第一篇:最小公倍数一次教案
最小公倍数的教学设计
教学目标:
1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举的方法求10以内两个数的最小公倍数。
2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,进一步培养自主探索与合作交流的能力。
3、让学生在参与学习活动的过程中,体验学习和探索活动的乐趣,增强对数学学习的信心。
教学重点:认识公倍数与最小公倍数,会求10以内两个数的最小公倍数。教学难点:求两个数最小公倍数的方法。教学过程:
一、游戏导入,、激发兴趣。
今天我们先来玩一个游戏,我们每个同学都有一个学号,请学号是4的倍数的同学站起来(坐下);
再请学号是6的倍数的同学站起来(坐下)。(请12号同学站起来),你站了几次? 还有哪些同学也站了两次?
那么12、24等数与4和6是什么关系呢?今天我们就来继续研究关系倍数的知识。
二、动手操作,认识公倍数
1、动手操作。
在黑板上贴出长3厘米、宽2厘米的长方形纸片和边长6厘米、8厘米的正方形纸片。
谈话:用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,你觉得可以正好铺满哪个正方形? 拿出手中的图形,动手铺一铺 通过刚才的活动,你们发现了什么?
提问:为什么用这样的长方形能正好可以铺满边长6厘米的正方形? 引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米、8厘米的正方形,每条边各铺了几次?怎样用算式表示? 铺边长8厘米的正方形呢?每条边都能正好铺完吗?
2、想象延伸
根据刚才铺正方形的过程,想一想,用长3厘米、宽2厘米的长方形纸片还能正好可以铺满边长多少厘米的正方形?在小组里交流。提问:能说说你的理由吗?
3、揭示概念
提问:6、12、18、24„„这些数与2有什么关系?与3呢?
谈话:只要正方形的边长既是2的倍数,又是3的倍数,这样的正方形纸片就能正好把它铺满。6、12、18、24„„是2的倍数,又是3的倍数,它们是2和3的公倍数。(板书:公倍数)
提问:两个数的公倍数的个数是有限的还是无限的?为什么? 想一想:8是2和3的公倍数吗?为什么?
二、自主探索,用列举的方法求公倍数和最小公倍数
1、自主探索,掌握求公倍数的一般方法
谈话:6和9的公倍数有哪些?其中最小的是几?你能试着找一找吗? 引导:这三种方法你觉得哪一种方法简捷一些?
2、揭示最小公倍数的概念
谈话:6和9的公倍数中最小的一个是18,18就是6和9的最小公倍数(板 书:最小公倍数)
3、用集合图表示
我们可以画图表示6的倍数、9的倍数以及6和9的公倍数之间的关系。出示图
提问:你能从中看出哪些是6的倍数吗?哪些是9的倍数吗?6和9的公倍数 又是哪些数?图中的三个省略号表示什么?6和9的最小公倍数是多少?
四、巩固练习
1、完成“练一练” 读题,明确题意
想一想:2和5的公倍数有什么特点?
2、反思游戏中的问题
刚上课时我们做的游戏中两次都站起来的同学,他们的学号与4和6有什么关系?现在能说一说吗? 4和6的公倍数还有哪些?
它们的个数是有限的还是无限的?最小公倍数是谁?
如果在班级学号这个范围内4和6的公倍数的个数是有限的还是无限的?
3、练习四第1题
讨论:这里在图中要写省略号吗?为什么? 如果没有这个前提呢?
练习四第2题讨论:4与一个自然数的乘积都是4的什么数?
5、6与一个自然数的乘积呢?怎样找到4和5的公倍数呢?填空时为什么要写省略号?
4、练习四第3题
5、练习四第4题
想一想:如果不走棋能确定要涂色的方格吗?
6、讨论交流:涂色的方格里写的数与3和4有什么关系?
五、全课总结
今天学习了什么内容?
什么是两个数的公倍数和最小公倍数? 怎样找两个数的最小公倍数?你还有什么疑问?
板书设计:
最小公倍数
4的倍数:4.8.12.16.20.24…….6的倍数:6.12.18.24 倍数:12
第二篇:最小公倍数教案
最小公倍数
教学目标:
1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。
2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3、培养学生推理、归纳、总结和概括能力。
教学重点:学会用列举法找出两个数的最小公倍数。
教学难点:理解公倍数、最小公倍数的意义。
教学过程:
一、以趣激疑
比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是„又是„”来表达想法。)
师:6、12、18、24„„既是2的倍数又是3的倍数,我们就可以说6、12、18、24„„是2和3的公倍数。(师板书“公倍数”)
师:同学们,今天我们就一起来研究有关“公倍数”的问题。
二、创设情境,感知概念
1、两个数的公倍数和最小公倍数的概念教学
师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、„„)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依
老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。
请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?
