物联网智慧农业沙盘教学演示模型实训系统—微分电子

时间:2019-05-15 02:51:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《物联网智慧农业沙盘教学演示模型实训系统—微分电子》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《物联网智慧农业沙盘教学演示模型实训系统—微分电子》。

第一篇:物联网智慧农业沙盘教学演示模型实训系统—微分电子

智慧农业沙盘实训系统Welcome To Microsec

智慧城市服务专家 物联网安全创造者

一、系统简介

智能农业沙盘演示系统分为智能农业、水利灌溉两个部分。智能农业系统

通过采集温度数据信息、湿度数据信息、二氧化碳、光照、土壤湿度等数据信息,通过无线网(433MHz)传送给嵌入式智能网关,嵌入式网关通过有线网络或移动网络(GPRS、3G)传给后台,通过屏幕显示农业生产环境数据信息,并进行分析处理,控制风扇、喷水阀、灯、数码管等设备的工作状态。在产品设计上充分利用Cortex-A8开发板的资源和PC电脑,包括丰富的中断源、IO控制,快速准确的实现传感器信息采集、无线通信、继电器控制等功能。

水利灌溉系统

通过采集水库水位、闸门开启状态、水速、土壤湿度等数据信息,通过无线网(433MHz)传送给嵌入式智能网关,嵌入式网关通过有线网络或移动网络(GPRS、3G)传给后台,通过屏幕显示水利、水文数据信息,并进行分析处理,控制闸门开启、泵机开启等设备的工作状态。在产品设计上充分利用Cortex-A8开发板的资源和PC电脑,包括丰富的中断源、IO控制,快速准确的实现传感器信息采集、无线通信、继电器控制等功能。

智能农业沙盘演示系统在远程控制方面采用嵌入式系统平台,可实现信息读写、设备控制、无线通讯等多种功能;支持多种传感器,结构化设计。Cortex-A8嵌入式平台、单片机以及物联网ZigBee、433MHz技术的融合,可以让学生从实际生活中感受物联网的应用,并通过实践快速学习嵌入式、无线通讯、单片机等技术,对物联网这个庞大的系统做一个亲身的感受,以便以后的物联网开发。

二、系统构架

三、系统软件

.......实时数据查询; 历史数据记录绘制; 大棚内温湿度自动调节; 大棚土壤湿度自动调节; 大棚光照强度自动调节; 水库水位自动控制; 多终端客户端。

四、开发套件

为更好的满足学校师生教学及实验的需求,微分电子根据现实实际情况,开发并提供“实训系统”相关的开发套件。利用此类套件,不但能使更多的学生参与的到实验中去,还能在“沙盘实训系统”之外,自由组合各个套件进行课程实验和其他各种创新型实验,提高学生的学习兴趣和创造激情。

主要硬件包括:

物联网网关、ZIGBEE模块、排风设备、滴灌设备、光照设备、LED补光灯、控温设备、卷帘设备、各种传感器(土壤温湿度传感器、土壤电导率传感器、土壤水分传感器、水温传感器、PH值传感器、流量传感器、水位传感器、风速风向传感器、雨量传感器、大气压力传感器、光照传感器、烟雾传感器、火焰传感器、一氧化碳传感器、二氧化碳传感器)等。

五、其他服务

微分电子可根据客户需求提供实训系统硬件、软件二次开发源代码、分解例程、实训手册等资料,方便师生在实训系统的基础上进行二次开发。

第二篇:物联网智能家居沙盘,模型,展会,学校,教学

下面是物联网智能沙盘的方案介绍:

本方案如上图所示,由尺寸60*60*55CM的别墅模型作为依托,外观精美、档次高档,模型内嵌入了现在家庭中都会用到的电视、电灯、空调、窗帘、安防、报警、车库、门等,保留所有实际功能,即缩小版的家庭别墅。各个之间用手机或电脑就可以进行远程控制。提供通信协议,让学生,自己发送简单指令达到自己想要的效果,及数据反馈。本产品更适用于展示智能家居的概念。

