第一篇:《植树问题(封闭线路)》教学反思
本节课的内容是在学习两端都栽、两端都不栽的基础上进行教学的。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。
成功之处:
1.多种方法解答,拓展学生的思维。在例3的教学中,通过学生自主探索,发现四种解题方法如下:
方法一:黑色棋子+白色棋子=可以摆的棋子
19×2 + 17×2
=38+34
=72(个)
方法二:每边的个数×4边=可以摆放多少个× 4 = 72(个)
方法三:每边能放个数×4-重复的4个=可以摆放的棋子
19×4-4
=76-4
=72(个)
方法四:每边看作17个,有4边,再加上四个角的4个。
17×4 +4
=68+4
=72(个)
通过这几种方法的展示,让学生不仅仅局限于一种解题思路,而是根据自己的实际水平选择适合的方法,利用培养学生思维的灵活性和拓展性。
2.不拘泥于课件的使用。在例3的教学中,虽然每种解法都制作了课件,但是在实际的教学中发现利用在黑板实际画图,分析每一种解法,更加有利于学生对此解法的分析,利用学生对每种解法的理解。
不足之处:
在拓展解题思路的同时,相应地就减少了练习的时间,导致练习量不足。
再教设计:
每种解法不再利用课件进行展示,在黑板上画图进行分析和理解,减少课件制作上的费时费力。
第二篇:四年级下学期数学《植树问题(封闭线路)》教学反思
四年级下学期数学《植树问题(封闭线路)》教学反思
四年级下学期数学《植树问题(封闭线路)》教学反思 本节课的内容是在学习两端都栽、两端都不栽的基础上进行教学的。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。成功之处: 1.多种方法解答,拓展学生的思维。在例3的教学中,通过学生自主探索,发现四种解题方法如下:方法一:黑色棋子+白色棋子=可以摆的棋子 19×2 + 17×2 =38+34 =72(个)方法二:每边的个数×4边=可以摆放多少个 18 × 4 = 72(个)方法三:每边能放个数×4-重复的4个=可以摆放的棋子 19×4-4 =76-4 =72(个)方法四:每边看作17个,有4边,再加上四个角的4个。17×4 +4 =68+4 =72(个)通过这几种方法的展示,让学生不仅仅局限于一种解题思路,而是根据自己的实际水平选择适合的方法,利用培养学生思维的灵活性和拓展性。2.不拘泥于课件的使用。在例3的教学中,虽然每种解法都制作了课件,但是在实际的教学中发现利用在黑板实际画图,分析每一种解法,更加有利于学生对此解法的分析,利用学生对每种解法的理解。不足之处: 在拓展解题思路的同时,相应地就减少了练习的时间,导致练习量不足。再教设计: 每种解法不再利用课件进行展示,在黑板上画图进行分析和理解,减少课件制作上的费时费力。
第三篇:封闭图形的植树问题
《封闭图形的植树问题》教学设计及反思
陕县第五小学
卫 青 2015年1月
《封闭图形的植树问题》教学设计及反思
一、定向导学:
1、谈话导入课题:
出示不封闭图形的三种情况,学生回顾反馈,概括以上三种情况都属于不封闭图形的植树问题,这节课我们要学习封闭图形的植树问题(板书课题)。那什么样的图形是封闭图形呢?学生回答“首尾相接的图形是封闭图形”以及“圆形、长方形、正方形、五边形等等都是封闭图形”后给与肯定,同时提出问题:封闭图形的植树问题该怎样解决呢?它和不封闭图形的植树问题有什么联系吗?带着这两个问题,我们一起走进今天的探究之旅。
2、展示学习目标:
(1)探索封闭图形情况下棵树与间隔数之间的关系;(2)能利用所学知识解决生活中的实际问题。
二、自主学习: 内容:课本108页例3 方法:看书----思考----回答 时间:4分钟
要求:认真自学例3,分别完成以下问题。
(一)画一画(第一组C2展示)如果池塘周长是40m,请你在图上画一画,看一共能栽几棵树? 图(略)
我发现:一共能栽()棵树。
(二)填一填。(第二、三组B2展示)1.周长为40m时,共有()个间隔,共能栽()棵树,间隔数和栽数棵数()。
2.例3相当于植树问题中的()这种情况。
(三)说一说。(第四组A2展示)例3中120 ÷10=12(棵)的理由。
张伯伯准备在圆形池塘周围栽树。池塘的周长是120m,如果每隔10m 栽一棵,一共要栽多少棵树?
总长÷间距=间隔=棵数 120÷10=12(棵)
答:一共要栽12棵树。
(每个环节学生自学汇报后,适时通过课件演示,进一步理解解题方法。)跟踪练习(每组C2展示,B2评价)
圆形滑冰场的一周全长是150 m。如果沿着这一圈每隔15 m安装一盏灯,一共需要装几盏灯?
