第一篇:《角的平分线的性质》的教学反思
本节课的设计思路是从回顾三角形中的角平分线出发,再通过折纸探索平分一个角,提出遇到不能对折的木板或钢板类角时如何平分的问题,引出角平分仪,进而类比介绍角平分线的作法。对于角的平分线的性质的探究,我是按操作、猜想、验证的学习过程进行,先让学生通过折纸,提出思考问题,鼓励学生思考,作出猜想,然后将它转化为数学问题,让学生围绕着问题而展开验证猜想,从而得出结论。
整节课都以学生为主,自己操作、探究、合作贯穿始终,在教学过程中给学生的思考留下了充足的[内容来于斐-斐_课-件_园FFKJ.Net]时间和空间,由学生自己去发现结论,学生在经历“将显示问题转化为数学问题”的过程,从而能对角的平分线的性质有更深刻的认识,同时培养学生动手、合作、概括能力,进而提高学生的思维水平和应用数学知识解决实际问题的意识。可惜对学生的基础知识和基本能力估计不足,前面探究角的平分线的画法花时过多,造成后面对角的平分线的性质的探究,特别是验证猜想和归纳结论显得过于仓促。
第二篇:《角的平分线的性质》教学反思
《12.3角的平分线的性质》教学反思
实验二中 华先法
10月14日,在学校举行的“一人一课”活动中,我讲了《角的平分线的性质》第一课时,下面,我就这堂课的设计、效果以及需要改进的地方从三个方面进行反思。
一、对教学设计的反思
1、让学生在数学活动中学习。在讲角平分线的作法时,让学生观察平分角的仪器的原理,理解作图依据,并留给学生足够的时间进行说理证明。在讲角平分线的性质时,我充分让学生参与,自己画图,通过度量猜想、证明结论、归纳总结等环节,让学生学得轻松,学得愉快,课堂效果好。
2、教学流程遵循学生认知规律。这节课的流程是:感悟实践经验—经历实验过程—解决简单问题。这样的教学流程容易将学生的思维与动手操作结合起来,由易到难,循序渐进,符合学生的思维习惯,符合学生认知规律,学生学得饶有兴趣,产生了较好效果。
二、对教学效果的反思
1、学生的学习积极性没有得到充分调动。教师没有用自己饱满的激情去感染学生,以至于课堂气氛不是很活跃;没有设计不同层次的学生有选择参与的活动,所以,学生的参与面不是很大。
2、没有按计划完成教学任务。在开始的尺规作图环节,由于我讲得太多,占用了一部分时间,使课堂后半部分显得时间仓促,教案中设计的习题没能给学生留下足够的时间训练落实,学生运用角平分线性质解决问题的能力没有得到很好的培养。
3、对电子白板依赖过多,教学过程不够清晰,重点知识没有在黑板上留下痕迹,影响了学生对数学知识的理解和强化。
三、需要改进的地方
今后,我在教学中要进一步加强教学语言的锤炼,做到准确精炼,言
简意赅。二是要合理分配讲练时间,把更多地时间留给学生思考和练习,让他们在课堂上巩固知识、应用知识,提高能力。三是要转变教学观念,真正实现学生的课堂主体地位,要因学定教,因疑定教,让学生学会学习。
第三篇:角平分线性质教学设计
24.7线段垂直平分线的性质定理及其逆定理
教学设计思想
我们已经探究出线段的垂直平分线所具有的性质,本节学习这个性质的证明及其应用,以启发引导的方式,引导学生完成定理的证明。对于逆命题的书写,先回顾有关的知识,再书写,师生一起完成证明。对于用尺规作线段垂直平分线的过程,要学生说出每步作法的依据。
教学目标
知识目标
总结线段垂直平分线的性质定理及其逆定理的证明和简单应用;
经历用尺规作线段垂直平分线的过程,并能说明其依据。
能力目标
经历探索、猜测、证明过程,进一步发展推理、证明意识和能力。
情感目标
在探索活动中感受数学的严密性、严谨性;
在各种活动中获得猜想。
教学重点和难点
重点是线段垂直平分线的性质定理及其逆定理及它们的实际应用;
难点是线段垂直平分线的性质定理及其逆定理的应用。
教学方法
启发引导、合作探究
课时安排
1课时
教具学具准备
投影仪或电脑、三角板
教学过程设计
我们已经探究出线段的垂直平分线所具有的性质,怎样对这个性质进行证明呢?