1.尺寸:60*60*55CM

2.功能:电视、空调、路灯、室内灯、电动窗帘、电动平移门、电动车库门、红外、报警等。

利用手机、电脑可以控制电视机、空调的开关、调试等;路灯、室内灯的开关;窗帘的开关;电动门的开关;车库门的开关;人体红外报警等。

3.用手机对全宅进行控制(直观体验快速响应,零延时); 4.窗帘、门、红外、可燃气体、室内温度与报警器的联动,5.预留第三方兼容接口,有RS232、485、开关量、模拟量、红外等,可以自己动手加入监控、门铃、背景音乐等

6.拓展模块zigbee区域,方便于教学,采用可拆卸式zigbee区域,zigbee采用最新的德州仪器CC2530方案,此芯片的优点就不必说了吧。温度传感器、湿度传感器、光敏传感器、可燃气体传感器、红外传感器、继电器执行器等采用20针,可任意插拔,方便老师教学讲解。

拓展Zigbee区域功能:监控室内外温湿度值、光照值;厨房可燃气体监控、排风,人体红外报警等(需要电脑支持)。

物联网沙盘套件特点和优势:

1、安全性:系统各节点及控制设备低压供电和电池供电,专注可靠性设计,机械装置固定牢固沙盘布局科学合理。

2、稳定性:硬件高可靠性设计,通讯模块使用专业仪器测试,软件程序性能优化和运行可靠。

3、便捷性:节点可移动,灵活拆分,灵活组装,连线设计方便快捷,传感器和控制系统操作便捷,学生学习,体验,实验方便快捷。

4、美观性:沙盘设计有专业设计师设计,美观大方,软件代码优化。

5、技术先进性:沙盘包含多个物联网技术环节,在物联网技术积累的经验,确保系统先进性。

6、良好的用户体验:沙盘套件和组装而成的各种沙盘可以帮助学生了解物联网架构组成和实景观察各种应用,学生通过该沙盘来学习物联网应用系统使用和设置、多种传感器的使用、无线传感网络组网技术等将会获得完美的用户体验。

第三篇:基于物联网的智慧农业系统的设计

物联网综合应用实践课程设计

题 目: 基于物联网的智慧农业系统的设计 院(系): 计算机与通信学院 专业年级: 11级物联网1班 姓 名:

郭盛功

学 号: 112801012 指导教师: 马维俊

摘要..................................................................................................................................................3 1 绪论.............................................................................................................................................4

1.1 农业物联网技术.............................................................................................................4

1.1.1 农业物联网产生背景.........................................................................................4 1.2 物联网技术在农业种植环境中的应用.........................................................................5

1.2.1 物联网技术实现农业种植环境的智能化管理.................................................5 1.2.2 物联网技术实现农产品质量安全有效监管.....................................................5 基本原理.....................................................................................................................................6

2.1硬件方面............................................................................................................................6

2.1.1芯片SHT10介绍....................................................................................................6 2.1.2 CC2530介绍..........................................................................................................7 2.2 软件方面.........................................................................................................................9

2.2.1 ZigBee技术..........................................................................................................9 2.2.2 ZigBee特点........................................................................................................11 2.2.3 ZigBee协议栈结构..........................................................................................12 2.2.4 无线传感器网络...............................................................................................15 3 农业物联网种植环境监控系统设计.......................................................................................17 3.1 农业物联网种植环境监控系统关键技术...................................................................17 3.2 农业物联网种植环境监控系统建构...........................................................................17 3.3农业种植监控系统构建..................................................................................................18 3.3.1 系统硬件构建...................................................................................................18 3.3.2 系统软件构建...................................................................................................18 3.3.3 编码...................................................................................................................20 四 总结...........................................................................................................................................22 五 参考文献...................................................................................................................................23 六 致谢信.......................................................................................................................................24

