函数与方程知识点总结[范文]

时间:2019-05-15 13:04:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《函数与方程知识点总结[范文]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《函数与方程知识点总结[范文]》。

第一篇:函数与方程知识点总结[范文]

在中国古代把数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。小编准备了高一数学函数与方程知识点,希望你喜欢。

一、函数的概念与表示

1、映射

(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:AB。注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射

2、函数

构成函数概念的三要素 ①定义域②对应法则③值域

二、函数的解析式与定义域

1、求函数定义域的主要依据:(1)分式的分母不为零;

(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;

(4)指数函数和对数函数的底数必须大于零且不等于1;

2求函数定义域的两个难点问题

(1)已知f(x)的定义域是[-2,5],求f(2x+3)的定义域。

(2)已知f(2x-1)的定义域是[-1,3],求f()x的定义域

三、函数的值域

1求函数值域的方法

①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且xR的分式;

④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其

四、函数的奇偶性

1.定义: 设y=f(x),xA,如果对于任意xA,都有f(?x)?f(x),则称y=f(x)为偶函数。

如果对于任意xA,都有f(?x)??f(x),则称y=f(x)为奇函数。

2.性质:

①y=f(x)是偶函数?y=f(x)的图象关于y轴对称, y=f(x)是奇函数?y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0

高一数学函数与方程知识点就为大家介绍到这里,希望对你有所帮助。

[函数与方程知识点总结]相关文章:

第二篇:函数与方程教案

函数与方程教案

27.3实践与探索(第二课时)二次函数与一元二次方程的关系 晋城四中 李前进 【教学目标】

1、知识与技能:(1)体会函数与方程之间的联系,初步体会利用函数图象研究方程问题的方法;(2)理解二次函数图象与x轴(横轴)交点的个数与一元二次方程的根的个数之

间的关系,理解方程有两个不等的实根、两个相等的实根和没有实根的函数 图象特征;22(3)理解一元二次方程ax+bx+c=0的根就是二次函数与y=ax+bx+c图象与x轴交

点的横坐标。

2、过程与方法:(1)由一次函数与一元一次方程根的联系类比探求二次函数与一元二次方程之间 的联系;(2)经历类比、观察、发现、归纳的探索过程,体会函数与方程相互转化的数学

思想和数形结合的数学思想。

3、情感、态度与价值观: 培养学生类比与猜想、不完全归纳、认识到事物之间的联系与转化、体验 探究的乐趣和学会用辨证的观点看问题的思维品质。【重点与难点】

重点:经历“类比--观察--发现--归纳”而得出二次函数与一元二次方程的关系的探

索过程。

难点:准确理解二次函数与一元二次方程的关系。【教法与学法】

教法:采用“发现式学习”的方式,注重“最近发展区”,寻根问源,以旧知识为

基础创设问题情境,引导学生经历“类比—猜想—观察—发现—归纳—应用” 的探究过程。学法:探究式学习。

appearance of the weld appearance quality technical requirements of the project must not have a molten metal stream does not melt the base metal to weld, weld seam and heat-affected zone surface must not have cracks, pores, defects such as crater and ash, surface smoothing, weld and base metal should be evenly smooth transition.Width 2-3 mm from the edge of weld Groove.Surface reinforcement should be less than or equal to 1 + 0.2 times the slope edge width, and should not be greater than 4 mm.Depth of undercut should be less than or equal to 0.5 mm, total length of the welds on both sides undercut not exceed 10% of the weld length, and long continuous should not be greater than 100 mm.Wrong side should be less than or at 0.2T, and should not be greater than 2 mm(wall thickness mm t)incomplete or not allow 7.5 7.5.1 installation quality process standards of the electrical enclosure Cabinet surface is clean, neat, no significant phenomenon of convex, close to nature, close the door.7.5.2 Cabinet Cabinet face paints no paint, returned to rusted, consistent color.7.5.3 uniform indirect gap from top to bottom, slot width <1.5mm 7.5.4 adjacent Cabinet surface roughness is 0.7.5.5 the cabinets firmly fixed, crafts beautiful.7.5.6 Cabinet surface gauge, switch cabinet mark clear, neat, firm paste.7.5.7 Terminal row of neat, is reliable, the appearance is clean and not damaged.7.5.8 cables neat and clean, solid binding, binding process in appearance.7.5.9 the first cable production firm, crafts beautiful, clear signage does not fade.7.5.10 fireproof plugging tight, no cracks and pores.7.6 7.6.1 of the standard electrical wiring quality technology cable a, the multi-core wire bunch arrangement should be parallel to each other, horizontal wire harness or wire should be perpendicular to the longitudinal multi-core wire bunch.The distance between the wire harness and wire harness symmetry, and as close as possible.B-core wiring harness into round, multi-core wire bunch used g wire binding, fastening 【教学过程】