三、合作交流(小组内交流后,第5、6组B2展示)想想议议:
封闭图形的植树问题和不封闭图形的植树问题中哪种情况是一致的?它们的规律是什么?
四、质疑探究:(分组对抗展示)
小区花园是一个长60 m,宽40 m的长方形。现在要在花园四周栽树,四个角上都要栽,每相邻两棵间隔5 m。一共要栽多少棵树? 巩固练习((每组C1展示,B1评价)
1、学校圆形操场的一周长是400米,如果沿着这一圈每隔20米安装一盏路灯,共需要安装几盏灯?
2、圆湖周围每隔5米栽一棵树,共栽了100棵,圆湖的周长是多少米?
3、爷爷在一块正方形地四周栽树,四个顶点都栽一棵,每边栽8棵。四周一共栽了多少棵树?
五、小结检测:
1、交流分享:谈谈你这节课的收获都有哪些?
2、课堂检测:
(1)一个圆形花圃周长36米,每隔3米放一盆花,一共放了多少盆花?(2)一个椭圆形花坛的一圈每隔5米装一盏路灯,一共装了30盏,这个花坛周长是多少米?
(3)在一个周长是48米的池塘周围种树,每隔4米种一棵,共可以种多少棵?(4)体育课上同学们站成一个空心方阵做游戏,最外层每边站8名同学,算算最外层一共有多少名同学? 结束语:
同学们,数学知识和我们的生活密不可分,生活中时时有数学,事事有数学,希望每个同学都能做个有心人,真正做到学数学、爱数学、用数学!教学反思:
学生在学习本课前已经接触了植树问题,会解决在一条线段中的植树问题(两端都栽、只栽一端或两端都不栽),了解了栽的棵数与间隔数的关系。本课主要研究封闭图形上的植树问题,重点是让学生在头脑中建立解决此类问题的模型,如何让学生建立起封闭植树和线段植树的联系是教学的关键,因此我设计教学时,主要通过学生课前预习,课上采用多媒体课件及信息技术为学生提供大量的直观材料,激活学生的生活经验,动态反馈学生思维,沟通知识之间的联系,有效地突破教学重难点。
本节课在教学设计上给学生进行了复杂问题——简单化——发现规律——解决问题这一学法的指引。自主学习环节拘于教师少说,重点之处没有特别强调,过渡稍快;时控把握的不够好,没有大胆彻底放手让学生去说去做。
针对以上问题,以后的教学我要更加关注学生已有的知识经验,大胆放手让学生独立尝试,让更多学生参与课堂评价,给孩子足够时间去思考,这样才能充分的展现学生个性化的解题策略,我只需在关键之处加以疏通点拨,这样才能真正做到以生为本,让不同的学生在数学学习上有不同的发展。
第四篇:封闭图形的植树问题教学设计
知识目标:
1、建立环形植树“树的棵树=间隔数”的数学模型;能利用数学模型解决简单的实际问题。
2、学会画图来分析理解环形植树的问题,体会“一一对应”和“化繁为简”的思想方法。过程目标:在解决问题的过程中发现规律,应用模型,解决生活中的植树问题。
情感目标:通过不同植树情况的对比,建立联系,明确差异,培养学生具体问题具体分析的能力。
学情分析:
由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力小学五年级学生的思维仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的能力。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间 �力与计算能力。
教学重点:建立环形植树“树的棵树=间隔数”的数学模型 教学难点:综合运用所学方法灵活解决问题。
【导入】谈话导入
通过前几节课的学习,你们知道植树有哪些不同的情况了吗?其实,不管是两端都栽、两端不栽还是只栽一端,它们都属于线性植树,今天我们再来研究一种新的植树情况。(板书:封闭图形的植树问题)探究新知评论(0)
1、出示例题
师:请大家读题,说说这道题和前面学过的有什么不同。
生:前面学的都是在一条直的路上植树,这道题是在圆形池塘周围植树。
师:对,植树的路线不同,我们可以把前面学习的叫做线形植树,今天学习的在圆形周围植树就是在封闭曲线上植树中的一种——叫做环形植树。
2、独立试做
师:环形植树的间隔数和棵数又有什么关系呢?请同学们向前两节课那样先画一画、圈一圈、再算一算。
3、汇报交流,发现规律
师:谁来说说你是怎样做的?你发现了什么? 生1:我先把池塘周长看成30米,每隔10米载一棵,能栽3棵,有3个间隔,我发现棵数等于间隔数。
生2:我先把池塘周长看成40米,每隔10米载一棵,能栽4棵,有4个间隔,我发现棵数等于间隔数.......师: 刚才同学们说的非常好,我们一起结合图来看一看,不论把池塘的周长看成多少,有一个间隔总有一棵树和它对应,所以间隔数和植树的棵数是相等的。(板书:间隔数=棵数)
4、列式计算
师:经过研究,我们得到的结论是间隔数=植树棵数,现在你能解决这道题吗? 生汇报列式:用120除以10等于12个间隔,因为间隔数等于植树棵数,所以有12个间隔就相当于有12棵树。
5、分析比较
师:你觉得今天学习的环形植树和前边学习的哪种植树情况联系最紧密? 生:和前边学的只栽一端的情况一样,都是植树棵数等于间隔数。
学情分析评论(0)学生已经掌握直线上的植树问题,明确了两端植树:棵数=间隔数+1,间隔数= 棵数-1。一端植树一端不植树,棵数=间隔数。两端不植树:棵树=间隔数-1。在此基础上再来教学封闭图形上的植树问题,学生容易理解
第五篇:植树问题教学反思
植树问题教学反思
植树问题教学反思1
一、教学目标:
1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。
2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。
3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。
二、教学重点:理解植树问题棵树与间隔数之间的关系。
教学难点:会应用植树问题的模型灵活解决一些相关的实际问题。
三、教具准备:多媒体课件和未完成的表格。
四、教学过程:
课前准备:(多媒体放映牛顿和苹果的故事)
师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)
谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?