基于物联网的智慧农业系统设计

摘要

智慧农业是农业生产的高级阶段,是集新兴的互联网、移动互联、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。

基于Zigbee技术的智慧农业解决方案,成本低廉,是一般人都能负担的价格;控制更简单,让每一位刚接触的人都能轻松使用;功耗更低、组网更方便、网络更健壮,给您带来高科技的全新感受。您的温室大棚规模越大,基于Zigbee技术的智慧农业解决方案在使用中,要准确及时地操控所有设备,最值得关注的应该就是网络信号的稳定性。鉴于温室大棚的网络覆盖区域比较广泛,我们贴心为您呈现物联无线组网!智慧农业能有效连接物联Internet通信网关和超出物联Internet通信网关有效控制区域的其它Zigbee网络设备,实现中继组网,扩大覆盖区域,并传输网关的控制命令到相关网络设备,达到预期传输和控制的效果。基于先进的Zigbee技术,物联无线中继器无需接入网线,就可自行中继组网,扩散网络信号,让您的网络灵活顺畅运行,保障您的所有设备正常运行。主要采集温湿度,从而控制农植物的水分和光照。

关键词:Zigbee,CC2530,智慧农业,云计算,物联网绪论

农业是关系着国计民生的基础产业,我国传统农业在向现代农业发展中面临着确保农产品总量、调整农业产业结构、改善农产品品质和质量,改善生产效益低下、资源严重不足且利用率低、环境污染等问题而不能适应农业持续发展的需要。因此,关于农业物联网技术的研究势在必行。物联网是以感知为目的的,实现人与人、人与物、物与物全面互联的网络。物联网可以很好地应用到诸多领域,农业即是其中之一。

文章在农业物联网的背景下,设计了农业中最为关键的种植环境智能化检测系统,一方面对其中的关键技术种植检测硬件系统和软件系统进行设计,主要包括农业物联网监管系列传感器,无线传感器网络通过模块采集温湿度光照登信息,经由无线收发模块传输数据,通过后台管理实现对环境信息的远程控制,随时进行调整和处理,实现对环境信息的远程控制。另一方面是设计了农业物联网下种植环境监控平台。文章旨在设计出基于物联网技术的农业种植环境监控系统,能够极大地推进高现代农业的自动化、智能化水平,降低资源占有率,提高农产品的生产效率及产品的质量。

1.1 农业物联网技术

1.1.1 农业物联网产生背景

农业信息技术是我国现代农业科技的重要内容,大力推进“信息化与农业现代化融合”是我国现代农业发展方向。“农业物联网”即利用物联网技术,即通过相应的智能传感器设备实时监控农业种植环境,并将各个相应的数据通过数据采集设备,经过无线网络系统传送到信息控制中心,进而对农业种植环境进行调节,智能控制农作物健康生长所需环境如温度、湿度以及光照、土壤温度、含水量,及时灌溉系统。实现农业种植综合生态信息的自动检测,对环境进行自动监控。1.2 物联网技术在农业种植环境中的应用

1.2.1 物联网技术实现农业种植环境的智能化管理

通过在农业种植系统中安装相应的只能控制系统,实现对整农作物种植环境中各个参数的实时监控,及时掌握农作物生长环境的一些参数,并根据参数变化适时调控来掌控农作物最佳的生长环境,将生物信息获取方法应用于无线传感器节点,为温室精准调控提供科学依据。

1.2.2 物联网技术实现农产品质量安全有效监管

农业物联网技术能够通过广泛采用电子标识、条形码、传感器网络、物联网中间件和网络平台技术等关键技术,实现产品从生产、储运、交易信息的透明化和实时监控,从而实现农产品从农田到餐桌的全程可管可控,农产品质量安全有效地监管。基本原理

本实验将使用CC2530读取温湿度传感器SHT10的温度和湿度数据,并通过CC2530内部的ADC得到光照传感器的数据。最后将采样到的数据转换然后在LCD上显示。其中对温湿度的读取是利用CC2530的I/O(P1.0和P1.1)模拟一个类IIC的过程。对光照的采集使用内部的AIN0通道。