一、诗词导入

教师投影:我国著名数学家华罗庚曾经说过:“数缺形时少直观,形少数 时难入微,数形结合百般好,隔离分家万事休。”(学生齐读)师:数学家的寥寥数语就将数与形之间的内在联系表达的淋漓尽致。今天,我们通过研究二次函数中的数形结合来体会“数形结合百般好”的奥妙~ 设计思路:从学生熟悉的小诗入手,激发学生探究学习的积极性。

二、温故知新 y3那些年,我们一起做过的题: 2(1)解一元一次方程x+1=0;1(2)画一次函数y=x+1的图象,并指出函数y=x+1的图象 x –2–11O 与x轴的交点坐标。–1(3)你会不画图象求函数y=3x,3与x轴的交点坐标吗, 师生共同总结:一次函数y,kx,b的图象与x轴的交点的横坐标就是一元一次方程kx,b,0的根

设计思路:这一环节让学生通过对旧知识的回顾及对新知识的思考,梳理旧知识,起到承上启下之效,同时通过老师的引导,培养学生的形成解决一类问题的通用方法的思维品质

三、类比猜想

22你觉得一元二次方程ax+bx+c=0的根与二次函数y=ax+bx+c之间有联系吗,四、问题探究

教师分配研究的任务,然后小组合作完成,教师提问,学生展示研究成果。设计思路: 学生画函数图象比较慢,分配任务既可以节约时间,又可以使 每个学生都有事可做,能够很好地完成学习任务。

appearance of the weld appearance quality technical requirements of the project must not have a molten metal stream does not melt the base metal to weld, weld seam and heat-affected zone surface must not have cracks, pores, defects such as crater and ash, surface smoothing, weld and base metal should be evenly smooth transition.Width 2-3 mm from the edge of weld Groove.Surface reinforcement should be less than or equal to 1 + 0.2 times the slope edge width, and should not be greater than 4 mm.Depth of undercut should be less than or equal to 0.5 mm, total length of the welds on both sides undercut not exceed 10% of the weld length, and long continuous should not be greater than 100 mm.Wrong side should be less than or at 0.2T, and should not be greater than 2 mm(wall thickness mm t)incomplete or not allow 7.5 7.5.1 installation quality process standards of the electrical enclosure Cabinet surface is clean, neat, no significant phenomenon of convex, close to nature, close the door.7.5.2 Cabinet Cabinet face paints no paint, returned to rusted, consistent color.7.5.3 uniform indirect gap from top to bottom, slot width <1.5mm 7.5.4 adjacent Cabinet surface roughness is 0.7.5.5 the cabinets firmly fixed, crafts beautiful.7.5.6 Cabinet surface gauge, switch cabinet mark clear, neat, firm paste.7.5.7 Terminal row of neat, is reliable, the appearance is clean and not damaged.7.5.8 cables neat and clean, solid binding, binding process in appearance.7.5.9 the first cable production firm, crafts beautiful, clear signage does not fade.7.5.10 fireproof plugging tight, no cracks and pores.7.6 7.6.1 of the standard electrical wiring quality technology cable a, the multi-core wire bunch arrangement should be parallel to each other, horizontal wire harness or wire should be perpendicular to the longitudinal multi-core wire bunch.The distance between the wire harness and wire harness symmetry, and as close as possible.B-core wiring harness into round, multi-core wire bunch used g wire binding, fastening 表格一: 二次函数 函数图象 图象与x轴方程的根 一元二次 方程 的交点坐 标 22 y=x+2x x+2x=0 22y=x-2x+1 x-2x+1=0 22y=x-2x+2-2x+2=0 x

