第一篇:初中数学矩形说课稿
关于初中数学矩形说课稿,学生学习了本课,要能应用矩形定义、判定等知识,解决简单的证明题和计算题,下面由小编为您整理出的相关内容,一起来看看吧。
各位评委、各位老师:
你们好!今天我要为大家讲的课题是《矩形的判定》,根据新课标理念,对应本节,我将以教什么、怎样教以及为什么这样教为思路,从教材分析、教学目标分析、教学策略分析、教学过程分析四个方面加以说明。
一、教材分析(说教材):
①教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。
②教学目标:
1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。
2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。
3、使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。
③教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用
下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。
2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。
三、教学过程环节一:
创设情境、导入新课
通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)
回顾:
1、矩形的定义:有一个角是直角的平行四边形叫矩形
2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。
3、平行四边形的性质:
环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由。(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。
活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。
定理
一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)
环节三:应用辨析,巩固定理
总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。
矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:
一、判断题:
1、四个角都相等的四边形是矩形
2、对角线相等的四边形是矩形。
3、对角线互相平分且相等的四边形是矩形。
4、一组对角互补的平行四边形是矩形。
二、填空题:
1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。
2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:
判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。
环节四:开放训练,发散思维
变式训练
△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。
(1)求证:EO=EF
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。
变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。
环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
环节六:布置作业,反馈回授通过作业反馈对所学知识的掌握效果,并进一步巩固定理,应用定理。
以上是我对本节课的理解,不足之处,请各位评委、老师指正。谢谢大家!
第二篇:《矩形》说课稿
尊敬的各位评委、各位老师: 大家好!非常高兴能有机会参加这次说课活动,并借这个机会和同行们交流学习。我说课的内容是《矩形》第一课时
现代数学教育观认为,数学教学过程就在学生已有的认知水平和知识经验的基础上,引导学生通过实践探索、交流等多种活动理解和掌握基本的数学知识和技能、数学思想和方法的过程。因此学生应成为学习活动的主体,教师应成为学习得组织者、合作者与引导者。基于这一理念我准备从教材分析、目标分析、教法与学法分析、教学过程分析四个大方面进行说课。一:教材分析:
(一)、教材内容的地位和作用:
本节课是在学生已经学习了平行四边形和菱形性质的基础上进行的,它既是前面所学平行四边形、菱形性质的运用,也是后面继续学习正方形和梯形以及以后初三年级更深一步学习矩形的重要前提,起到承上启下的作用,是本章内容的一个重点。同时,矩形又是人们日常生活中最常见的应用最广泛的一种几何图形,使学生体会到几何知识来源于实际又作用于实际的辨证关系。
(二)、学情分析:
由于学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。二:目标分析:
(一)教学目标
新课标要求教学目标的制定要使学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识,以及基本的数学思想方法和必要的应用技能,学会应用数学的思维方式去观察分析问题,了解数学的价值,增进对数学的理解和学好数学的信心。“和谐高效、思维对话”新理念要求我们设计目标时既让学生“学会”(知识与技能),又让学生“会学”(过程与方法),还要让学生“乐学”(情感态度价值观),依据这些理念,结合学生的认知水平我制定本节课的教学目标如下:
1.知识与技能:经历探索经历探索矩形的概念和性质的过程,理解矩形与平行四边形和菱形的区别与联系。初步应用矩形的性质来合理推理来解决简单问题,渗透转化的思想。让学生经历真正的“做数学”和“学数学”的过程,发展学生思维能力,激发想象力和创造潜能。