(一)、提出问题、引发思考、探究规律。
1、手引发的思考。
师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?
师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。
2、整体感知、确定研究方向。
课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?
展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)
理解:“间隔”、“间隔数”、“棵数”。
(二)、小组合作,探究规律
1、提出问题。
课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?
学生的猜测可能有不同的结果:1000;1001;1002)
2、自主探究。
棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。
课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。
引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?
让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。
3、发现规律。
学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。
师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?
课件动态演示:一个间隔对应一棵,这样一直对应下去, 1000个间隔就有1000棵,种完了吗?
师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的'方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。
4、总结归纳。
归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。
5、总结规律。
师:你们能用一个式子把规律表示出来吗?
【板书】间隔数+1=棵数 棵数-1=间隔数
6、联系生活
在我们生活中存在着很多类似植树问题的现象,你发现了吗?
让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。
(三)、点击生活
①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结( )
②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?
③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?
④ (求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?
(四)、拓展延伸。
(课件出示世界著名数学问题)
师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?
早在十六世纪,古希腊等国完成了十六行的排列。(出示图1)
十八世纪,美国数学大师山姆完成了十八行图谱。(出示图2)
进入二十世纪,数学爱好者绘制出了二十行图谱,创造了新纪录并保持至今。(出示图3)
(结语)今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!
植树问题教学反思2
植树问题”原本属于经典的奥数数学内容,新课程教材把它放在了四年级下册的“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的教学思维含量和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。从学生的思维特点看,三、四年级学生仍以形象思维为主,但抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题过程中,逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。
反思整个教学过程,我认为这节课在以下2个方面处理得比较好:
1、在探究过程中感受数学
课程标准特别强调:数学活动必须向学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作交流过程中获得广泛的数学活动经验。所以在本节课中,我先让学生自己动手画画需要种几棵树,然后在小组内交流总结发现规律。学生学到了解决问题的方法,并获得了更深层次的情感体验。
2、素材来源生活
在本节课的设计中,我注重数学与人类生活的密切联系。新授环节也是以日常所见的`种树问题引入,巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。
我感觉这节课的不足之处有以下几点:
1、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。
2、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。
通过这一次磨课,我期望能透过自己一点一滴的积累和改善,提高自己的业务水平。
植树问题教学反思3
植树问题是人教版第八册数学广角中的一个新内容。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。
教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,不仅仅使学生熟练解决与植树问题相类似的实际问题,还要借助内容的教学发展学生的思维,提高学生的思维能力。
反思整个教学过程,我认为我执教的这节课整体是成功的。
首先,设计流畅简单易懂。整节课设计基于我班学生实际情况,课前创设情境使学生明确要学习的内容,紧接着引出例题探讨植树问题。我改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。整节课条理清晰、层次分明、浅显易懂,始终围绕重点内容进行难点的.突破。
其次,注重实践体验探究。教学中,我创设了情境,向学生提供多次体验的机会,注重借助图形帮助学生理解知识。在教学过程中,我想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
这节课虽扎扎实实,但问题也存在着。
一、学生能够找到简单植树问题的规律“棵数=间隔数+1”,却无法运用这个规律求路长的问题。因为学生的认知起点与知识结构逻辑起点存在差异,以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。
二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。
由于植树问题的情况复杂,还要学生多加练习,巩固知识。
植树问题教学反思4
今天我们开始了本学期的最后一个单元《数学广角》的学习,本单元中只要学习的是有关植树问题的学习,植树问题对于小学阶段的学习是一个难度,基本上是将奥数的知识渗透进入了。为了能够让那个孩子们更好的理解,我今天只和孩子们研究了植树问题中的例1,一边两端栽的情况。现根据自己的教学情况和学生的学习情况,本节课的反思如下:
1、抽象思维不够灵活,比较匮乏。
在教学的时候刚开始给出了例题,让孩子读了题,然后进行分析,可是学生很茫然连题意都理解不了,这时自己也有些紧张了于是就给孩子恩滔滔不绝的讲了起来,可是“植树问题”来源于生活,我们学习他的目的最终也是回顾生活中为服务生活做准备,可是对于现在的孩子没有一点生活经验,对于这样的题型又不好用实验去表示,所以老师在丰富的语言和表达在这节课中也显得很无力的,学生听得仍然是一脸的茫然,教师也真是一脸的无奈呀!所以针对的.这样的情况,我用图示给孩子们进行了一遍又一遍的演示和讲解,终于“功夫不负有心人”,孩子们有了一定的理解,我很高兴啊!