让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)
同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。
全班交流,汇报。
师板书:巴依老爷的休息日:4、8、12、16、20、24、28
账房先生的休息日:6、12、18、24、30
他们八月份的共同休息日:
12、24
这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可
以在12日和24日这两天去找巴依老爷和账房先生。
你们猜猜阿凡提会哪一天去巴依老爷家呢?
师板书:最早的共同休息日:12
师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。
师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)
你还有其他的表示方式吗?(集合圈的图示方式)
谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。
2、加深学生对公倍数和最小公倍数现实意义的理解。
现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?
细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。
引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。
师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习
求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)
3、归纳求最小公倍数的方法。
师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)
4、看书88——89页,你还有什么问题?
师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?
教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。
三、解决问题,深化理解
1、互质数和倍数关系的数的最小公倍数
师出示书第90页的“做一做”,让学生独立解决,填写在书上。
观察一下这里的每一组中的两个数有什么关系?
它们的最小公倍数与这两个数有什么关系?
(提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)
提问:根据刚才的分析,你有没有发现什么规律?
(当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)
2、打电话游戏。
师:许老师家的电话号码是一个七位数,从高位到低位依次是:(1)2和8的最小公倍数(2)最小的质数(3)既是6的倍数又是6的因数(4)5和15的最大公因数(5)既是偶数又是质数(6)比所有自然数的公因数多7的数(7)2和3的最小公倍数。你能说说老师家的电话吗?
师:你是怎样知道的?
师:你们分析得多好啊!真了不起!
四、课堂小结
今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?
五、作业
运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。
优 质 课 教 案
《最小公倍数》
龙城镇黑龙王庙小学
马自民
第三篇:最小公倍数教案
最小公倍数教案
第一课时
最小公倍数
(一)一
教学内容
最小公倍数
(一)教材第88、89页的内容及第91页练习十七的第1、2题。
二
教学目标
.理解两个数的公倍数和最小公倍数的意义。
2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
3.培养学生抽象、概括的能力。
三
重点难点
理解两个数的公倍数和最小公倍数的意义。
四
教具准备
多媒体,学生操作用长方形纸片(长3cm,宽2cm)与方格纸。
五
教学过程
(一)导入
前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。
(二)教学实施
.在数轴上标出4、6的倍数所在的点。
拿出老师课前发的画有两条直线的纸。
在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。
2.引入公倍数。
4和6的公倍数还有哪些?有没有最大公倍数?
(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)
4的倍数
6的倍数
4和6的功倍数
5.引出例1。
前面学习公因数和最大公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1。
(1)操作探究。
学生任意选择操作方式。
①用长方形学具拼正方形。
②在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?
(2)反馈并揭示意义。
①请选用第一种操作方式的学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm
②请选第二种操作方式的学生汇报,老师让多媒体闪现边长为6dm、12dm„„的正方形(如下图),③正方形边长还有可能是几?你是怎样知道的?
④观察所拼成的边长是6dm、12dm、18dm„的正方形与墙砖的长3dm、宽2dm的关系。体会正方形的边长正好是3和2的公倍数,而6是这两个数的最小公倍数。
思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3„就是这两个数的其他公倍数。)
⑤阅读教材第88、89页的内容,进一步体会公倍数和最小公倍数的实际意义。
6.运用新知识,解决问题。
(1)画一画,说一说。
小松鼠一次能跳2格,小猴一次能跳3格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2次跳到同一点是在第几格?第3次呢?
引导学生将本题与例1比较:内容不同,但数学意义相同,都是求2和3的公倍数和最小公倍数。
(2)完成教材第89页的“做一做”。
学生独立思考,写出答案并交流:4人一组正好分完,说明总人数是4的倍数;6人一组正好分完,说明总人数是6的倍数。总人数在40以内,所以是求40以内4和6的公倍数。
(3)独立完成教材第91页练习十七的第2题。
(4)完成教材第91页练习十七的第1题。
指导学生找到写出两个数的公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘
2、乘3.得到其他公倍数
(四)思维训练
本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。
后记:
第二课时
最小公倍数
(二)一
教学内容
教材第90页的内容及第91、92页练习十七的第3一9题。
二
教学目标
.通过教学,使学生巩固对两个数的公倍数和最小公倍数的意义的理解,掌握求两个数最小公倍数的方法。
2.培养学生用多种方法解决问题的能力。
3.培养学生归纳、概括的能力。
三
重点难点
.重点:掌握掌握求两个数的最小公倍数的方法。
2.难点:灵活选择求两个数的最小公倍数的方法。
四
教具准备
投影。
五
数学过程
(一)导入
上节课我们学习了两个数的公倍数和最小公倍数的意义,这节课我们继续学习有关最小公倍数的知识。
(二)教学实施
.出示例2。
怎样求6和8的最小公倍数?