2.1硬件方面

2.1.1芯片SHT10介绍

SHT10 是一款高度集成的温湿度传感器芯片,提供全标定的数字输出。它采用专利的CMOSens 技术,确保产品具有极高的可靠性与卓越的长期稳定性。传感器包括一个电容性聚合体测湿敏感元件、一个用能隙材料制成的测温元件,并在同一芯片上,与 14 位的 A/D 转换器以及串行接口电路实现无缝连接。SHT10 引脚特性如下:

1.VDD,GND SHT10 的供电电压为 2.4~5.5V。传感器上电后,要等待 11ms 以越过“休眠”状态。在此期间无需发送任何指令。电源引脚(VDD,GND)之间可增加一个 100nF 的电容,用以去耦滤波。

2.SCK 用于微处理器与 SHT10 之间的通讯同步。由于接口包含了完全静态逻辑,因而不存在最小 SCK 频率。

3.DATA 三态门用于数据的读取。DATA 在 SCK 时钟下降沿之后改变状态,并仅在 SCK 时钟上升沿有效。数据传输期间,在 SCK 时钟高电平时,DATA 必须保持稳定。为避免信号冲突,微处理器应驱动 DATA 在低电平。需要一个外部的上拉电阻(例如:10kΩ)将信号提拉至高电平。上拉电阻通常已包含在微处理器的 I/O 电路中。

向 SHT10 发送命令:

用一组“ 启动传输”时序,来表示数据传输的初始化。它包括:当 SCK 时钟高电平时DATA 翻转为低电平,紧接着 SCK 变为低电平,随后是在 SCK 时钟高电平时 DATA 翻转为高电平。后续命令包含三个地址位(目前只支持“000”,和五个命令位。SHT10 会以下述方)式表示已正确地接收到指令:在第 8 个 SCK 时钟的下降沿之后,将 DATA 拉为低电平(ACK位)。在第 9 个 SCK 时钟的下降沿之后,释放 DATA(恢复高电平)。

测量时序(RH 和 T):

发布一组测量命令(‘00000101’表示相对湿度 RH,‘00000011’表示温度 T)后,控制器要等待测量结束。这个过程需要大约 11/55/210ms,分别对应 8/12/14bit 测量。确切的时间随内部晶振速度,最多有±15%变化。SHTxx 通过下拉 DATA 至低电平并进入空闲模式,表示测量的结束。控制器在再次触发 SCK 时钟前,必须等待这个“数据备妥”信号来读出数据。检测数据可以先被存储,这样控制器可以继续执行其它任务在需要时再读出数据。接着传输 2 个字节的测量数据和 1 个字节的 CRC 奇偶校验。需要通过下拉 DATA 为低电平,uC以确认每个字节。所有的数据从 MSB 开始,右值有效(例如:对于 12bit 数据,从第 5 个SCK 时钟起算作 MSB; 而对于 8bit 数据,首字节则无意义)。用 CRC 数据的确认位,表明通讯结束。如果不使用 CRC-8 校验,控制器可以在测量值 LSB 后,通过保持确认位 ack 高电平,来中止通讯。在测量和通讯结束后,SHTxx 自动转入休眠模式。通讯复位时序:

如果与 SHTxx 通讯中断,下列信号时序可以复位串口:当 DATA 保持高电平时,触发SCK 时钟 9 次或更多。在下一次指令前,发送一个“传输启动”时序。这些时序只复位串口,状态寄存器内容仍然保留。2.1.2 CC2530介绍

CC2530 是基于2.4-GHz IEEE802.15.4、ZigBee 和RF4CE 上的一个片上系统解决方案。其特点是以极低的总材料成本建立较为强大的网络节点。CC2530 芯片结合了RF 收发器,增强型8051 CPU,系统内可编程闪存,8-KB RAM 和许多其他模块的强大的功能。如今CC2530 主要有四种不同的闪存版本:CC2530F32/64/128/256,分别具有32/64/128/256KB 的闪存。其具有多种运行模式,使得它能满足超低功耗系统的要求。同时CC2530运行模式之间的转换时间很短,使其进一步降低能源消耗。