2、知识的迁移存在很大的欠缺。
在例题中给出的是“植树的问题”理解了,可是在练习的时候把植树问题变成了“要求插红旗、安路灯、安电线杆”的题就不会做了,不知道应该如何下手了,就不会于例题联系起来了,通过这节课的学习也充分看出来了学生对知识的类比能力的欠缺。这也是自己比较忽略的一点。
3、学生不会举一反三的应用。
在一道题中给出全长、间隔长让学生求棵树,绝大多数学生能够勉强的求出,可是,变化一下,给出间隔长、棵树,要求全长就不会了,感觉很困难了,眼神一下子就变得很茫然了。可以看出学生对于知识的迁移了变化很欠缺,分析能力比价弱。
总之,针对以上存在的问题,在接下来的课中,重点引导学生的对问题的分析能力的加强,训练他们分析问题的思维能力和想象能力。然后,通过不同类型的题,加强学生对“植树问题”的理解,做到出来题能够想到是那种类型,应该用那种方法。
植树问题教学反思5
植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的一个新内容。教学中,首先要让学生区分出植树问题的三种类型。即所谓的“两端都种”“只种一端”(包括封闭图形)与“两端都不种” 的三种情况。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”,要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。
其次,要教给学生解题的方法。不管什么植树问题,一般都是先求出有几个间隔。可以根据“路的长度÷间隔长度=间隔数”然后再根据植树问题的三种类型(“两端都种”“只种一端”(包括封闭图形)与“两端都不种”)去求出棵树。也可以根数告诉的棵树,用“加一”“不加不减”“减一”求出间隔数,再求出路的总长。
其三,要让学生学会联系生活。把生活中的问题转化成植树问题。可以让学生找一找生活中的 “植树问题”,很多同学联想到:公路两旁的路灯、公路中的.斑马线、楼梯的台阶、栏杆的铁柱等都含有与“植树问题”相同的数量关系。亚奥让他们学会分析是植树问题中的哪种类型。然后可以利用“植树问题”的规律来解决它。课堂中可以结合教学内容,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,达到了理想的课堂教学效果。
植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的一个新内容。教学中,首先要让学生区分出植树问题的三种类型。即所谓的“两端都种”“只种一端”(包括封闭图形)与“两端都不种” 的三种情况。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”,要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。
其次,要教给学生解题的方法。不管什么植树问题,一般都是先求出有几个间隔。可以根据“路的长度÷间隔长度=间隔数”然后再根据植树问题的三种类型(“两端都种”“只种一端”(包括封闭图形)与“两端都不种”)去求出棵树。也可以根数告诉的棵树,用“加一”“不加不减”“减一”求出间隔数,再求出路的总长。
其三,要让学生学会联系生活。把生活中的问题转化成植树问题。可以让学生找一找生活中的 “植树问题”,很多同学联想到:公路两旁的路灯、公路中的斑马线、楼梯的台阶、栏杆的铁柱等都含有与“植树问题”相同的数量关系。亚奥让他们学会分析是植树问题中的哪种类型。然后可以利用“植树问题”的规律来解决它。课堂中可以结合教学内容,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,达到了理想的课堂教学效果。
植树问题教学反思6
《植树问题》是人教版新课程标准五年级上册“数学广角”的内容,这一单元主要内容就是植树问题,植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。
这样就把植树问题分成了三种情况,即:
(1)两端都种:植树的棵数=间隔数+1
(2)只种一端:植树的棵数=间隔数
(3)两端都不种:植树的棵数=间隔数—1。
在教学中,我注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既有趣味性又贴近学生的生活。
本节课的主要目标是向学生渗透复杂问题从简单入手和一一对应的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的方法,以此为基础,根据学生的认知规律。
我设计了以下几个环节:
一、通过课前活动,以植树为素材,从让学生初步认识间隔,感知间隔数与棵树的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。
因此,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生可以画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的.关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。
但是我感觉在本节课的教学活动中还有不足的地方:
其一,在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。
其二,条理不够清晰,简直成了教师在唱独角戏,学生参与面不广,没有很好地完成教学任务。
在今后的教学中我还要全面、深入的了解学生,充分做好多个方面的准备。
植树问题教学反思7
《植树问题》一课蕴含了许多数学思想方法,但对这些数学方法的挖掘和处理可谓“仁者见仁,智者见智”。我觉得这一课的数学思想方法主要是“化繁为简”或者说是从简单入手寻找规律,而这种方法在北师大版教材中体现得淋漓尽致,而在人教版教材的编排上可谓“若隐若现”,因此我觉得我们使用人教版教材的课堂,应该充分挖掘教材教给学生这种解决问题的.策略。
课堂教学中我安排了三个层次的探究活动,从实物操作到画线段图到类比推理,有效地突出了解决问题策略的重要性和多样性。学生在课堂上也领略到数学智慧的夺目光彩,增强了学生学习数学的兴趣和信心。通过本课的设计和实践,我更迫切地感受到数学思想和方法在学生学习和生活中的重要性,因此对数学思想和方法在课堂中落实的研究迫在眉睫。这也是当前数学课堂中存在的重要缺失,身为教研员更为向广大教师传播数学思想和方法的重要性,并提出渗透数学思想,教给学生数学方法的有效措施。
本课中为了突显解决问题策略的多样化和完整性,我把教材中原本安排两课时完成的内容缩成一课时。而且在这一课时我把教学重点放在学生解决问题策略的学习、理解上,因此对于本课的知识点的处理上略显不足。
