第一篇:解简易方程说课稿
《解方程》说课稿
东回小学 朱宝花
今天我说课的内容是人教版九年义务教育小学数学五年级上册的内容。下面我从教材分析、教学方法、学法指导、过程分析等四个方面进行说课。
一、教材分析
1、教材的地位与作用
本节课是解简易方程的第一课时,是在学生学习的四则运算及四则运算各部分间的关系和学生已具有的初步的代数知识的基础上进行教学。而今天学习的内容又为后面学习解方程和列方程解应用题做准备。
2、教学目标的确定
根据学生已有的认知基础和教材的地位与作用,参照课标确定本节课的目标:
⑴知识与技能:使学生初步理解方程、方程解和解方程的意义,了解方程解和解方程的区别。
⑵过程与方法:理解方程与等式的关系,掌握解方程的一般步骤。
⑶情感态度价值观:培养学生的观察、抽象、概括能力。
3、教学重点、难点: 帮助学生从形象的平衡中认识抽象的等量,结合具体例子加深学生对概念的理解。
二、教学方法
本节课的教学对象是五年级学生,他们形象思维较好,但抽象思维还需要一个慢慢的训练过程,所以本节课我使用直观演示、观察、比较、启发引导,讲解与学生练习相结合的教学方法,在一连串的环节中充分地调动学生学习的主动性,培养学生良好的学习习惯。为了帮助学生理解,我准备使用天平、挂图等手段进行辅助教学。
三、学法指导
在教学中,我采用从直观到抽象,从一般到特殊的方式组织教学,让学生在观察、比较中学习,培养学生观察、抽象、概括能力,和善于思考、善于学习的良好习惯。
四、过程分析
本节课我准备按以下几个环节进行教学:
1、加强直观操作,使学生理解方程的含义。
一开始上课,我就直接通过天平演示,使学生利用平衡这一认知基础去认识等式,理解等式的实质意义,并在此基础上通过操作、演示,让学生用含有未知数的式子表示天平平衡关系,从而认识了含有未知数的等式。再出示篮球图,学生在观察图的基础上,充分利用已有知识,自主用含有未知数的等式表示篮球个数、单价、总价间的关系,有效地丰富了学生对含有未知数的等式的认识和理解。通过对等式的比较,让学生自主概括出方程的含义
2、结合实例进行比较,渗透集合思想
在等式与方程的关系的教学中,充分利用黑板上板书的等式和方程,让学生在认识等式和方程的基础上,引导学生自主画图,用图来
形象直观地表示等式与方程的关系,从而深化学生对方程本质含义的把握,自然地渗透集合思想。
3、让学生在感性认识的基础上,培养学生的概括能力。
在讲解方程的解和解方程的意义时,我结合具体的实例,让学生在感性认识的基础上引导学生概括它们的含义,有效地促进学生抽象概念能力的培养。
4、范例讲解
讲解例1解方程时,是根据四则运算各部分之间的关系来求解,这样充分利用了学生已有的知识基础,又可以加深对加、减法之间、乘除法之间相互关系的理解,学生容易接受。教学时,我让学生自己说出推想过程,一边板书,一边指出解题步骤和书写格式,然后着重讲解检验的方法及书写格式,并根据课本上的“注意”强调说明虽然不要求每题都写出检验,但都要口算进行检验,使学生养成良好的学习习惯。
5、巩固练习
本节课我准备安排两次巩固练习。当学生了解了方程的意义和方程与等式的关系后,我让学生完成第“做一做”,目的是通过判断进一步加深学生对方程意义的理解。教学例1后,我让学生分组完成例1后面“做一做”,其目的是通过练习,巩固新知,掌握好书写格式以及检验方法。
6、小结
小结的目的是强化重点,巩固新知,培养学生良好的学习习惯。