2.过程与方法:经历、体验、探索矩形概念、性质的过程,渗透从一般到特殊、类比的数学思想,培养学生归纳和和初步的演绎推理能力,进一步培养学生的逻辑推理能力。
3.情感态度价值观:兴趣是学生最好的老师,为此本节课我将通过动手操作、观察比较、合作交流,激发学生的学习兴趣,向学生渗透数学是应用数学的思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣,形成正确的价值观和积极的人生态度。
(二)教学重点和难点:
重点:矩形的概念、性质、及简单应用
由于学生学刚接触平行四边形的有关知识、学习程度较浅,独立思考和探究的能力不强,我结合本节的教学内容确定教学难点:
难点:矩形性质的应用,尤其是有条理地书写解题过程
三、教法与学法:
孔子说“学而不思则罔,思而不学则殆。”这句话就准确的表达了学与思之间的关系,而创设问题情境恰恰能引导学生积极思考的十分有效途径。因此围绕 本节目标和重难点我将对学生提出一系列的问题,让学生在学习中思考,在思考中学习。
由于学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,许多学生容易造成知识遗忘。为此教学中积极利用几何画板、视频展台、板书和练习中的图形,以及小组合作的方式向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。
同时为使课堂生动、有趣、和谐、高效,特将整节课以观察、思考、合作、讨论贯穿于整个教学环节之中,采用自主探究、小组合作的教学法和师生互动、思维对话式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。
四、教学过程:
为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了六个教学环节:
(一)、创设情境,引出课题。
我用多媒体展示生活中的和谐对称的物体,问学生物体的侧面是什么图形;学生观察、回答,引出课题。
(设计意图:用生活中的物体展示长方形(即矩形),激发学生兴趣,让学生直观感受生活中物体的美,体会数学源于生活,充分体现课标理念——数学应向生活回归,向学生经验回归,人人学有价值的数学。同时为形成矩形概念打下基础。)
(二)观察思考,提出概念。
我出示平行四边形木架进行变化,提出问题1:变化后是什么图形; 学生通过观察后回答是平行四边形;
接下来,我提出问题2:平行四边形的一个内角变为多少度时,木架变成了刚才多媒体展示的物体的侧面形状;
通过我的引导和学生的观察,学生容易得出为直角时是矩形,然后让学生说一说矩形概念;
我再进行规范,让学生在书上进行批注并齐读书上概念2次,强调矩形的概念有两方面的涵义,它既是矩形的定义,又是以后学习中矩形的一种识别方法。
(设计意图:诱发学生学习动机有两种,即感性认识和理性思考,让学生动手操作,学生兴趣肯定很高;阅读是理解的基础,数学教学同样需要阅读,让学生齐读,这样有利于学生理解和记忆。)
(三)、合作研讨,探究新知:
这一环节我主要设计了三个层次的研讨活动:
1、判断对错:1)平行四边形是矩形。
2)有一个角是90度的四边形是矩形。
3)矩形是平行四边形。
学生先独立思考验证、操作2、3分钟后,前后四人小组,共同观察、讨论、猜想、验证。
(设计意图:利用判断题和关系图,让学生在合作交流的基础上得出矩形与平行四边形的区别与联系,知道矩形是特殊的平行四边形,使学生认识特殊与一般的辩证关系,为矩形具有平行四边形的性质做好铺垫。体现生生之间的思维对话,把课堂的时间还给学生。)
2、提出问题。生活中,侧面是矩形形状的物体给人以美的感觉,肯定矩形具有很多独特性质,让我们利用手中的矩形纸片一起来探究矩形的性质。学生先独立思考、操作2、3分钟后,前后四人小组,共同观察、讨论、猜想、验证。我将参与部分小组的讨论,引导学生用迁移的思想从平行四边形的性质类比出矩形的性质。
(设计意图:“有困难,老师才引导。”学生不仅能主动获取知识,体验探索的快乐,而且能不断丰富数学活动经验,学会探索,学会学习。体现师生之间的思维对话,把习得的过程和课堂的空间更好的还给学生。)
3、拓展提高。让学生体验探索课本例题1,鼓励学生合作交流,启发引导学生尝试有勾股定理这个模型探究。鼓励探究出的学生到讲台给其他学生展示自己的思路和步骤,由其他学生评价。
(设计意图:本环节的学生讲题过程中教师对学生寄予的期望,会对学生产生极大的激励作用,教师的期望和爱心可激发学生的潜质,使其得以充分发挥,使学生通过实现自我参照来体验成功,正确认识自己的能力,改变对学习无能为力的心理状态,进而引发学习的激情。)
通过以上三层次的研讨活动,加深学生对知识的理解,突出重点,突破难点,顺利达成教学目标2、3。
(四)、巩固练习,体验成功:
在这一环节我将依据本节目标和重难点设计两种层次的练习,一种是围绕矩形性质基础知识的训练,一种是围绕性质的推理论证的基本技能训练。这样的设计,可以同时让不同层次的学生体验成功的喜悦,激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为学习的主体。本环节采用学生板演、学生讲解、学生批改、小组评价、教师点拨归纳等形式,进一步把课堂的时间和空间还给学生。通过探索、合作、归纳让学生进一步加深对数形结合、分类思想的理解和渗透,很自然的攻克本节课的难点。
(五)、个人小结,注重参与:
为巩固本节的教学重点让学生独立完成: 学生重点从我学会了什么、我是怎么学的、我学的怎么样、我还想知道点什么等方面来总结,同时引导学生对教材内容中例题的编写,以及和本节前后内容对比贯穿,体现了以人为本的教育理念,避免使总结流于形式,体现师生与教材之间的思维对话,把评价的权利和提问的权利还给学生。
(六)布置作业,引导预习:
1、分必做题和选做题,既让大多数同学巩固基础知识和基本技能,又因材施教照顾学有余力的学生。2布置提前预习下一节课《矩形的判定方法》来引导学生养成预习的学习习惯,同时形成良好的学习习惯和提前准备、积极向上的生活习惯。
总之,在教学过程中,我会始终注意体现新课标要求的:学生是学习的主人,把时间和空间还给学生,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,注重思维发展和能力培养。通过这样的教学实践不仅体现了“和谐高效,思维对话”的新课改理念,同时做到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,体验成功,增强学好数学的自信心。
以上是我对本节课的设想,不足之处请评委、老师们多多批评、指正,谢谢.
第三篇:初中数学说课稿
初中数学说课稿模板
各位评委,大家好!今天我说课的题目是___,所选用的教材为人民教育出版社义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。
一、教材分析
1、教材的地位和作用
本节教材是初中数学___年级第___章第___节的内容,是初中数学的重要内容之一。一方面,这是在学习了___的基础上,对___的进一步深入和拓展;另一方面,又为学习___等知识奠定了基础,是进一步研究___的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了,对___已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:
难点确定为:
二、教学目标分析
新课标指出,教学目标应包括只是与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个右击整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:
1.(了解、理解、熟记、初步掌握、会运用 对 进行 等);
2.通过___的学习,培养学生 观察分析、类比归纳的探究___能力,加深对___函数与防城、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。
3.通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、教学方法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习就知,温故知新
设计意图:建构注意主张教学应从学生已有的知识体系出发,___是本节课深入研究___的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(3)发现问题,探求新知
设计意图:现代数学教学论指出,___的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。
(4)分析思考,加深理解
设计意图:数学教学论指出,数学概念(定理等)要明确其 内涵和外延(条件、结论、应用范围等),通过对___定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。
(5)强化训练,巩固双基 设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1„„例2„„,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6)小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的只是、方法、体验是那个方面进行归纳,我设计了这么三个问题:
① 通过本节课的学习,你学会了哪些知识; ② 通过本节课的学习,你最大的体验是什么;
③ 通过本节课的学习,你掌握了哪些学习数学的方法?(7)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
案例:初中数学说课稿《一次函数与一元一次不等式》
教材分析
1、地位和作用
这一节内容是初中数学新教材八年级上册第十一章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。
2、活动目标
①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。
②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。
③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。
总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。
二、学情分析
八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
三、学法分析
1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
四、教法分析
由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:
⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。
⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。
1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。
2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。
3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。