(1)学生先独立思考,用自己的想法试着找出6和8的最小公倍数。
(2)小组讨论,互相启发,再全班交流。
(3)可能出现以下几种方法:
方法一:先分别写出6和8各自的倍数,再从中找出公倍数和最小公倍数。
6的倍数:6,12,18,24,30,36,42,48„
8的倍数:8,16,24,32,40,48„
方法二:先写出8的倍数,再从小到大圈出6的倍数,第一个圈出的就是它们的最小公倍数。
8的倍数:8,16,24,32,40,48„
方法三:先写出6的倍数,再看6的倍数中哪些是8的倍数,从中找出最小的。
方法四:从小到大写出8的倍数,边写边判断是不是6的倍数,第一个是6的倍数的,就是8和6的最小公倍数。
2,完成教材第90页的“做一做”。
学生先独立完成,观察每组数有什么特点,再进行交流。
引导学生总结出求两数的最小公倍数的两种特殊情况:
(1)当两数成倍数关系时,较大的数就是它们的最小公倍数。
(2)当两数只有公因数1时,这两个数的积就是它们的最小公倍数。
指出:像这样能够直接看出最小公倍数的,就不用再从头去找公倍数了。
3.完成教材第91页练习十七的第3题。
学生先独立完成,然后说一说哪几组数属于特殊情况?
再让学生说一说这几组数的最大公因数是什么?
你能总结一下找两个数的最大公因数和最小公倍数的一般方法与特殊情况分别是什么吗?
学生先互相交流,再汇报,总结:
(1)如果两个数成倍数关系,那么其中的较小数就是它们的最大公因数,较大数就是它们的最小公倍数。
(2)如果两个数只有公因数1,那么它们的最大公因数是1,最小公倍数是两个数的积。
(3)一般情况,可以先写出一个数的因数或倍数,再从中找另一个数的因数或倍数,区别是最大公因数从大到小找,最小公倍数从小到大找。
随着学生的总结汇报,老师出示下表。
4.完成教材第91页练习十七的第5题。
学生独立完成,并说明理由。
5.完成教材第91、92页练习十七的第4、6、7、8题。让学生先独立思考,做出解答。然后让学生汇报自己的解法,并提问:为什么是求两个数的最小公倍数?
6.完成教材第92页练习十七的第9题。
学有余力的学生试着完成,并说一说思考过程。
可以这样想:先从小到大写出36的所有因数,然后从中依次观察哪两个数的最小公倍数是36。
(三)思维训练
.火车站是410路和901路汽车的始发站,410路每隔10分钟发一次车,901路每隔15分钟发一次车,这两路汽车同时在早5:30同时发车后,到中午12时10分有多少次是同时发车的?
2.兄弟三人同一天从家出发外出打工,老大15天回家一次,老二20天回家一次,老三10天回家一次,下一次兄弟3人同一天从家出发至少需要多少天?
3.已知a、b的最大公因数是12,最小公倍数是72,且a、b不成倍数关系。求a、b各是多少?
(四)课堂小结
本节课我们研究了求两个数最小公倍数的方法。一般情况下,我们可以先找出一个数的倍数,再从小到大,找出另一个数的倍数,从而找到两个数的最小公倍数。另外,还有两种特殊情况:一种是两数成倍数关系时,较大数是这两个数的最小公倍数;另一种是两数只有公因数1时,这两个数的积就是它们的最小公倍数。我们通过本节课的学习,还对求两个数的最大公因数与最小公倍数进行了对比,并能熟练应用最小公倍数的知识解决生活中的实际问题
后记:
第四篇:最小公倍数教案
《最小公倍数》教案
刘陀营小学 刘静
教学内容:人教版2001版小学数学五年级下册第四单元88页-89页
教学目标 :
1.通过实践操作,理解公倍数和最小公倍数的意义,感知公倍数和最小公倍数在现实中的需要,在实践操作中进一步提高逻辑推理能力,感受数形结合思想。
2.通过摆一摆、拼一拼、画一画,算一算的方法,经历解决问题的全过程,提高问题解决的能力。
3.在知识的应用过程中,培养观察、归纳、总结的能力,运用转化的数学思想解决生活中的问题。
教学重难点 : 理解公倍数和最小公倍数的含义 教学准备:课件 学具
教学过程 :
一)创设情境、激发兴趣
故事导入,引出今天所要将的内容。复习导入
用举例的方法,解释什么是倍数和一个数的倍数有哪些特点? 【设计意图:通过复习倍数的特点,为求最小公倍数做铺垫。】 接下来讲与倍数相关的知识。板书 最小公倍数
二)联系实际 综合运用
出示书例1题 一种墙砖长 3 dm,宽 2 dm。如果用这种墙砖铺一个正方形(用的墙砖都是整块),正方形的边长可以是多少分米? 最小是多少分米?