第二篇:解简易方程教案
第二十六讲 解简易方程
解简易方程,是运用方程解答应用题的基础,解简易方程的关键是掌握四则混合运算各部分之间的关系,解方程的过程就是利用积与乘数,被除数、除数与商,加数与和,被减数、减数与差之间的关系逐步求出方程中的未知数的过程。因此,平时应多加强四则混合运算各部分数量关系的训练。
解出方程中的未知数后,应检验,检查求出的方程的解是否正确。检验是将解得到的未知数的值带入原方程中,分别计算出方程的左边和右边的值,如果左右两边的值相等,说明计算出的未知数的值正确;如果左右两边的值不相等,说明计算出的未知数的值不正确,需要找出错误的原因,重新计算,这一步不能缺省。
难题点拨1 解下列方程,并验算。
(1)3Ⅹ+4=25(2)5(2Ⅹ+4)=30 点拨
上面的两个方程都可以分两步解答。方程(1),先将3Ⅹ看做一个数,利用加法算式中加数与和之间的关系,可以先求出3Ⅹ,再利用乘数与积之间的关系求出Ⅹ。方程(2),先将2Ⅹ+4看做一个数,利用乘数与积之间的关系求出2Ⅹ+4Ⅹ,再利用加数与和,乘数与积之间的关系求出Ⅹ。
(1)3Ⅹ+4=25(2)5(2Ⅹ+4)=30 解:3Ⅹ=25-4 解;2Ⅹ+4=6 3Ⅹ=21 2Ⅹ=6-4 Ⅹ=7 Ⅹ=1 检验:将Ⅹ=7带入方程(1)中,左边=3×7+4=25 右边=25 因为左边=右边
所以Ⅹ=1是原方程的解。
想一想 做一做
解下列方程,并写出检验过程。1、26Ⅹ-12=66 2、7(3Ⅹ+1)=28 3、2Ⅹ-1=9 4、308-25Ⅹ=108 5、5(Ⅹ+7)=35
难题点拨2 解下列方程
(1)、8Ⅹ-120=5Ⅹ-30(2)、8(5-Ⅹ)+15=7Ⅹ-260 点拨 方程(1),利用等式的性质,可以给方程的左右两边同时减去5Ⅹ,就变成一个比较简单的方程,容易解答。方程(2),可以先利用乘法的分配律将小括号去掉,再利用等式 的性质给方程的左右两边同时加上8Ⅹ,或同时减去7Ⅹ,都可以变成一个比较简单的方程,容易解答。(1)、8Ⅹ-120=5Ⅹ-30 解: 8Ⅹ-90=5Ⅹ(两边同时加上30)3Ⅹ-90=0(两边同时减去5Ⅹ)3Ⅹ=90 Ⅹ=30(2)、8(5-Ⅹ)+15=7Ⅹ-260 解:40-8Ⅹ+15=7Ⅹ-260(利用乘法的分配律,去括号)
300-8Ⅹ+15=7Ⅹ(两边同时加上260)300+15=15Ⅹ(两边同时加上8Ⅹ)15Ⅹ=315 Ⅹ=21 想一想 做一做 解下列方程。1、8(5+Ⅹ)-25=3Ⅹ+30 2、100-5Ⅹ=3(Ⅹ-20)3、4(Ⅹ-2)+14=7Ⅹ-21 4、7(Ⅹ-3)+15=2(12+Ⅹ)5、12+Ⅹ+2(12+Ⅹ-9)=96 难题点拨3 解方程:(2Ⅹ-3)÷7=59-2Ⅹ
点拨
方程的左边是一个除法算式,如果直接简化比较麻烦,但这个方程可以看做一个除法算式,7是除数,59-2Ⅹ是商。根据被除数=除数×商,把它转化成乘法算式,然后再解比较方便。
(2Ⅹ-3)÷7=59-2Ⅹ 解:(2Ⅹ-3)=(59-2Ⅹ)×7 2Ⅹ-3=413-14Ⅹ 2Ⅹ+14Ⅹ=413+3
Ⅹ=26
想一想 做一做 解下列方程。
1、(3Ⅹ+2)÷4=2Ⅹ-7
2、(4Ⅹ+12)÷(3Ⅹ-24)=5
3、(10Ⅹ+6)÷3=5Ⅹ-8
4、(9Ⅹ+10)÷4=2Ⅹ+3 难题点拨4 一个数的3倍加上10,等于这个数的5倍减去20,这个数是多少?