4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。
五、教学过程设计
一、复习回顾
1.一次函数的定义。2.一次函数的图象。
3.直线y=kx+b与方程的联系。
那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。
教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。设计意图:回顾所学知识作好新知识的衔接。
二、导探激励
问题1:作出函数y=2x-5的图象,观察图象回答下列问题:(1)x取何值时,2x-5=0?(2)x取哪些值时, 2x-5>0?(3)x取哪些值时, 2x-5<0?(4)x取哪些值时, 2x-5>3? 教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。
设计意图:问题1可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。
学生可以用不同方法解答,教师意图是尽量用图象求解。问题2:用画函数图象的方法解不等式:-2x+3<3x-7.分析:
由一次函数与一元一次不等式的关系可先将其化为一般形式,再画图求解;也可以将-2x+3与3x-7看作是两个
关于x的一次函数,即y1=-2x+3,y2=3x-7。
于是不等式的解集即对应着y1 原不等式化为5x-10>0,画出直线y=5x-10如图所示,可以看出x>2时这条直线上的点在x轴上方,即这时y=5x-10>0,所以不等式的解集为x>2.解法2: 将原不等式的两边分别看作是两个一次函数,画出直线l1︰y=-2x+3,y2=3x-7,如图所示,可以看出它们的交点的横坐标为2,当x>2时,对于同一个x,直线y=-2x+3上的点在直线y=3x-7上相应的点的下方,这时-2x+3<3x-7,所以不等式的解集为x>2.三、达测深化 做一做: 兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函数关系式,作出函数图象,观察图象回答下列问题: (1)何时哥哥追上弟弟? (2)何时弟弟跑在哥哥前面?(3)何时哥哥跑在弟弟前面? (4)谁先跑过20m?谁先跑过100m?(5)你是怎样求解的?与同伴交流。 教师活动:展示做一做,鼓励学生从多角度思考问题。请部分学生展示其解法。教师借助课件对学生解答作出评判。展示练习,在学生思考后,用课件展示图象以便学生识图。 设计意图:函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型,通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用。 四、小结 通过本节课的学习,你有哪些收获? 五、作业 P19 读一读 P20 习题1.6 说课稿与教案的区别与联系 1.说课说什么?说课的内容一般说来有以下五个方面: ⑴说课标 说课标就是要把课程标准中的课程目标(三维目标)作为本课题教学的指导思想和教学依据,从课程论的高度驾驭教材和指导教学设计。 说课标,要重点说明有关课题教学目标、教学内容及教学操作等在课程标准中的原则性要求,从而为自己的教学设计寻找到用力的依据。 说课标,可以结合到说教材中去进行。⑵说教材 教材是课程的载体。能否准确而深刻地理解教材,高屋建瓴地驾驭教材,合乎实际地处理教材,科学合理地组织教材,是备好课、上好课的前提,也是说课的首要环节。 说教材的要求有: ①说清楚本节教材在本单元甚至本册教材中的地位和作用,即弄清教材的编排意图或知识结构体系。 ②说明如何依据教材内容(并结合课程标准和学生)来确定本节课的教学目标或任务。课时目标是课时备课时所规划的课时结束时要实现的教学结果。课时目标越明确、越具体,反映教者的备课认识越充分,教法的设计安排越合理。分析教学目标要从知识与技能、过程与方法、情感态度与价值观三个方面加以说明。 ③说明如何精选教材内容,并合理地扩展或加深教材内容,通过一定的加工将其转化为教学内容,即搞清各个知识点及其相互之间的联系。 ④说明如何确定教学重点和教学难点。 ⑤说明教材处理上值得注意和探讨的问题。⑶说学法 现代教育对受教育者的要求,不仅是学到了什么,更主要的是学会怎样学习。实施课程标准后,要求教师转换角色,基于这一转变,说课者就必须说明如何根据教学内容、围绕教学目标指导学生学习,教给学生什么样的学习方法,培养学生哪些能力,如何调动学生积极思维,怎样激发学生学习兴趣等。说课活动中虽然没有学生,看不到师生之间和学生之间的多边活动,但从教师的说课过程中要体现以学生为主体,充分发挥学生在学习活动中的作用、调动学生的学习积极性。在最大程度上体现课改精神——教师是课堂教学的组织者、引导者、参与者、启发者。具体要说清两大问题: ①针对本节教材特点及教学目的,学生宜采用怎样的学习方法来学习它,这种学法的特点怎样?如何在课堂上操作? ②在本节课中,教师要做怎样的学法指导?怎样使学生在学会过程中达到会学?怎样在教学过程中恰倒好处地融进学法指导? ⑷说教法 说教法,应说出“怎么教”的办法以及“为什么这样教”的根据,具体要做到以下几个方面: ①要说出本节课所采用的最基本或最主要的教法及其所依据的教学原理或原则。②要说出本节课所选择的一组教学方法、手段,对它们的优化组合及其依据。无论以哪种教法为主,都是结合学校的设备条件以及教师本人的特长而定的。要注意实效,不要生搬硬套某一种教学方法,要注意多种方法的有机结合,提倡教学方法的百花齐放。 ③要说明教师的教法与学生应采用的学法之间的联系。④要重点说说如何突出重点、化解难点的方法。⑸说教程 教程即教学过程,说教学过程是说课的重点部分,因为通过这一过程的分析才能看到说课者独具匠心的教学安排,它反映着教师的教学思想,教学个性与风格。也只有通过对教学过程设计的阐述,才能看到其教学安排是否合理、科学,是否具有艺术性。