五、归纳结论

2(1)从“数”的方面看,当二次函数y=ax+bx+c的函数值y=_0_ 时,二次函数 x2-2x+ 2 变为一元二次方程ax+bx+c=0,此时相应的_自变量的值即为二次方程 2ax+bx+c=0的_根_;2=0(2)从“形”的方面看,当二次函数的y值为0时,从图像看指的是二次函数图 像与_x轴_的交点,此时二次函数y=ax+bx+c与x轴交点的_横坐标_即为二x2-2x+ 2次方程ax+bx+c=0的_根_。表格二: 2=0 2一元二次方程二次函数y=ax+bx+c的图象一元二次方程根的判别式 222b,4ac ax+bx+c=0的根的个数 与x轴交点的个数

x-2x+ 22=0 b,4ac>0 2 b,4ac=0 2 b,4ac<0 教师和学生一起总结: 2二次函数y=ax+bx+c的图象与x轴的交点有三种情况:有两个交点、有一 2个交点、没有交点。当二次函数y=ax+bx+c的图象与x轴有交点时,交点的横 2坐标就是当y=0时自变量x的值,即一元二次方程ax+bx+c=0的根。appearance of the weld appearance quality technical requirements of the project must not have a molten metal stream does not melt the base metal to weld, weld seam and heat-affected zone surface must not have cracks, pores, defects such as crater and ash, surface smoothing, weld and base metal should be evenly smooth transition.Width 2-3 mm from the edge of weld Groove.Surface reinforcement should be less than or equal to 1 + 0.2 times the slope edge width, and should not be greater than 4 mm.Depth of undercut should be less than or equal to 0.5 mm, total length of the welds on both sides undercut not exceed 10% of the weld length, and long continuous should not be greater than 100 mm.Wrong side should be less than or at 0.2T, and should not be greater than 2 mm(wall thickness mm t)incomplete or not allow 7.5 7.5.1 installation quality process standards of the electrical enclosure Cabinet surface is clean, neat, no significant phenomenon of convex, close to nature, close the door.7.5.2 Cabinet Cabinet face paints no paint, returned to rusted, consistent color.7.5.3 uniform indirect gap from top to bottom, slot width <1.5mm 7.5.4 adjacent Cabinet surface roughness is 0.7.5.5 the cabinets firmly fixed, crafts beautiful.7.5.6 Cabinet surface gauge, switch cabinet mark clear, neat, firm paste.7.5.7 Terminal row of neat, is reliable, the appearance is clean and not damaged.7.5.8 cables neat and clean, solid binding, binding process in appearance.7.5.9 the first cable production firm, crafts beautiful, clear signage does not fade.7.5.10 fireproof plugging tight, no cracks and pores.7.6 7.6.1 of the standard electrical wiring quality technology cable a, the multi-core wire bunch arrangement should be parallel to each other, horizontal wire harness or wire should be perpendicular to the longitudinal multi-core wire bunch.The distance between the wire harness and wire harness symmetry, and as close as possible.B-core wiring harness into round, multi-core wire bunch used g wire binding, fastening 设计思路:通过教师引导学生完成表格,使学生对命题的内涵理解,“学生对数学命题中各部分符号的含义能深刻理解,发现并知道各部分间的内在联系。”填空使学生从“形”与“数”的角度体会数形结合思想,以及方程与函数互相转化的思想,从而归纳出具一般性的结论。y22y = x x 6

1六、基础练习x–3–2–1123O2–1(1)已知二次函数y=x-x-6的图象如图所示: –2 –3图象与x轴有2个交点,交点的横坐标 –42 是______,则方程x-x-6=0有__个根,方程的根是________ 2(2)函数y= x-5x+6的图象与x轴有___个交点,其交点坐标为_________、__________。(3)自命题

每个小组按照教师的要求,小组内通过讨论写出一个一般式的二次函数关系式,用关系式出一道有关二次函数和一元二次方程的简单的题,(七个大组分三种情况布置有目的性的布置,各小组只知道自己小组的任务)。教师通过在教师内观察学生活动情况,选两个代表性题由其他小组来做。