点拨
若用字母Ⅹ表示这个数,那么“一个数的3倍加上10”就是3Ⅹ+10,“个数的5倍减去20”就是5Ⅹ-20,再根据“一个数的3倍加上10,等于这个数的5倍减去20”,这个相等关系,就可列出方程,求出方程中的未知数Ⅹ,即得“这个数”。
解:设这个数为Ⅹ。3Ⅹ+10=5Ⅹ-20 3Ⅹ+30=5Ⅹ 2Ⅹ=30 Ⅹ=15 答:这个数就是15。想一想 做一做
列方程解答下列文字题。
1、一个数的5倍加上10,等于这个数的6倍减去20,求这个数。
2、一个数的8倍等于这个数的2倍加上240,求这个数。
3、一个数的5倍减去12,比 这个数的3倍多20,求这个数。
4、一个数减去36,再乘3,积是153,求这个数。
难题点拨5 甲、乙两数和是28,甲数是乙数的3倍,甲、乙两数各是多少? 点拨
本题中有两个未知数。先根据题意设出一个未知数,并把另一个未知数用所设的未知数表示出来,找出题中等量关系,列出方程,并求出方程的解,最后把另外一个未知数也求出来,本题可以把乙数设为Ⅹ,甲数则为3Ⅹ,利用甲、乙两数的和是28,列方程。
解:设乙数Ⅹ,则甲数为3Ⅹ 3Ⅹ+Ⅹ=28 4Ⅹ=28 Ⅹ=7 甲数:3×7=21 答: 甲数是21,乙数是7。
想一想做一做
列方程解下列文字题。
1、甲数是乙数的2倍,甲数比乙数多24,甲、乙两数各是多少?
2、一个数的3倍除以8得3,求这个数。
3、甲数是乙数的4倍,甲数比乙数多15,求乙数。
(1*)看你能摘几颗“★” 解下列方程,并写出检验过程。(1)2Ⅹ-23=41(2)2(Ⅹ-5)=128
(3)(Ⅹ+12)÷8=125(4)75+3Ⅹ=5Ⅹ-13(5)4Ⅹ+11=47(6)3Ⅹ=2Ⅹ+5(2**)解下列方程。(1)、3(3Ⅹ-25)+10=8Ⅹ+99(2)、Ⅹ÷3+2=2Ⅹ+5(3)、5(2Ⅹ-4)-12=2Ⅹ+48(4)、5Ⅹ+16=3(Ⅹ-4)+100(5)、4Ⅹ-3+3Ⅹ=6Ⅹ-2(6)、3Ⅹ-15+2Ⅹ=84-6Ⅹ
(2***)列方程解答下列文字题。
(1)、15与一个数的2倍的和是43,这个数是多少?(2)、5个20与一个数的8倍的和正好等于340,这个数是多少?
(3)、一个数的2倍加上9与42的积,和是400,求这个数。
(4)、1860加上一个数的一半,和是3520,求这个数。(5)、一个数乘4与12 的和,结果等于这个数与480的和,这个数是多少?
(6)、甲数是30,乙数是一个数的2倍,甲数减去乙数的差是12,这个数是多少?(7)、甲数是128,比乙数的3倍多20,求乙数。(8)、在一个除法算式中,除数比商的2倍还多1,且除数与商的和是16,求被除数、除数和商分别是多少?
第三篇:解简易方程教案
解简易方程教案
一、教学内容:新课标人教版五年级上册第57~59页
二、教学目标:
1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。
2、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。
3、在观察、猜想、验证等数学活动中,发展学生的数学素养。
三、教学重、难点:
重点:会用等式的性质解方程。难点:解方程的规范格式
四、教学过程
(一)、创设情境,生成问题
师:同学们,还记得我们上节课学过的有关等式的知识吗?生:记得。等式的基本性质。
师:嗯,看来同学们下课后都认真复习了的,要继续保持哦
。老师这里呢,有一个装满时能装九个乒乓球的盒子,此时盒子并未装满,同学们猜猜里面有几个球?