(一)线段垂直平分线的性质定理
线段垂直平分线的性质定理 线段垂直平分线上的点到这条线段两个端点的距离相等。
下面我们就来证明这个定理。
如图,已知线段AB,直线EF⊥AB,垂足为O,AO=BO,点P是EF上异于点 O的任意一点。
求证:PA=PB。
证明:∵EF⊥AB(已知),∴∠POA=∠POB=90°(垂直的定义)。
在△PAO和△PBO中,AO=BO(已知),∠POA=∠POB(已证),PO=PO(公共边),∴△PAO≌△PBO(SAS)。
∴PA=PB。
(二)做一做
1、写出上面定理的逆命题。
2、填写下面命题证明过程的理由。
已知:如图,P为线段AB外的一点,且PA=PB。
求证:点P在线段AB的垂直平分线上。
证明:过点P作直线EF⊥AB,垂足为O,则
∠POA=∠POB=90°()。
在Rt△PAO和Rt△PBO中,PA=PB(),PO=PO(),∴Rt△PAO≌Rt△PBO()。
∴AO=BO()。
∴EF是线段AB的垂直平分线()。
∴点P在线段AB的垂直平分线上。
加深学生对逆命题和逆定理含义的理解,让学生独立正确地说出线段垂直平分线的性质定理的逆命题和证明过程的依据。
1、略
2、垂直的定义,已知,公共边,HL,全等三角形的对应边相等,线段垂直平分线的定义。
由此,我们得到:
线段垂直平分线性质定理的逆定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(三)观察与思考
观察下面用尺规作线段垂直平分线的步骤(图24-25),思考这种作法的依据。
步骤一:分别以点A,B为圆心,以固定长(大于AB长的一半)为半径画弧,两弧分别交于点E,F。
步骤二:过点E,F作直线,则直线EF就是线段AB的垂直平分线。
使学生明白尺规作线段垂直平分线的依据。依据是线段垂直平分线的性质定理的逆定理。
(四)练习
1、已知:如图,在Rt△ABC中,∠A=90°,AB=3,AC=5,BC边的垂直平分线DE交BC于点D,交AC于点E。
求△ABE的周长。
2、已知:如图,三条路围成一个三角地带,要在它的中间建一个市场,并且使市场到三个交叉路口的距离相等。怎样才能找到这个位置呢?画出示意图,并说明理由。
1、8
2、分别作AB,BC的垂直平分线,两线相交于点O(如图),则点O即为所求。可根据线段垂直平分线的性质定理及其逆定理进行证明。
(五)小结
引导学生总结本节的主要知识点,及解题时分析的思路。
(六)板书设计
线段垂直平分线的性质定理及其逆定理
线段垂直平分线的性质定理
线段垂直平分线性质定理的逆定理
观察与思考
练习
第四篇:角的平分线的性质
《角的平分线的性质》说课稿
【序】
尊敬的各位评委老师,亲爱的同学们,大家好!我是号参赛选手,今天,我说课的内容为《角的平分线的性质》。本节选自九年制义务教育人教版八年级数学第十一章第三小节。下面我将从教材分析、教法选择、学法分指导,教学过程四个方面,展开我今天的说课内容。
1.首先第一部分、【教材分析】 1.1【教材的地位与作用】
结合教材内容,我们可以看出,“角的平分线的性质”是在学生学习了全等三角形、角平分线的定义和相关概念的基础上,从探究平分角仪器的原理出发,得出角的平分线的画法、性质和判定定理。角平分线的性质是角轴对称性质的具体化,为证明线段相等、角相等、三角形内三线共点提供了新的方法和依据;同时,性质与判定定理之间的互逆关系,也为学生初步认识互逆命题打下了基础。所以,本节内容在教材中有着乘上启下的重要作用。
