我们怎样计算比较简便?(能约分的要先约分)
(3)判断:
(l)圆锥体积是圆柱体积的1/3( )
(2)圆柱体的体积大于与它等底等高的圆锥体的体积。( )
(3)假如圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。( )
(4)圆锥的底面积是3平方厘米,体积是6立方厘米。( )
《圆锥的体积》教学设计
教学目标:
1.通过“演示、猜测、操作、验证”使学生理解和掌握圆锥体积的计算公式,会运用公式计算圆锥的体积并能运用公式解决简单的实际问题。
2.在推导公式过程中,通过小组合作、动手实验的方法,培养学生分析、推理的能力及抽象概括能力,发展学生空间观念。
3.在探究公式的过程中,向学生渗透“事物之间是相互联系”的,并通过活动,使学生形成良好的合作探究意识。
教学重点:理解和掌握圆锥体积的计算公式。教学难点:圆锥体积公式的推导过程。教 具:ppt课件
学 具:圆柱、圆锥量杯各一个,水一桶。教学过程:
一、复习旧知,设疑导入
1、前几节课我们学习了圆柱的体积,圆柱的体积的计算公式你还记得么?字母公式又怎样表示?(板书:v =sh)
2、一个圆柱的底面积是60平方分米,高是15分米,它的体积是多少立方分米?
课件出示圆锥形谷堆,问:它占了多大的空间呢?圆锥的体积怎样计算呢?他又是怎样推导出来了呢?这节课我们就来研究这个问题。(板书课题:圆锥的体积)
二、科学验证,经历过程
引导学生借助圆柱,用实验的方法,推导圆锥的体积公式。教师出示实验用具:圆柱,圆锥,水。
1、引导学生观察圆锥、圆柱的特点。
通过看一看,比一比,有什么特点?(学生发现等底等高)(师板书:等底等高)
2、这个圆柱和圆锥,谁的体积大?谁的体积小?你是怎样想的?(圆柱的体积大,它们等底等高,圆锥上面是尖的,所以体积小)
3、学生实验。(把学生分成六组)
实验要求:把圆锥装满水倒进等底等高的圆柱中,观察要几次才能倒满。
学生分小组动手演示:
(1)通过实验,你们发现了所给的圆锥、圆柱在体积上有什么关系?
(2)根据这个关系怎样求出圆锥的体积?
4、学生汇报,完成计算公式的推导:
一名学生汇报,师板书。
生:我们把圆锥装满水,倒入这个等底等高的圆柱体当中,正好倒了3次倒满,得出圆锥的体积等于这个等底等高圆柱的体积的1/3,因为圆柱的体积v=sh,所以圆锥的体积v =1/3sh(教师板书)
等底等高V=1/3Sh
5、教师课件再演示:圆柱体积与圆锥体积的关系。
6、找条件:根据这个公式就可以求出圆锥的体积,要计算圆锥的体积需要知道那些条件?
7、(反例子)强调等底等高: 同学们经过实验,发现了用来实验的圆锥的体积等于圆柱的体积的1/3,老师也想做实验:出示一个非常大的圆柱,一个很小的圆锥,这个圆柱的体积是圆锥体积的3倍吗?(你有什么看法、为什么?)
强调:圆锥的体积等于与它等底等高的圆柱的体积的1/3。(让学生说)
三、巩固练习,运用拓展 1.填空:(1)、一个圆柱体体积是27立方分米,与它等底等高的圆锥的体积是()立方分米。
(2)、一个圆锥体积是15立方厘米,与它等底等高的圆柱的体积是()立方厘米。
2.计算下列圆锥的体积(1)、底面半径2厘米,高6厘米。(2)、底面半径3厘米,高3厘米。
3、一个近似于圆锥的沙堆,测得底面直径是4米,高是1.5米。每立方米沙约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)
4.如图,直角梯形ABCD,以AB为旋转轴旋转一周,所围成几何图形的体积是多少?
四、整理归纳,回顾体验
本节课学习了什么?这节课你有什么收获?
(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
板书:
圆锥的体积
v =sh 等底等高 V =1/3Sh