生:…
师:好 我听见有人说1个?2个?.......到底有多少个,同学们能准确说出来吗? 生:不能!
师:我们并不知道到底有多少个球,也就是球的个数对我们来说就是未知的,在数学上我们就用未知数X来表示这样的数。所以,那位同学能告诉老师,盒子里现在球的个数。
生:X 师:不错 同学们都很厉害。为了能准确判断出球的个数,老师又从别的地方找来了三个球(板画三个球),刚好将这个盒子装满了。现在盒子里有多少个球?
生:九个
师:之前盒子里有X个球,有装进了三个,现在有九个球
黑板上这个图,同学们能用一个方程来表示吗?
生:能 X+3=9 师:好 X+3=9(板书)
(二)、探索交流,解决问题
师:现在同学们知道X的值是多少了吗 生:6 师:同学们都很厉害,一下子就说出来了,那么你们能说说六是怎么来的吗?也就是同学们的思考过程。认真思考,不要急着回答老师。现在分组讨论,哪为第一组,哪为第二组。讨论完后,每组派一个代表,和大家一起交流你们的想法。好,现在开始讨论。
师:好了,我看大家都讨论完了。那一组先来告诉老师你们的想法。好,你们这一组。
学生可能想法:
1、加减法的关系:9-3=6 故X=62、6+3=9故X=6
3、把9分解成6+3,X+3=6+3,6+3
4、方程两边同时减去一个3,就得到6+3 师:同学们的想法真不少。我们看,前面三个同学都是利用加减法的关系或数的分成想出了答案。第四个同学的想法有什么不同呢
生:没有用加减法的关系或数的分成
师:嗯 对 那么它是运用我们以前学过的哪个知识呢
生:等式的性质(等式两边同时加上或减去一个数,等式不变)
师:嗯 很好 那么他的想法对吗
生:对的
师:既然大家都说正确,那么我们一起来检验一下好不好(好)那么该怎么检验呢 同学们认真思考
师:指着方程问 这是什么?(方程),它还是什么?(等式)等式的左右两边是相等的。所以只要能证明X能使方程左右两边相等,就能说明这个同学的方法是正确的,那么具体该怎么做呢,哪位同学来试试
生:。。
师:很好,请坐下。。所以这个想法是正确的,也就是说,以后我们可以用等式的性质求方程中的未知数的值。
(三)、指导解方程的规范格式
师:我们刚刚思考了用等式的性质求得X值的过程,如果老师要求大家把这个过程写下来,该怎么书写呢。(讨论交流)
X+3=9 解:X+3-3=9-3(灯饰两边同时减去3)X =6 师:还记得我们之前是怎样检验的吗?谁能说一下
检验:把X =6带入原方程
方程左边=6+3 =9 =方程右边
所以X =6是方程的解
(四)揭示概念
师:这一系列过程就是解方程。说到这里,同学们一定会问:什么叫做方程的解和解方程。
第四篇:解简易方程教案
2、解简易方程(共9课时)
第一课时:方程的意义
主备人:李惠梅
教学内容:
教材53页、54页的内容。
教学目标:
1、知识目标:使学生初步理解“等式”、“不等式”、“方程”的意义,并能进行辨析。
2、能力目标:培养学生认真观察、思考、分析问题的能力,发展学生思维的灵活性。
3、情感态度与价值观:加强数学知识与现实世界的联系,培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。
教学重点:
会用方程的意义去判断一个式子是否是方程。
教学难点:
能正确区分等式和方程这组概念,帮助学生建立“方程”的概念。
教学准备:
课件或小黑板、托盘天平。
教学时间:
1课时。
教学过程:
一、激趣导入
1、同学们,时间过得非常快,转眼我们已经是五年级的小学生了。老师想问一下:你们还记得幼儿园时的生活吗?今天老师就带同学们到幼儿园去看一看。(播放幼儿园里小朋友们玩各种游戏的课件)
2、谁能说一说你看到了什么?在这些游戏中你最喜欢玩什么?在老师这儿也有一种玩具,你玩过吗?(课件出示:两人玩的跷跷板)