1.2【教学目标】
根据以上的分析,结合新课程标准的要求,我将具体的教学目标确定如下:
在知识技能方面我想要达到的目标是:让学生通过本节课的学习,掌握角平分线的画法,理解角平分线的性质和判定定理,并运用它们解决一些有关的证明和计算问题。
过程和方法目标:本节课,我将带领学生经历观察、实验、猜想、证明和探索的过程,体会探索问题的一般方法和转化的数学思想。
在学生的情感态度价值观培养方面:我将让学生通过一系列问题的解决体会数学在实际生活中的强大作用,从而树立学数学、爱数学的信心。并将小组合作贯穿于教学环节的始终,培养学生与人合作的精神,发展他们的个性。
1.3【教学重难点】
根据教材内容的安排,和学生的学习思维特点,我确定本节的教学重点为角的平分线的性质。难点确定为角的平分线的性质和判定定理的综合运用。
2.【教法选择】
我所面对的学生是初中二年级的学生,相对于其它年龄段的孩子,他们的独立意识和行动能力都有了明显的增强,因此,在教学方法上我打算采用情景教学法、引导发现法、直观演示法、小组讨论交流法相结合的教学方法,在教学过程中利用多媒体课件、实物投影仪、超级画板软件、平分角仪器引导学生掌握知识,形成能力,将数学知识与观察演示和动手实践相结合,使我的课堂始终洋溢在一种轻松快乐的氛围之中。
3.【学法指导】
在学法指导方面,我更加注重学生科学探究方法的体验和感受,让他们在自主动手实践、同学之间通力合作的基础上学会运用观察、分析、对比、归纳、证明的方法,得出解决问题的办法,将学习知识与培养能力融为一体,提高学生持续学习的能力。
4.【教学过程】
结合以上的内容,我将我此次的教学过程按照:
创设情境,导入新知——动手实践,探究新知——应用新知,探讨例题 归纳小结,整理反思——布置作业,自我巩固,五个步骤逐层层展开。4.1【创设情境,导入新知】
在课堂的开始,我利用多媒体课件在大屏幕上出示一道度假村的设计问题,“某地的规划局要在一个三条公路两两相交的地区设计一个度假村”并提出一问题“为了使度假村的客人到三条公路出行同样方便,度假村应该设计在何处呢?”对于这样一道问题,大部分学生会感到无从下手,我就借此机会,因势利导引出本节课的课题“解决这个问题需要用到角平
分线的性质的有关知识,只要我们齐心协力探究出它来,所有同学都可以给规划部门做出一个出色的设计方案”。让学生在好奇心和自信心的趋使下,进入到探索新知的环节中去。
4.2【动手实践,探究新知】
与此同时,为了给学生创建动手、动脑、合作交流的平台,我将我探究新知的所有过程都安排在小组合作的基础之上,并设计了以“闯三关”为主线的教学策略设计了三个有趣的揭秘活动,让所有小组在逐步的挑战活动中,不知不觉的学到了知识,培养了能力。
4.2.1首先带领学生进入第一环节:【揭秘平分角仪器的原理】
让学生拿出课前准备好的学具—“这是一个平分角的仪器,其中AB=CD,BC=DC,将点A放在角的顶点,AB、AD沿着角的两边放上,那么AC所指示的方向就是这个角的角平分线的方向了,你能说出它的原理吗?”学生会自发的展开验证,然后论证它的原理。我深入到各小组中启发学生先写出已知、求证,画出图形,再思考证明。这样学生很容易根据已有的解题经验,利用证明三角形全等得出AC平分角的性质,课堂松闯过第一关。
4.2.2课堂进入第二关【揭秘已知角的角的平分线的画法】 在第一关的基础上,引导画图思路:“我们可不可以根据平分角仪器那样,利用构造两组相等的临边,来画出任意角的角平分线呢?”