1.请仔细看看小明家装修的要求,你获得了哪些有价值的信息? 1.铺满、2.使用墙砖是整块数、3.铺的是正方形,4.墙砖边长必须是整分米数。
2.我们先来研究正方形的边长可以是多少分米。你有办法解决这个问题吗?
其实,我们就是在解决实际问题的过程中把它转化成了已知的数学问题,问题是不是就迎刃而解了呢?
师:独立思考,我们可以怎样解决这个问题呢?你有什么好方法吗? 生:我们可以动手摆一摆。
师:我们不能把墙砖拿过来给大家摆吧
师:你们帮我想想还有没有别的好办法了?
生:可以缩图。可以画一个长3厘米,宽2厘米的长方形。师:你的提议太好了,既解决了本子上画不下的问题,又使解决问题变得容易了。师:还可以怎么画呢? 生:可以画个草图,标上数字就行了。
师:是啊,这个方法真妙!你与我不谋而合。这个建议真的好。生:可以算一算。
师:看来我们班的同学不仅会思考,有想法,而且还有方法,真棒!3.学具:长是3dm,宽是2dm的长方形纸片
动手来实践。
(1)要求: ①用长方形纸片代替墙砖拼一个正方形。
②和你的同桌进行交流,说说你用了几张长方形纸片,摆出的正方形边长是多少。
4.探究结果交流。
①我第一行摆了2个长方形,摆了这样的3行,拼成了一个边长是
6cm的正方形。
②我第一行摆了4个长方形,摆了这样的6行,拼成了一个边长是
12cm的正方形。
师:欣赏你们拼成的正方形,观察正方形的边长,你有什么发现?(既是2的倍数又是3的倍数)师:如果我们有足够多的小长方形的话,还可以拼出边长是其他数的正方形吗? 师:在拼成的所有正方形里边长最小是几分米?你怎么知道的? 三)归纳总结概念
师:通过刚才的活动,我们发现正方形的边长像6、12、18等既是3的倍数,又是2的倍数。这样的数,我们就把它们叫做2和3的公倍数。(板书:公倍数)
其中6是2和3的公倍数中最小的一个,我们可以给它取个什么名字?(板书:最小公倍数)
师:2和3的最小公倍数是6,2和3最大公倍数是多少?你找的到吗?
师:所以我们在公倍数中只研究最小公倍数。
【设计意图:怎样能让学生深刻地理解公倍数和最小公倍数的意义,是本节课的一个重点。以概念为本的学习,需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造的过程中,主动建立概念。完成数形结合思想的渗透。】 四)加强应用,巩固练习
咱们可以分成4人一组,也可以分成6人一组,都正好分完。如果这些学生的总人数在40人以内,可能是多少人?
五)全课总结:通过这节课的学习,你有什么收获?