植树问题教学反思8
《植树问题》是人教版新课程标准实验教材五年级上册“数学广角”的内容,曾经被演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点:任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都栽”“只栽一端”与“两端都不栽”。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结&rdq
uo;的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。同时在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
通过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,可分为两个不同的教学目标:
一、明确引出“间隔数”与“棵数”这两者的关系,突出“一一对应”的思想,并以此为基础分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,使学生真正理解棵数与间隔数的关系。
二、总结出相关的计算公式“总长÷间距=间隔数”,并通过公式帮助学生更好地去掌握这一解题模式。
反思整个教学过程,我认为这节课在以下几个方面还是处理得比较好:
1、这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。
2、我注重教学内容的整体处理,对教材进行了整合和重构,设计的例题是一个开放性的题目,开放性的设计,使课堂成为充满活力的自由空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动,让学生比较系统地认识到在直线上植树有三种情况,即两端都栽;两端都不栽;只栽一端。
3、植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的'过程中,通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,举起右手比划比划,分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情况下,棵数与间隔数的关系。
4、学生列式计算出三种栽法的棵数后,我引导学生思考:这三种情况,我们在列式计算棵数时,第一步都是先求什么,怎样求?通过学生的小组讨论后得出:要求棵数,得先求间隔数,并清楚地总结出相关的计算公式“总长÷间距=间隔数”,通过公式帮助学生更好地去掌握这一解题模式。
5、注意反映数学与人类生活的密切联系。巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
我感觉这节课的不足之处有以下几点:
1、数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,本节课没有让学生体验到“复杂问题简单化”的解题过程。
2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。
3、对课堂的生成问题处理还不够灵活,不能进行很好的利用。
在今后的教学中,希望能通过自己一点一滴的积累和改进,提高自己的业务水平和调控、处理课堂生成的能力,在不久的将来,能看到更棒的自己。
植树问题教学反思9
一、教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。
二、教材目标:
1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。
2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。
3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。
三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。
四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。
五、教学准备:学习单、多媒体课件、小树和小路模型。
六、教学过程:
(一) 问题导入:
出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?
教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”
(二)探究新知:
1.队列问题:
出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的.关系,再次对应“间隔数+1”
并出示课题。
2.植树问题:
(1)体会“化繁为简”思想:
问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?
突出矛盾:数字太大,不易思考,引导学生转换较小的数。
明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)
(2)设计三种植树方案:
引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。
①学生活动,教师巡视。
②汇报、展示:
③小结:组织学生对不同方案进行命名,突出其主要特征。
教师板书:两端都种、只种一端、两端不种
(3)探究规律:
①求间隔数:
教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。
在没有植树的棵数时,探究间隔数与全长、间隔的关系。
组织学生独立思考,借助学具、线段图等形式探究规律
a:学生思考并摆学具或画线段或列算式。
b:汇报:
②探究间隔数与棵数的关系:
开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?
小组合作完成探究,活动要求:
1)自己选择适合的间隔长度,四人小组合作完成记录表。
2)小组选择一种植树方式进行探究。
3)可以借助摆学具、画线段、数手指或列算式的方式。
a:学生小组活动,教师巡视。
b:学生汇报发现规律,教师板书。
c:升华:
三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。
d:应用:
老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?
(三)巩固提升:
1.选一选:
下面每一题相当植树问题的哪一种情况?