设计思路:小组活动,激发学生的学习热情,巩固对上面总结结论的认识。

七、例题讲解 2 例1:已知二次函数y=ax+bx+c(a?0)的对称轴是x=2,它与x轴的一个交 2点坐标是(4,0),则方程ax+bx+c=0的两个解是__________ 设计思路:鼓励学生自主思考,然后小组讨论,派代表上讲台讲解。

八、巩固练习

2(1)抛物线y=ax+bx+c(a?0)的图象全部在x轴下方的条件是()22(A)a,0 b,4ac?0(B)a,0 b , 4ac,0 22(C)a,0 b , 4ac,0(D)a,0 b , 4ac,0(2)下列函数中其图象与x轴有两个交点的是()11112222(A)y=()x23+155(B)y=()x+23+155(C)y=()x23155(D)y=()x+23+1554444 appearance of the weld appearance quality technical requirements of the project must not have a molten metal stream does not melt the base metal to weld, weld seam and heat-affected zone surface must not have cracks, pores, defects such as crater and ash, surface smoothing, weld and base metal should be evenly smooth transition.Width 2-3 mm from the edge of weld Groove.Surface reinforcement should be less than or equal to 1 + 0.2 times the slope edge width, and should not be greater than 4 mm.Depth of undercut should be less than or equal to 0.5 mm, total length of the welds on both sides undercut not exceed 10% of the weld length, and long continuous should not be greater than 100 mm.Wrong side should be less than or at 0.2T, and should not be greater than 2 mm(wall thickness mm t)incomplete or not allow 7.5 7.5.1 installation quality process standards of the electrical enclosure Cabinet surface is clean, neat, no significant phenomenon of convex, close to nature, close the door.7.5.2 Cabinet Cabinet face paints no paint, returned to rusted, consistent color.7.5.3 uniform indirect gap from top to bottom, slot width <1.5mm 7.5.4 adjacent Cabinet surface roughness is 0.7.5.5 the cabinets firmly fixed, crafts beautiful.7.5.6 Cabinet surface gauge, switch cabinet mark clear, neat, firm paste.7.5.7 Terminal row of neat, is reliable, the appearance is clean and not damaged.7.5.8 cables neat and clean, solid binding, binding process in appearance.7.5.9 the first cable production firm, crafts beautiful, clear signage does not fade.7.5.10 fireproof plugging tight, no cracks and pores.7.6 7.6.1 of the standard electrical wiring quality technology cable a, the multi-core wire bunch arrangement should be parallel to each other, horizontal wire harness or wire should be perpendicular to the longitudinal multi-core wire bunch.The distance between the wire harness and wire harness symmetry, and as close as possible.B-core wiring harness into round, multi-core wire bunch used g wire binding, fastening

七、拓展提高:

21、已知二次函数y=ax+bx+c(a?0)的图象 如图所示,根据图象回答下列问题: 2(1)方程ax+bx+c=0的两个解是__________ 2(2)方程ax+bx+c=4的两个解是__________ 设计思路:让学生对二次函数和一元二次方程的关系的认识上升高度。

22、你会利用二次函数的图象求出一元二次不等式x,x,2,0的解集吗,(看课堂时间情况决定是否出示)

八、课堂小结,提高认识

函数 方程 22ax+bx+c=0(a ?0)y=ax+bx+c(a?0)横坐标的

值 图象与x轴交点 根 个数

一个关系:二次函数图象与一元二次方程根的关系: 两种思想:函数与方程互相转化的思想;数形结合思想(设计思路:用精炼的语言,使得学生记忆简便,而且印象加深,同时让学生在 总结中反思,完成升华。学生再次齐读华罗庚名言,下课。