1.今天,我通过利用小长方形拼正方形的方法,学习了公倍数和最小公倍数两个概念。
2我们是运用了公倍数和最小公倍数的知识解决生活中实际的问题。3要先提炼出相关的数学信息,进行分析 4把实际问题转化成数学问题 七)课外作业 练习十七 第六题
第五篇:最小公倍数教案
课题:最小公倍数【教学目标】: 【教学内容】:教材第68、69页的内容及练习十七的部分习题。
1、通过教学,学生能理解两个数的公倍数和最小公倍数的意义,学会求两个数最小公倍数的方法。
2、培养学生用多种方法解决问题的能力。
3、培养学生归纳、概括的能力。
【教学重点】:掌握掌握求两个数的最小公倍数的方法。【教学难点】:灵活选择求两个数的最小公倍数的方法 【教具、学具】:多媒体课件
【教学方法】:讲授法、谈话法、观察法等。【教学过程】:
(一)复习导入
1、举例说一说什么叫倍数。
2、分别写出40以内4和6的倍数。
(二)探究新知
1、学习公倍数、最小公倍数的意义。
(1)请座号是4的倍数的同学起立并报出自己的座号。
请座号是6的倍数的同学起立并报出自己的座号。
(2)师:通过刚才的活动,你发现了什么?为什么有的同学会起立了两次? 你能找出既是4的倍数又是6的倍数的同学的座号吗?(起立了两次的同学再次起立,给学生留下深刻印象)学生初步感受有些数既是4的倍数又是6的倍数。(教师引导学生用“既是…又是…”来表达想法。)4的倍数:4,8,12,16,20,24,28,32,36,…… 6的倍数:6,12,18,24,30,36,42,48,……(师板书)我们可以说6、12、18、24……是4和6公有的倍数。其中公有的最小倍数是12。
(3)教师用课件出示4和6的倍数的集合图。
(4)而得出结论:12,24,36,……是4和6公有的倍数,叫做它们的公倍数。其中,12是最小的公倍数,叫做它们的最小公倍数。师:想一想两个数有没有最大的公倍数?(同桌相互讨论)
【设计意图】创设了座号是4和6的倍数的同学分别起立并报出自己的座号的情境。既有利于培养学生的数学抽象能力,也有利于揭示数学与现实世界的联系,帮助学生理解公倍数、最小公倍数概念的现实意义。(4)第68页:做一做
2、教学求两个数的最小公倍数。
(1)出示例2,样求6和8的最小公倍数?
学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。
全班交流,汇报。可能出现以下几种方法:
方法一:先分别写出6 和8 各自的倍数,再从中找出公倍数和最小公倍数。6的倍数:6,12 , 18,24,30,36,42,48 … 8的倍数:8,16,24,32,40,48 …
方法二:先写出8 的倍数,再从小到大圈出6 的倍数,第一个圈出的就是它们的最小公倍数。
8的倍数:8 , 16 , 24 , 32 , 40,48 …
方法三:先写出6 的倍数,再看6 的倍数中哪些是8 的倍数,从中找出最小的。方法四:从小到大写出8 的倍数,边写边判断是不是6 的倍数,第一个是6的倍数的,就是8 和6 的最小公倍数。
【设计意图】通过相互交流、启发,开拓思路,达到算法多样化、个性化的教学意图。
(2)师:观察一下,两个数的公倍数和最小公倍数之间有什么关系?(两个数的公倍数是他们的最小公倍数的倍数。)
【设计意图】与前面教学求两个数的最大公因数相类似,是根据《标准》的有关要求,采用“找”的方法,找出两个整数的公倍数和最小公倍数。这一改进,不仅大大降低了学习的难度,因为不再需要讲解两个数的公有质因数、特有质因数与它们的最小公倍数的关系,而且也符合学生学习通分的实际需要。(三)巩固应用
1、基本练习:求下面每组数的最小公倍数。2和8 3和8 6和15 6和9 4和5 1和7 4和10 8和10 学生先独立完成,然后说一说哪几组数属于特殊情况? 再让学生说一说这几组数的最大公因数是什么?
你能总结一下找两个数的最大公因数和最小公倍数的一般方法与特殊情况分别是什么吗?
学生先互相交流,再汇报,总结:
(1)如果两个数成倍数关系,那么其中的较小数就是它们的最大公因数,较大数就是它们的最小公倍数。
(2)如果两个数只有公因数1,那么它们的最大公因数是1,最小公倍数是两个数的积。
(3)一般情况,可以先写出一个数的因数或倍数,再从中找另一个数的因数或倍数,区别是最大公因数从大到小找,最小公倍数从小到大找。随着学生的总结汇报,老师出示下表。
【设计意图】安排这道题的意图是让学生通过练习,发现求两个数的最小公倍数的两种特殊情况。
2、拓展延伸:36可能是哪两个数的最小公倍数?你能找出几组?
(四)梳理知识,总结提升
今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?(本节课我们研究了求两个数最小公倍数的方法。一般情况下,我们可以先找出一个数的倍数,再从小到大,找出另一个数的倍数,从而找到两个数的最小公倍数。另外,还有两种特殊情况:一种是两数成倍数关系时,较大数是这两个数的最小公倍数;另一种是两数只有公因数1 时,这两个数的积就是它们的最小公倍数。我们通过本节课的学习,还对求两个数的最大公因数与最小公倍数进行了对比,并能熟练应用最小公倍数的知识解决生活中的实际问题)【设计意图】为进一步加深学生对这节课学习知识的掌握,让学生共同对这节课的新授知识进行总结。学生在主动感悟知识的发生和发展的同时,感受了学习的快乐和成功的体验。
(五)作业:第71页练习十七,第1题、第2题、第3题、第5题。
《最小公倍数》教学设计
大 峪 沟 矿 小