在规定时间内,将问题交给各小组,先让各组员独立思考,然后相互交流,写出画法。为了充分发挥学生的主观能动性,我先安排画图成功的小组,简要说明自己的画法,之后引导在黑板上归纳出正确的作图步骤:
再由画图未竟的小组说说自己遇到的问题,全班讨论。在作图思路已知的情况下,大部分学生失败的原因在第二步做弧时半径未取好,导致弧不能相交,画不出点C,由此,我引导出作图的关键点。并鼓励画图未成功的学生:宝剑锋从磨砺出,梅花香自苦寒来,在失败的道路上失败并不可怕,只要我们直面问题,找出失败的原因,就能笑到最后,在智育中渗透德育,完善了学生性格的发展。
这样全体学生齐心协力,通过了第二关。4.2.3进入第三关:【揭秘角的平分线的性质】
请学生按照我描述的步骤利用准备好的纸和剪刀动手操作,观察两次折叠形成的折痕,思考他们各是什么?利用这些我们能得出什么结论?由于学生实验中如果取的角过小,过大都会影响实验结果的观察,为了更加直观的引导总结,接着我会安排学生观察我用超级画板制作的动画。
先将角对折,两边重合,然后再以折线为斜边折出一个直角,再逐步展开,观察形成的折痕,为了将结论推向一般,教师也可以选取不同位置多做几次,观察多组实验的现象,学生会更加更加确信结论的正确性。在学生举手回答的基础上总结出角平分线的性质,之后安排各小组写出已知求证画出图形后证明,最后填写这样一个表格,有了对全等三角形判定定理的熟练掌握,学生很容易根据边角边的判定定理得出证明,目的在加深学生对性质的理解和认识,同时为转化应用买下伏笔。
之后,出示这样一个练习题交给学生先画图观察、最后做辅助线证明。
对于判定定理,我采用引导的方式“用角平分线性质的结论做条件,是不是会得出性质的条件呢?”
学生们会快速的想到证明的方法,在举手回答的基础上,归纳出角平分线的判定定理。同样的填写一个表格。两个表格的对比,让学生认识到性质和判定定理之间的互逆关系,为之后学习互逆命题打下基础。
4.3【应用举例】
例一:让学生利用学得的知识,解决课题导入时的度假村设计问题,由于之前的习题已经提供了解题的思路,所以应用解题已经不是难题。挑学生扮演。
例二:求证:三角形三条角平分线交于一点。这是一个性质与判定定理的综合运用,在这个过程中无论结果是好是坏,是对是错我都将给与学生充分的肯定以及简单的点评。
对于学生成功的解决方法我将利用实物投影仪在大屏幕上展示,完善解题过程,增加解题经验。度假村设计问题的解决,使学生认识到数学知识在生活中的广泛应用,帮助学生树立学数学、爱数学的信心。
4.4【归纳小结】
荷兰数学家弗莱登塔尔指出:“反思是数学思维活动的核心和动力”,因此归纳小结环节,我将采用师生共同总结的方式,以
1、今天我们学习了什么?
2、今天我们运用这些知识解决了哪些数学问题?
3、这些知识还能帮助我们解决生活中其他问题吗?
问题序列的方式,引导学生对这节课的知识内容进行梳理,加深学生对知识内容的理解,提高他们分析小结的能力。
4.5【布置作业】
作业布置我采用必做题的选做题相结合的方式。与此同时,同时让学生 【板书设计】
最后是我的板书设计,共分两版,以教学过程为指引逐步展开,有助于学生回忆整理,重点突出,同时很好的服务了课堂教学。
第五篇:角平分线性质教案
教学设计
一、教学目标
(一)知识与技能目标
1.掌握作角的平分线和作直线垂线的方法 2.学握角平分线的性质
(二)情感态度目标
1.在探讨做角平分线的方法及角平分线性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验。2.培养学生团结合作精神。
教学重点: 掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。教学难点: 1.对角平分线性质定理中点到角两边的距离的正确理解; 2.对于性质定理的运用。
教学工具: 多媒体 课件。直尺,圆规等
二、教学过程设计
(一)复习引入 1.角平分线的定义。2.点到直线的距离。
学生思考,回答问题。(设计意图:复习已学知识,为下面研究创造条件。)
(二)设计活动,引出内容 【活动一】
问题 1 :利用之前学过的知识,如何确定一个角的角平分线。
问题 2 :不利用工具,将一张用纸片做的角分成两个相等的角,你有什么办法?(对折)学生活动:学生用量角器去量,让一个学生上讲台用折纸的方法得到角平分线展示给大家。
(设计意图:掌握作角的平分线的简易方法)
假如我们要将纸片换成木板、钢板等没法折的角,又该怎么办呢?那么我们除了使用量角器外,我再给大家介绍另一种仪器——角平分仪(展示课件)如图,是一个平分角的仪器,其中 AB=AD,BD=DC,将点 A 放在角的顶点,AB 和 AD 沿着角的两边放下,沿 AC 画一条射线 AE,AE 就是这个角的平分线,你能说明它的道理吗?