九、布置作业,巩固提升

十、板书设计

课题:„„.课题:„„.方程与函数转化 例1: 方程与函数转化 例1: 函数 方程 22y=ax+bx+c(a?0)ax+bx+c=0(a ?0)横坐标的

值 图象与x轴交点 根 个数 数形结合 数形结合

appearance of the weld appearance quality technical requirements of the project must not have a molten metal stream does not melt the base metal to weld, weld seam and heat-affected zone surface must not have cracks, pores, defects such as crater and ash, surface smoothing, weld and base metal should be evenly smooth transition.Width 2-3 mm from the edge of weld Groove.Surface reinforcement should be less than or equal to 1 + 0.2 times the slope edge width, and should not be greater than 4 mm.Depth of undercut should be less than or equal to 0.5 mm, total length of the welds on both sides undercut not exceed 10% of the weld length, and long continuous should not be greater than 100 mm.Wrong side should be less than or at 0.2T, and should not be greater than 2 mm(wall thickness mm t)incomplete or not allow 7.5 7.5.1 installation quality process standards of the electrical enclosure Cabinet surface is clean, neat, no significant phenomenon of convex, close to nature, close the door.7.5.2 Cabinet Cabinet face paints no paint, returned to rusted, consistent color.7.5.3 uniform indirect gap from top to bottom, slot width <1.5mm 7.5.4 adjacent Cabinet surface roughness is 0.7.5.5 the cabinets firmly fixed, crafts beautiful.7.5.6 Cabinet surface gauge, switch cabinet mark clear, neat, firm paste.7.5.7 Terminal row of neat, is reliable, the appearance is clean and not damaged.7.5.8 cables neat and clean, solid binding, binding process in appearance.7.5.9 the first cable production firm, crafts beautiful, clear signage does not fade.7.5.10 fireproof plugging tight, no cracks and pores.7.6 7.6.1 of the standard electrical wiring quality technology cable a, the multi-core wire bunch arrangement should be parallel to each other, horizontal wire harness or wire should be perpendicular to the longitudinal multi-core wire bunch.The distance between the wire harness and wire harness symmetry, and as close as possible.B-core wiring harness into round, multi-core wire bunch used g wire binding, fastening

第三篇:初中函数知识点总结

千承培训学校

函数知识点总结(掌握函数的定义、性质和图像)

(一)平面直角坐标系

1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系

2、各个象限内点的特征: 第一象限:(+,+)点P(x,y),则x>0,y>0; 第二象限:(-,+)点P(x,y),则x<0,y>0; 第三象限:(-,-)点P(x,y),则x<0,y<0; 第四象限:(+,-)点P(x,y),则x>0,y<0;

3、坐标轴上点的坐标特征:

x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。

4、点的对称特征:已知点P(m,n), 关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n)纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n)横,纵坐标都反号

5、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。

6、各象限角平分线上的点的坐标特征:

第一、三象限角平分线上的点横、纵坐标相等。

第二、四象限角平分线上的点横、纵坐标互为相反数。

7、点P(x,y)的几何意义: 点P(x,y)到x轴的距离为 |y|,点P(x,y)到y轴的距离为 |x|。点P(x,y)到坐标原点的距离为

8、两点之间的距离:

X轴上两点为A(x1,0)、B(x2,0)|AB||x2x1|

x2y2 Y轴上两点为C(0,y1)、D(0,y2)|CD|已知A(x1,y1)、B(x2,y2)AB|=

|y2y1|

(x2x1)2(y2y1)

29、中点坐标公式:已知A(x1,y1)、B(x2,y2)M为AB的中点

则:M=(x2x1yy1 , 2)2210、点的平移特征: 在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x-a,y); 将点(x,y)向左平移a个单位长度,可以得到对应点(x+a,y); 将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b); 将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。

注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。

(二)函数的基本知识: 基本概念

1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数;

(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;

(4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(三)正比例函数和一次函数

1、正比例函数及性质

一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx(k不为零)① k不为零 ② x指数为1 ③ b取零 当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)

(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴

2、一次函数及性质

一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b(k不为零)① k不为零 ②x指数为1 ③ b取任意实数

一次函数y=kx+b的图象是经过(0,b)和(-

b,0)两点的一条直线,我们称它为直k线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k、b是常数,k0)(2)必过点:(0,b)和(-

b,0)k(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

k0k0直线经过第一、二、三象限 直线经过第一、三、四象限 b0b0k0k0直线经过第一、二、四象限 直线经过第二、三、四象限 b0b0注:y=kx+b中的k,b的作用:

1、k决定着直线的变化趋势

① k>0 直线从左向右是向上的 ② k<0 直线从左向右是向下的

2、b决定着直线与y轴的交点位置

① b>0 直线与y轴的正半轴相交 ② b<0 直线与y轴的负半轴相交

(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位;

当b<0时,将直线y=kx的图象向下平移b个单位.3、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.注:对于y=kx+b 而言,图象共有以下四种情况:

1、k>0,b>0

2、k>0,b<0

3、k<0,b<0

4、k<0,b>0

4、直线y=kx+b(k≠0)与坐标轴的交点.

(1)直线y=kx与x轴、y轴的交点都是(0,0);

(2)直线y=kx+b与x轴交点坐标为

5、用待定系数法确定函数解析式的一般步骤:

与 y轴交点坐标为(0,b).

(1)根据已知条件写出含有待定系数的函数关系式;

(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.6、两条直线交点坐标的求法:

方法:联立方程组求x、y 例题:已知两直线y=x+6 与y=2x-4交于点P,求P点的坐标?

7、直线y=k1x+b1与y=k2x+b2的位置关系(1)两条直线平行:k1=k2且b1b2(2)两直线相交:k1k2(3)两直线重合:k1=k2且b1=b2平行于轴(或重合)的直线记作

.特别地,轴记作直线

8、正比例函数与一次函数图象之间的关系

一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).9、一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.10、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.11、一次函数与二元一次方程组

(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=acx的bb图象相同.(2)二元一次方程组a1xb1yc1ac的解可以看作是两个一次函数y=1x1和

b1b1a2xb2yc2y=a2cx2的图象交点.b2b212、函数应用问题(理论应用 实际应用)

(1)利用图象解题 通过函数图象获取信息,并利用所获取的信息解决简单的实际问题.(2)经营决策问题 函数建模的关键是将实际问题数学化,从而解决最佳方案,最佳策略等问题.建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知题.(四)反比例函数

一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。

取值范围: ① k ≠ 0;②在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数;③函数 y 的取值范围也是任意非零实数。反比例函数的图像属于以原点为对称中心的中心对称的双曲线

反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

反比例函数的性质:

1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0和 x>0上同为减函数;k<0时,函数在x<0和x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则S1=S2=|K| 5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴

y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n2 +4k·m≥(不小于)0。(k/x=mx+n,即mx^2+nx-k=0)

8.反比例函数y=k/x的渐近线:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.(第5点的同义不同表述)

10.反比例上一点m向x、y轴分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的距离越远。

(五)二次函数

二次函数是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。

一般式(已知图像上三点或三对、的值,通常选择一般式.)

y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b^2/4a);

顶点式(已知图像的顶点或对称轴,通常选择顶点式.)

y=a(x+m)^2+k(a≠0,a、m、k为常数)或y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)或(h,k)对称轴为x=-m或x=h,有时题目会指出让你用配方法把一般式化成顶点式;

交点式(已知图像与轴的交点坐标、,通常选用交点式)

y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;

抛物线的三要素:开口方向、对称轴、顶点 顶点

抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2/4a),当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。开口

二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。决定对称轴位置的因素

一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。(左同右异)

c的大小决定抛物线当①时,∴抛物线,与与

轴交点的位置.与

轴有且只有一个交点(0,): ,与

轴交于负半轴.,抛物线经过原点;②轴交于正半轴;③直线与抛物线的交点(1)(2)与(,轴与抛物线轴平行的直线).得交点为(0,).与抛物线

有且只有一个交点(3)抛物线与轴的交点 二次函数程根的判别式判定:

①有两个交点

抛物线与轴相交;

抛物线与轴相切; 的图像与轴的两个交点的横坐标、,是对应一元二次方的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的 ②有一个交点(顶点在轴上)③没有交点

抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是个实数根.(5)一次函数的图像与二次函数的图像的交的两点,由方程组