(1)音乐中的“五线谱”( )
(2)衣服上的纽扣( )
(3)成语“一刀两断”
(4)自鸣钟九点报时的钟声( )
A.两端都种 ; B.只种一端; C.两端不种。
2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:
(1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )
(2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )
4.学校一条大路的一边共插了20面彩旗。
(1)如果使两面彩旗中间放一盆花,一共要放多少盆花?
(2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?
(四)课堂总结:
师:今天我们学习了什么?你有什么收获?
生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。
教学反思:
通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。
植树问题教学反思10
这节课中我教学的是植树问题中的一种情况,即两端植树问题。反思这节课,我是有喜也有忧。喜的是学生学习比较投入,气氛比较活跃,大多数发言积极,悲的是学生的学习效果没有达到我预期的目标,中等以上的学生掌握的很轻松,但基础较差的学生掌握的不太好,还没真正达到学以致用目的。
为了让学生积极主动地投入到数学活动中,我创设与学生的生活环境和知识背景密切相关的学生感兴趣的学习情境。我选择猜谜语的方式,接着以学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,首次清晰地看出手指的个数与空格数之间是相差1的。然后让他们观察教室里那里有间隔,最后举出生活中那里存在间隔,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在看,听,画之后初步感受了间隔和棵数之间的关系。这一系列的创设使学生体会到,只要处处留心用数学的眼光去观察宽阔的生活情境,就能发现在平常事件中蕴涵的数学规律。
学生在分组合作寻找规律的时候表现的很轻松。在学生的积极性调动起来后,便出示生活中的植树问题,让学生分组自主解决,在这个环节中,我让学生自主选择自己喜欢的.方法解决问题。学生通过自己动手画线段、摆跳棋,完成我给出的表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生积极性。在此基础上,我适时的提出要同学们帮忙解决一个问题,这样既培养了学生的数学应用意识,又让学生感受到数学与生活的密切联系。植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等等,在学生从具体生活中抽象出数学现象后,又再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活,使学生深深地体会到数学的价值与魅力。整节课,大多数学生的思维表现的很活跃。
但这节课也有我颇感不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数也段数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为有一部分学生知道了全长和间距不会求段数,我以为这是学生早已经学过的而且经常用到的,所以没特别的复习,导致了基础较差的学生无法下手。其二在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。
植树问题教学反思11
《植树问题》是新人教版小学五年级数学上册数学广角的内容。本节课是第一课时,是植树问题中比较简单的情况。教学目标和教学重点都是引导学生发现两端都栽时,棵数比间隔数多1,渗透化繁为简、一一对应的数学思想。教学难点是理解这一规律。
为了突出重点,探究新知环节,我分了五个层次进行:第一个层次,同桌合作,模拟在20米的小路一旁植树的过程,思考棵数与什么有关;第二个层次,独立操作,模拟在25米的小路一旁植树的过程,感知棵数与间隔数的关系;第三个层次,根据前两次的经验,不操作,画线段图,探究在30米的小路一旁植树的情况,验证棵数与间隔数的关系;第四个层次,想象在35米的小路一旁植树,计算出要栽多少棵;第五个层次,观察比较,找出四个题目中的相同点。通过五个层次的教学,学生不难发现“间隔数+1=棵数”这一规律,同时渗透“化繁为简”这一重要数学方法。突破“理解这个规律”这一难点时,我提示:“植树问题能不能也看成是两种物体的`一一间隔排列呢?”。
在老师的引导下,学生思考后,自己说出用分组的方法,把每组中两种量一一对应起来。接着,老师因势利导,学生发现如果一组一组的分,正好分完,则数量相等;如果有剩余,则数量就是相差1,帮助学生理解间隔数+1=棵数。从学生学习状态、课堂交流来看,达到了本节课的目标,实现本节课的预期目的。
本节课的还有很多足之处:
1、学生回答问题不准确,甚至出错,我觉得是老师组织语言不严密,问题的指向性模糊,备学生不太充分等多方面的原因造成的。学生有时一脸茫然,有时不知所措。
2、课堂条理还需改进,有遗漏的环节,有强调不足的情况,也有不必要重复的话语。
3、因担心时间超时,在教学过程中,不予理睬学生的答非所问,而急于得到只符合老师想要的答案。
有遗憾的课才是真实的课,才是更有价值的课。我会以每节课为起点,在需要努力的方面下功夫,需要改进的地方多揣摩,从一点一滴做起,使自己的课堂日趋完美,上得精彩,少留遗憾。
植树问题教学反思12
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。
然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。
因此,在教学过程中,我注重了对数形结合意识的渗透。生活情景图引入后出示实例图示,引导学生在观察、点数形象图形后进行填表,发现两端植树时棵树与间隔数之间的关系!当学生对实物图有了清晰的认识后,教师将形象的。图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。在电脑演示中学生直观的.体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。
四、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如校园内花盆的摆设,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的。