3、同学们,你们知道吗在数学里也有这样的跷跷板,今天我们就来研究我们数学里的跷跷板。
二、探究新知
(一)创设情境,玩中认识“等式”
1、谁能来说一说玩跷跷板时是怎样的情景?(当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。)
2、现在有两个小学生正在玩跷跷板(用课件出示两个小朋友玩跷跷板的图片,图中跷跷板左高右低),根据现在的情况,你能知道什么?(左边小朋友的体重大于右边小朋友的体重)
3、看到这么多同学喜欢玩跷跷板,老师也想玩一玩。谁想和老师一起来?(指名一个学生到前面来)问:你重多少千克?(学生回答体重,比如说31千克)老师重50千克,请大家闭上眼睛想一想,当我与他坐上跷跷板两端的时候会出现怎样的情况呢?那怎样才能使跷跷板平衡呢?你会用一个式子来表示吗(板书:31+19=50)
5、请同学们观察这个式子“31+19=50”,式子两边用什么符号连接?(等号)
6、小结:像31+19=50这样用等号连接的式子叫做等式。(板书:等式)你能试着说出几个等式吗?(学生试说,并让全班学生加以判断说的是否正确)(二)课件演示天平测量过程,得出不同的式子
1、刚才我们玩了跷跷板,请同学们想一想:你们在生活中见过与跷跷板相类似的物体吗?
2、是的,利用跷跷板的这种现象,科学家们设计出了天平。你知道天平是用来称量什么物体的吗?其实天平也可以称很重的物体。请看大屏(课件出示各种天平)而我们平时所说的就是这种在实验室中用的托盘天平(课件出示托盘天平)
3、认识天平:今天老师也带来了一个托盘天平,你们知道它各部分的名称吗?(出示托盘天平,并随着学生们的回答介绍托盘天平各部分的名称)
4、介绍天平的使用方法:你们知道怎样用天平称量物体吗?
5、演示天平测量过程,得出不同的式子。
(1)下面我们来称量这个水杯的重量(课件演示:先出示一个托盘天平,然后再出示一个水杯)。我应该把水杯放在哪?(课件演示:把水杯放在左盘,而且天平左高右低)然后呢?(在右盘放砝码)老师在右盘放了100克砝码,你发现了什么?(天平平衡了)这说明了什么?(一个杯子重100克)
(2)那么一杯水重多少千克呢?请同学们仔细观察(课件演示往杯子里倒水),你发现了什么?(天平不平衡了)这说明了什么?(杯子和水的重量大于
100克)如果老师要想称量这杯水的重量怎么办?(接着放砝码)请大家观察(课件演示又拿来100克放在右盘中),这时你发现了什么?(天平还是不平衡)哪边高?哪边低?这说明了什么?(杯子+水>200克)你能用一个数学式子来表示这时候的现象吗?(板书:X+100>200)
(3)如果想继续称量怎么办?(接着放砝码)好,请同学们接着仔细观察(课件演示又拿来100克,放在右盘中)你发现了什么?(天平左高右低了)这说明了什么?(杯子+水<300克)你又能用一个式子来表示这种现象吗?(板书:X+100<300)
(4)通过刚才两次称量,你发现了什么?(杯子和水的质量大于200克,小于300克)你能猜猜杯子和水的质量是多少吗?那么到底是多少呢?我们得接着称量。谁能说一说应该怎样继续称量?(拿走100克,换上一个小一些的砝码)请同学们接着观察,你看见了什么?(课件演示:拿走100克,拿来50克)这时天平平衡说明了什么?你能用式子来表示天平的平衡情况吗?(板书:X+100=250)
(5)小结:请同学们观察X+100>200、X+100<300与31+19=50这三个式子,看发现了什么?(学生交流)像X+100>200、X+100<300这样用大于号或小于号连接的式子叫做不等式。(板书:不等式)、(三)通过分类,认识“方程”
1、通过刚才的试验,我们得出了四个式子。如果我们对这四个式子分类,可以分成几类呢?请同学们先独立思考,再和小组内的同学说一说这4个式子可以分成几类?是按什么标准分类的?