说教程要求做到: ①说出教学全程的总体结构设计,即起始——过程——收束的内容安排。说教学程序要把教学过程所设计的基本环节说清楚。但具体内容只须概括介绍,只要听讲人能听清楚“教的是什么”、“怎样教的”就行了。不能按教案像给学生上课那样讲。 另外注意一点是,在介绍教学过程时不仅要讲教学内容的安排,还要讲清“为什么这样教”的理论依据(包括大纲依据、课程标准依据、教学法依据、教育学和心理学依据等)。 ②重点说明教材展开的逻辑顺序、主要环节、过渡衔接及时间安排。 ③说明如何针对课型特点及教学法要求,在不同教学阶段师与生、教与学、讲与练是怎样协调统一的。 ④要对教学过程作出动态性预测,考虑到可能发生的变化及其调整对策。 以上五个方面,只是为说课内容提供一个大致的范围,并不意味着具体说课时都要面面俱到,逐项说来,应该突出重点,抓住关键,以便在有限是时间内进行有效的陈述,该展开的内容充分地展开,该说透的道理尽量去说透,这样才能取得良好的效果。 2.对说课的要求 要说好课,应该注意以下几个问题: ①突出“说”字 说课不等于备课,不能照教案读;说课不等于讲课,不能视听课对象为学生去说;说课不等于背课,不能按教案只字不漏地背;说课不等于读课,不能拿事先写好的说课稿去读。说课时,要抓住一节课的基本环节去说,说思路、说方法、说过程、说内容、说学生,紧紧围绕一个“说”字,突出说课特点,完成说课进程。 ②把握“说”的方法 说课的方法很多,应该因人制宜,因教材施说:可以说物、说理、说实验、说演变、说本质、说事实、说规律、正面说、反面说,但一定要沿着教学法思路这一主线说,以防跑野马。 ③语气得体、简练准确 说课时,不但要精神饱满,而且要充满激情。要使听课者首先从表象上感受到说课者对说好课的自信和能力,从而感染听者,引起听者的共鸣。 说课的语言应具有较强的针对性——教师同行.语言表达应十分简练干脆,避免拘谨,力求有声有色,灵活多变.前后整体要连贯紧凑,过渡要流畅自然。 ④说出特点、说出风格 说课的对象不是学生,而是教师同行。所以说课时不宜把每个过程说得过于详细,应重点说出如何实施教学过程、如何引导学生理解概念、掌握规律的方法,说出培养学生学习能力与提高教学效果的途径。说课要重理性,讲课注重感性和实践,因此,用极有限的时间完成说课内容不容易,必须做到详略得当、简繁适宜、准确把握说度。说得太详太繁,时间不允许,也没必要;说得过略过简,说不出基本内容,听众无法接受。 那么,如何把握说度呢?最主要的一点是因地制宜,灵活选取择说法,把课说活,说出该课的特色,把课说得有条有理、有理有法、有法有效,说得生动有趣;其次是发挥个人的特长,说出个人的风格,这就把握了说课的度。 初中数学说课稿-《数轴》 各位领导、各位教师: 大家好! 今天我说课的题目是“数轴” 我用的教材是鲁教版六年级上册教科书。 下面我将从教材分析、教学目标、教学方法、教学过程、最后综述等五个方面向大家介绍我对本节课的理解与设计,不妥之处,敬请指教。一:教材分析: 《数轴》是鲁教版六年级上册第二章第二节的内容。在此之前我们已经学习了有理数,这为本节课的学习起着铺垫的作用。1 教材的地位与作用 本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。教学重点和难点 重点: 正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点。难点:建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。3 学情分析 ⑴知识掌握上,六年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。 ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。 ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。 ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。二:教学目标: 根据新课标的要求及六年级学生的认知水平我特制定的本节课的教学目标如下: 知识与技能: 使学生理解数轴的三要素,会画数轴。 过程与方法: 能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示 情感态度与价值观: 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。 三:教学方法: 依据本节重点,我主要采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,学生采取自主式、合作式、探讨式的学习方法。教学 中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。 在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,学生能较快的找到解决疑问的方法,找到解决问题的关键。本节课我为了体现学生为主体性和教师的主导辅助作用,启发式、合作式、探究式的原则始终贯穿于整个教学过程。具体设计如下: 教学过程中设计了温故知新,激发情趣 得出定义,揭示内涵 手脑并用,深入理解 启发诱导,初步运用 反馈矫正,注重参与 归纳小结,强化思想 布置作业,引导预习七个教学环节: 三 教学设计: (一)、温故知新,激发情趣: 首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问: (1)零上5°C用 5 表示。 (2)零下15°C 用-15 表示。 (3)0°C 用 0 表示。 然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。 (二)、得出定义,揭示内涵: 教师设问:到底什么是数轴?如何画数轴呢? (1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。) (2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。) (3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。) 由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。 画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”(通过教师的亲切的语言启发学生,以培养师生间的默契) 通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。 至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。 (三)、手脑并用,深入理解: 1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么? A、B、C、D、E、F、A、B、C三个图形从数轴的三要素出发,D和F是学生可能出现的错误,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。 2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上) 学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。 我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。 (四)、启发诱导,初步运用: 有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。 安排课本23页的例1,利用黑板上的例题图形让学生来操作,教师提出要求: 1、要把点标在线上 2、要把数标在点的上方 通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。 当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。 (五)、反馈矫正,注重参与: 为巩固本节的教学重点让学生独立完成: 1、课本23页练习1、2 2、课本23页3题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论: 3、数轴上的点P与表示有理数3的点A距离是2,(1)试确定点P表示的有理数; (2)将A向右移动2个单位到B点,点B表示的有理数是多少? (3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少? 先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。 (六)、归纳小结,强化思想: 根据学生的特点,师生共同小结: 1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数? 2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数? 让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。 (七)、布置作业,引导预习: 为面向全体学生,安排如下: 1、全体学生必做课本25页1、2、3 2、最后布置一个思考题: 与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何? (来引导学生养成预习的学习习惯) 七:板书设计:(略) 总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。 以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢 一、教材分析 1、教材的地位和作用 一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。 2、教学目标 根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体现在: 知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。 过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。 情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。 3、教学重点与难点 要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发。所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念。鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此把由实际问题转化成数学方程确定为本节课的难点。 二、教法、学法 因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。 三、教学过程设计 1、创设情景,引入新课 因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过微机演示课本中的实例,并应用微机对其进行分析,充分显示微机演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。第四篇:初中数学说课稿
第五篇:初中数学说课稿