(总结学生思路——利用三角形全等)
(设计意图:训练书写数学语言)
引导学生观察这个角分仪,根据这个角分仪的制作原理,通过小组讨论总结,归纳出作一个已知角角平分线的方法。(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)
通过小组讨论的结果,让同学在黑板上演示作图过程及复述画法,再利用多媒体演示,加深印象,并强调尺规的规范性。讨论结果展示:
作已知角平分线的方法: 已知:∠ AOB .
求作:∠ AOB 的平分线. 作法:
(1)以 O 为圆心,适当长为半径作弧,分别交 OA、OB 于 M、N.(2)分别以 M、N 为圆心,大于 MN 的长为半径作弧.两弧在∠ AOB 内部交于点 C.(3)作射线 OC,射线 OC 即为所求.设置问题:
1.在上面作法的第二步中,“大于 MN 的长”这个条件改成“小于或等于
MN 的长”不行吗?
2.第二步中所作的两弧交点一定在∠ AOB 的内部吗?
(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。)学生讨论结果总结:
1.不行,若改成“小于或等于 MN 的长”,那么所作的两弧可能没有交点,所以就找不到角的平分线。
2.若分别以 M、N 为圆心,大于 MN 的长为半径画两弧,两弧的交点可能在∠ AOB 的内部,也可能在∠ AOB 的外部,而我们要找的是∠ AOB 内部的交点,• 否则两弧交点与顶点连线得到的射线就不是∠ AOB 的平分线了。应用:平分平角∠ AOB(学生口述)由平分平角的步骤,得出结论: 作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。
【活动二】
拿出用纸片做的角 ∠ AOB,在这个角的角平分线上任意取一点 P,过点 P 分别向角的两边做垂线,量一量点 P 到将两边的垂线段的长有什么关系?再在这个角平分线上任取 3 个点,也分别向角的两边做垂线,看看这些点到角的两边的垂线段的长有什么关系?
学生动手操作,通过观察,用尺子测量,得出结论: 角平分线上的点到角两边的距离相等。
这是从直观上得出的结论,从理论上要证明这个结论。
(设计意图:解决实际问题,拓展学生思维,引导角平分线的性质定理总结,规律化规范语言,深化记忆定理)
证一证: 引导学生证明角平分线的性质,分清题设、结论,将文字变成符号并加以证明。学生板眼,挑出问题,纠正问题,得出完整过程。
由此,得到角平分线的性质:角平分线上的点到角两边的距离相等。用符号语言表示为: ∵ OP平分∠ AOB PD ⊥ OA,PE ⊥ OB ∴ PD=PE 定理的作用:证明线段相等。练习:判断正误,并说明理由:
(1)如图 1,P 在射线 OC 上,PE ⊥ OA,PF ⊥ OB,则 PE=PF。(2)如图 2,P 是∠ AOB 的平分线 OC 上的一点,E、F 分别在 OA、OB 上,则 PE=PF。
(3)如图 3,在∠ AOB 的平分线 OC 上任取一点 P,若 P 到 OA 的距离为 3cm,则 P 到 OB 的距离边为 3cm。
(三)知识回顾 1.角平分线的画法
2.角平分线的性质:角平分线的点到角两边的距离相等
(四)板书设计