2、小组汇报:按是否是等式可以分为两类31+19=50和X+100=250为一类,X+100>200和X+100<300为一类;按是否含有未知数可以分为两类:31+19=50为一类,X+100=250、X+100>200和X+100<300为一类„„
3、请同学们观察31+19=50和X+100=250这两个等式有什么相同点和不同点?
4、揭示概念:像X+100=250这样含有未知数的等式,我们把它叫做方程。今天我们学习的就是方程的意义(板书课题:方程的意义)
5、巩固概念。
(1)如果你是方程,你会作自我介绍吗?(学生给予评价,并加以补充)(2)你们知道了什么叫方程,能试着写出一个方程吗?(全班学生试写,并
指名到前面板演,然后全班判断是否正确)
6、即时练习,理解概念。
(1)老师这也有几个式子,它们是方程吗?请大家帮老师判断一下。课件或小黑板出示: 下面的式子中,哪些是方程?哪些不是方程?想一想为什么? 35+65=100 X-14>72 Y+24 5X+32=47 28<16+14 3÷X=1.5
要想判断一个式子是不是方程必须具备哪些条件?(课件或小黑板出示:一个方程必须具备的条件:
1、是等式。
2、含有未知数。二者缺一不可)
(2)老师这还有几个式子,请大家再帮老师看看,它们是方程吗? 课件或小黑板出示: 它们是方程吗?
5Y=1 6(a+2)=42 2X+3Y=9(3)通过这道题的练习,你对方程有了哪些新的认识?(课件或小黑板出示:在方程中,1、未知数不一定用X表示。
2、未知数不一定只有一个。)
(四)比较辨析,理解“等式”与“方程”的联系。
1、通过学习我们知道了含有未知数的等式叫方程,那么方程和等式有什么关系呢?请大家看这道题
课件或小黑板出示:下面的式子哪些是等式,哪些是方程? ①36+X>40 ②3×8=24 ③X÷7.8=0 ④4×5-3X=2 ⑤X+8=76÷4 ⑥8.4÷4=2.1 ⑦3X+35 ⑧7Y-45=4 等式:()方程:()
2、通过这道题,你又发现了什么?请同学们先独立思考,再小组讨论:方程和等式有什么关系?你能用自己喜欢的方式表示方程和等式之间的关系吗?
3、学生汇报:等式包括方程,一切方程都是等式,但等式不一定是方程。并把集合图画在黑板上
三、实践运用
1、同学们的图非常形象的表示出了方程和等式之间的关系。这些图你能用方程来表示吗?(出示教材62页第2题)
2、看来同学们对今天学的知识掌握得不错,用方程还可以表示生活中一此数量之间的关系呢?如:我们班一共有34人,男生有22人。如果把女生的人数看作X,你会用方程来表示男女生人数与全班人数之间的关系吗?
3、老师这里还有一些有关我们学校的信息,谁来读一读。课件或小黑板出示并指明读:
余家寨小学有教师28人,男教师X人,女教师20人。共设12个教学班,其中五年级有2个教学班,每班平均Y人,共63人,其他年级共C班。今年又迎来了68名小朋友,分成2个教学班,平均每班D人。你能选择其中一些信息列出方程吗?我们可以小组合作,看谁列得多?(学生小组交流再汇报)
四、总结
1、同学们,这节课你有什么收获?