①方程组有两组不同的解时一个交点;③方程组无解时的解的数目来确定: 与与

有两个交点;②方程组只有一组解时没有交点.与

只有(6)抛物线与轴两交点之间的距离:若抛物线,由于、是方程

与轴两交点为的两个根,故

千承培训学校

第四篇:初中函数知识点总结

一次函数

1、表达式:y=kx+b(k≠0)图象呈一条直线

b2、与坐标轴交点:x轴:(,0)k

y轴:(0,b)

3、系数k和b的意义:

① 当k>0时,y随x的增大而增大,函数图象成上坡趋势且过一三象限

当k<0时,y随x的增大而减小,函数图象成下坡趋势且过二四象限 ② 当b>0时,图象与y轴交于正半轴,且图象过一二象限

当b<0时,图象与y轴交于负半轴,且图象过三四象限

4、正比列函数:当一次函数b=0时,该函数为正比列函数,即表达式为: y=kx(k≠0),该函数图象恒过原点

反比列函数

k(k0)x2、图象:双曲线且与坐标轴没有交点

3、系数k的意义:

① k>0时,图象两支在一三象限内,且在各个象限内y随x的增大而减小,图象呈下坡趋势

② k<0时,图象两支在二四象限内,且在各个象限内y随x的增大而增大,图象呈上坡趋势

4、图象特点:在图像上任意一点向坐标轴引垂线与坐标轴所围成的矩形面积都

1、表达式:y为k

二次函数

第五篇:高中数学函数知识点总结

高中数学函数知识点总结

(1)高中函数公式的变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

(2)一次函数:①若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称 是的一次函数。②当=0时,称是的正比例函数。

(3)高中函数的一次函数的图象及性质

①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数=的图象是经过原点的一条直线。

③在一次函数中,当0,O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0,0时,则经1、3、4象限;当0,0时,则经1、2、3象限。

④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。

(4)高中函数的二次函数:

①一般式:(),对称轴是

顶点是;

②顶点式:(),对称轴是顶点是;

③交点式:(),其中(),()是抛物线与x轴的交点

(5)高中函数的二次函数的性质

①函数的图象关于直线对称。

随时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值值的增大而增大。当时,取得最小值时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值值的增大而减少。当时,取得最大值高中函数的图形的对称

(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。

(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

2012高中数学知识点总结:函数公式大全

9高中函数的图形的对称

(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。

(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分

下载函数与方程知识点总结[范文]word格式文档
下载函数与方程知识点总结[范文].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    函数与方程教案(5篇模版)

    第四章:函数应用 §1:函数与方程 教学分析:课本选取探究具体的一元二次方程的根与其对应二次函数的图像与x轴交点的横坐标之间的关系作为本节的入口。其意图是让学生从熟悉的......

    关于方程的知识点总结

    在初中数学中,有关于方程的知识点都有哪些呢?以下是小编收集的知识点总结,仅供大家阅读参考!一.分式方程、无理方程的相关概念:1.分式方程:分母中含有未知数的方程叫做分式方程。2.......

    简易方程知识点

    第一单元:简易方程知识点 1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。 数与数之间的乘号不能省略。a×a可以写作a·a (或a2) ,a2读作a的平方,表示两个......

    C语言函数知识点总结

    函数 本章重点:本章难点://函数相关内容: *语法:包括定义,声明,调用, *语义 语句包括:表达式语句,空语句,控制语句,复合语句,函数调形参与实参的意义、作用与区别; 参数的两种传递方式;......

    初中2次函数知识点总结

    导语:对初中2次函数知识点,同学们有必要进行总结。以下是初中2次函数知识点总结,供大家阅读。I、定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常......

    高一函数知识点总结范文

    (一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三......

    函数的应用知识点总结

    函数的应用类型问题一直是期末数学重要题型之一,那一起来看看函数的应用的知识点吧,下面是小编为大家收集整理的函数的应用知识点总结,欢迎阅读。函数的应用知识点总结:函数图象......

    《方程的根与函数的零点》教案设计

    《方程的根与函数的零点》教案设计 1、教学设计的理念 本节课以提升数学核心素养的为目标任务,树立学科育人的教学理念,以层层递进的“问题串”引导学生学习,运用从特殊到一般......