植树问题教学反思13
“植树问题”是人教版四年级下册第八单元的内容,本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生发现一些规律,抽取出其中的数学模型,然后在用发现的规律来解决生活中的简单实际问题。
本单元的植树问题分为三种类型:两端都栽、两端不栽、在一条首尾相接的封闭曲线上植树。我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单情境入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。反思整个教学过程,我认为我执教的这节课整体是成功的。
第一、预习安排得比较巧妙。从学生熟悉的手指切入,理解什么叫间隔,手指数与间隔数的关系,转化为树与间隔数的关系,得出:棵树=间隔数+1。
第二、教学环节设计由浅入深。在学习完例题后的'检测中我先设计了一个和例题基本一样的题型(课本下面的做一做)让学生练习,这道题告诉我们的信息是“2的街道两旁路灯,每个50安一盏”问题是“一共安装多少盏”它一方面检测学生对刚学习的知识是否掌握,另一方面检测学生是否认真审题。另外设计了一个求棵树的变式练习,在最后的拓展环节中又设计了一个求间隔数的练习题,整个环节给人一种稳步高升的感觉。充分体现了数学的由浅入深、由易到难的思想。
再次,学生学习的积极性较高。本节课学生预习较充分,对新知有了一定的认识,学习起来相对容易些,比如再找棵数与间隔数之间的关系时,一方面有了预习题的基础,再加上充分的预习,学生很快就得出了他们之间的关系,所以很快解决了检测的题,留下的遗憾就是学生审题不认真,只注意到了单位的不统一,没有注意“两旁”一次,方法对了,缺少了一半。后来的练习在提醒学生认真审题后,学生的积极性更高,争先恐后要求上台展示。
这节课虽不错,但问题也存在着。
一、学生在展示时语言表达不够完整。在说思路时总说半截话,需要教师的提醒在说完整,导致说的解题思路不够清晰,因此在今后学生手思路时要求学生按顺序;第一步、第二步、第三步......,一步一步来说。
二、在拓展训练中引导不到位。求路长,实际还是先求“间隔数”,没让学生弄明白。
三、总结规律时本人在复述时叙述不完整,没有强调“两端都栽”这个前提条件。这也说明,本人在语言叙述中也存在问题,也折射出本人数学思维的不严密,也导致学生的课堂语言出现问题。这也是本人应该深思的,更应该改进的。
植树问题教学反思14
《植树问题》是四下第八单元“数学广角”中的内容,这个单元主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些实际问题,让学生发现规律,然后再用发现的规律解决生活中的一些实际问题。植树问题分为两端都栽、两端都不栽、一端栽一端不栽三种情况。本节课我教学的是植树问题中的第一种情况,即两端都栽的问题。反思整个教学过程,我认为有以下几点做得比较好:
一、关注学生的学习起点
学生是数学学习的主人,教师作为学生学习的组织者、引导者与合作者,应及时关注学生学习的起点。在教学过程中,我通过对五指的手指个数与手指缝之间关系的探究,在直观形象的手指演示中让学生初步感知棵数与间隔数的关系。本课伊始,我首先出了个谜语:“一棵树,五个叉,不长叶子不长花,能写能做还会画,就是不会开口讲讲话。”随后让学生观察自己的手指,引导学生得出:五个手指有4个间隔,4个手指有3个间隔,3个手指有2个间隔,2个手指有1个间隔。使学生清楚地看出手指的个数与间隔数之间是相差1的。接下来又通过做快速问答的游戏,使学生加深认识了植树问题中间隔数和棵数的关系,为下面的学习做了铺垫,同时学生的学习兴趣也被激发了起来。由此可见,我们在教学中一定要关注学生的学习起点,放低起点,这样才会收到事半功倍的效果。
二、注重学生的自主探索
学生通过自己动手画图,很快就发现了其中蕴含的规律。展示环节,我让展示小组的学生利用展示台给大家展示,学生指着自己画的线段图边讲解边说,让其他同学清楚地看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。改变间距后,段数和棵数相应也发生了变化。
通过自学,小组交流,小组展示,学生很容易的得出了在两端栽的情况下棵数与间隔数之间的关系是:总长÷间距=间隔数,棵数=间隔数+1。整个学习过程都是学生自主探索的结果。学生把整个分析、思考、解决问题的过程全部自己展示了出来。在这一过程中,学生积极思考,大胆尝试,主动探索,也体验到了成功的喜悦和学习的乐趣。
三、关注植树问题模型的拓展和应用
规律总结出来了,我并没有就此罢手,而是让学生找生活中的类似现象,使学生认识到生活中的许多事例看上去跟植树问题毫不相干,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,如计算公共汽车从起点站到终点站所行的距离及爬楼梯问题。求路边的电线杆、排座位、在路两旁安装路灯、插彩旗等等,目的是让他们利用所学植树问题的知识来解决生活中的数学问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值。
四、渗透数形结合的思想,培养学生借助图形解决问题的意识
数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。本着这个思想我在让学生理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的`能力。练习环节,我还设计了我们平时熟悉的钟声,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在听、画之后初步感受了间隔数和棵数之间的关系。同时,通过画图,降低了此题的难度。再如:在解决锯木头问题时,通过成语“一刀两断”引出“一刀两段”,结合线段图,清楚地使学生理解间隔数总是比端点数少,使用数形结合的方法,在增加学生学习兴趣的同时,植树中棵树和间隔数之间的关系便迎刃而解。
存在问题:
这节课也有不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数—1,路长=间隔数×间隔长”等知识的扩散。
植树问题教学反思15
5月2日,我有幸参加了县教研室举办的“小学数学教学能手评选——课堂教学展示”。欣赏了同行智慧、高效的课堂教学,聆听了名师、专家精彩独特的点评,感触多多、收获多多!自己课讲完了,有一些轻松,但也有深深的遗憾!