2、师小结:同学们不仅能自己写出喜欢的方程,发现方程和等式之间的关系,而且能根据老师提供的生活中的信息,列出了那么多的方程,真了不起!其实在我们的生活中到处都有数学,请同学们把你在生活中看到或想到的信息写在练习本上,让同桌根据你提供的信息列出更多的方程。
五、布置作业
练习十一的第1、第3题。
板书设计:
方程的意义
不等式 等式 100+x>200 31+19=50 100+x<300 100+x=250 像100+x=250这样含有未知数的等式,称为方程。
第五篇:解简易方程教案
“解简易方程”教学设计
肥西县烧脉小学
凌东华
教学内容:(人教版)小学数学第9册57—58页的内容。教学目标:
1、根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。
2、培养学生的分析能力应用所学知识解决实际问题的能力。
3、帮助学生养成自觉检验的良好习惯。重点、难点:理解并掌握解方程的方法。教具准备:多媒体课件 教学过程:
一、复习铺垫
1、方程的意义
师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗? 生:含有未知数的等式叫方程。方程和等式有什么关系?
2、判断下面哪些是方程
师:你能判断下面哪些是方程吗?
(1)a+24=73
(2)4x<36+17(3)234÷a>12(4)72=x+16
(5)x+85
(6)25÷y=0.6 生:(1)(4)(6)是方程。
师:你为什么说这三个是方程呢? 生:因为它含有未知数,而且是等式。
二、探究新知
(一)理解方程的解和解方程
1、看图写方程
师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57 页天平图
从图中你知道了什么?
生:我知道杯子重100克,水重X克,合起来是250克。师:你能根据这幅图列出方程吗? 生:100+X=250.2、求方程中的未知数
师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)生1:根据加减法之间的关系250-100=150,所以X=150.生2:根据数的组成100+150=250,所以X=150.生3:100+X=250=100+150,所以X=150.生4:假如在方程左右两边同时减去100,那么也可得出X=150.3、验证方程中的未知数,引出方程的解和解方程两个概念。师:同学们都很聪明用不同的方法算出X=150。
小结:当X=150时,100+ X=250这个方程的左边和右边相等,这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?
学生自学后汇报。(板书)齐读两个概念。
4、辨析方程的解和解方程两个概念
师:方程的解是使方程左右两边相等的未知数的值,它是一个数。
而解方程是求未知数的过程,是一个计算过程。它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。
5、巩固练习,加深理解。
师:完成课本P57页做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)
(二)解简易方程
1.师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?
1头猪=()只羊
2、出示例1图,列出方程。
1把蕉=()个苹果
师:图上画的是什么?图中表示了什么样的等量关系?
(盒子中的皮球与外面的3个皮球加起来共有9个)
根据这种关系怎么列方程? X+3=9
3、引导学生思考怎样解方程。
(1)要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式的基本性质求出方程的解呢? 学生独立思考。并汇报: 方程左右两边同时减去一个数,左右两边仍然相等。x+3-3=9-3(2)解方程的步骤和书写格式是怎样的?
师讲解:首先要写“解”字,然后利用等式的基本性质进行思考:x+3=9,方程左右两边同时减去一个数,左右两边仍然相等,所以x+3-3=9-3,化简,即得:x=6。
运算的“根据”可以不写,每个等式占一行,各行的等号要对齐。
板书:x+3=9 解:x+3-3=9-3 x=6(3)为什么要从方程两边同时减去3,而不是减去其他的数?
因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。(4)要检验x=6是不是正确答案?还需要验算。怎么验算呢?
(把x=6代入方程之中看看左右两边的答案是不是相等)板书:方程左边=x+3
=6+3
=9
=方程右边
所以,x=6是方程的解
师强调:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。
三、实践应用,加深理解
师:你会学老师这样解方程吗?请同学们
1、看图列方程并解答,并且检验。
学生独立完成,教师巡视,注意学生解方程的过程、书写格式及检验的过程是否符合规定,发现错误,及时纠正。
师再次强调解方程的步骤和书写格式以及验算过程
四、全课小结,课外延伸
师:这节课你有什么收获?
五、布置作业
1、复习本节课的内容。
2、完成课本59页做一做第2题第1横行。