我所执教的是四年级下册“数学广角”第117页内容,教学两端都栽的植树问题。主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会数学就在身边,体验到数学的魅力。因此,我在教学中设计了“形成猜想——化繁为简——合作交流——发现规律——梳理方法——应用规律”的教学流程,意在让学生经历“猜想——验证——建立数学模型——应用”这一过程。反思本课教学过程,我觉得以下几个方面做得比较成功:
一、重情境创设,让学生亲近数学
讲授新知时,利用猜谜语“手”导入,孩子很感兴趣。在手指并拢、张开的活动中,引入“间隔”“、间隔数”;感知手指数与间隔数的关系;并通过课件展示一些生活中的间隔,让学生体会不同的事物或现象之间存在着相同的数学本质,从而提炼出“植树问题”的生活原型,让学生感受到生活中处处洋溢数学信息。
二、重自主探索,让学生体验数学
如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解就是学生建构知识的一根拐杖。在突破本课重点部分,我用课件演示“一棵一棵的种树”,使学生认识到:一棵一棵的种,一直要种到100米,太麻烦、太浪费时间?就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路程,动手画线段图、完成表格,寻找规律。学生在操作和交流中,经历了直观、感知、观察、发现的全过程,很快地找到了“间隔数”与“全长和间距”之间的关系、“间隔数”与“棵数”之间的关系。孩子们的动手能力、合作能力、实践精神都得到了一定的培养。
三、重生活应用,让学生实践数学
植树问题的模型在现实中有着广泛的应用价值,为了让学生理解这一建模的意义,我出示了生活中的一些植树问题。如:“路灯的安装”,让学生自主完成巳知总长和间距,
求路灯的座数。又如:“跨栏”,出示图片,学生从中找到间隔数,并用间隔数乘以间距求出全长。学生从正反两个方面出发,应用模型解决实际问题,孩子们在实践数学的过程中,巩固了所学知识,更感悟到数学学习的价值所在!
这节课虽扎扎实实,但问题也存在着:
一、练习设计缺乏趣味性
题型设置太过单一(应用题),可挑选些填空题、选择题,让孩子们进行智力闯关,从而体验作业也是一种快乐。
第二题可改为“公共汽车站台”的事件,这样会和主题“生活中的植树问题”更为贴近。
二、细节的处理不够到位
1.要善于鼓励。轻松愉悦的课堂离不开学生的积极投入,更离不开老师由衷的鼓励。课堂中,我惦记着教学任务,也放不开自己,没能经常鼓励、赞美学生,好孩子可是夸出来的呀!
2.要懂得微笑。上课时,我应多一些微笑,让四(1)班的孩子都感到我是喜欢他们的`,这样有助于拉近我们师生间的距离,让他们更具安全感,营造一个更为和谐的课堂氛围!
3.要前呼后应。教学例1时,我先让学生猜一猜需要多少棵树,之后动手画图验证猜想,但忽略了反馈:“谁的猜想正确呢?” 、“为什么?”这样的话既为下面的学习作了铺垫,又能激起学生的学习兴趣!
4.要面向全体。课堂中,要使每一个学生获得参与的机会,不能扶得太牢。如:“巩固练习”部分,可采取学生介绍解题思路、批改同伴作业、生生互评等形式,给他们足够的空间展示自己,增强自信心、荣誉感,使他们更加热爱数学!
记得一位名人曾说过:“平庸的老师传递知识;水平一般的老师理解知识;好的老师演示知识;伟大的老师激励学生学习知识。”我明确肩上的重任,定将掌握课标、更新观念,本着“勤学、善思、实干”的准则,在课堂教学中减少缺点,慢慢地增多优点与亮点,让自己的数学教学充满学问!充满魅力!