CC2530包括了1个高性能的2.4 GHz DSSS(直接序列扩频)射频收发器核心和1个8051控制器,它具有32/64/128 kB可选择的编程闪存和8 kB的RAM,还包括ADC、定时器、睡眠模式定时器、上电复位电路、掉电检测电路和21个可编程I/O引脚,这样很容易实现通信模块的小型化。CC2530是一款功耗相当低的单片机,功耗模式3下电流消耗仅0.2μA,在32 k晶体时钟下运行,电流消耗小于1μA。

CC2530芯片使用直接正交上变频发送数据。基带信号的同相分量和正交分量由DAC转换成模拟信号,经过低通滤波,变频到所设定的信道上。当需要发送数据时,先将要发送的数据写入128B的发送缓存中,包头是通过硬件产生的。最后经过低通滤波器和上变频的混频后,将射频信号被调制到2.4GHz,后经天线发送出去。CC2530有两个端口分别为TX/RX,RF端口不需要外部的收发开关,芯片内部已集成了收发开关。

CC2530的存储器ST-M25PE16是4线的SPI通信模式的FLASH,可以整块擦除,最大可以存储2M个字节。工作电压为2.7v到3.6v。

CC2530温度传感器模块反向F型天线采用TI公司公布的2.4GHz倒F型天线设计。天线的最大增益为+3.3dB,天线面积为25.7×7.5mm。该天线完全能够满足CC2530工作频段的要求(CC2530工作频段为2.400GHz~2.480GHz)。

图1.CC2530芯片引脚

CC2530芯片引脚功能

AVDD1 28 电源(模拟)2-V–3.6-V 模拟电源连接 AVDD2 27 电源(模拟)2-V–3.6-V 模拟电源连接 AVDD3 24 电源(模拟)2-V–3.6-V 模拟电源连接 AVDD4 29 电源(模拟)2-V–3.6-V 模拟电源连接 AVDD5 21 电源(模拟)2-V–3.6-V 模拟电源连接 AVDD6 31 电源(模拟)2-V–3.6-V 模拟电源连接

DCOUPL 40 电源(数字)1.8V 数字电源去耦。不使用外部电路供应。DVDD1 39 电源(数字)2-V–3.6-V 数字电源连接 DVDD2 10 电源(数字)2-V–3.6-V 数字电源连接 GND-接地 接地衬垫必须连接到一个坚固的接地面。GND 1,2,3,4 未使用的连接到GND P0_0 19 数字I/O 端口0.0 P0_1 18 数字I/O 端口0.1 P0_2 17 数字I/O 端口0.2 P0_3 16 数字I/O 端口0.3 P0_4 15 数字I/O 端口0.4 P0_5 14 数字I/O 端口0.5 P0_6 13 数字I/O 端口0.6 P0_7 12 数字I/O 端口0.7 P1_0 11 数字I/O 端口1.0-20-mA 驱动能力 P1_1 9 数字I/O 端口1.1-20-mA 驱动能力 P1_2 8 数字I/O 端口1.2 P1_3 7 数字I/O 端口1.3 P1_4 6 数字I/O 端口1.4 P1_5 5 数字I/O 端口1.5 P1_6 38 数字I/O 端口1.6 P1_7 37 数字I/O 端口1.7 P2_0 36 数字I/O 端口2.0 P2_1 35 数字I/O 端口2.1 P2_2 34 数字I/O 端口2.2 P2_3 33 数字I/O 模拟端口2.3/32.768 kHz XOSC P2_4 32 数字I/O 模拟端口2.4/32.768 kHz XOSC RBIAS 30 模拟I/O 参考电流的外部精密偏置电阻 RESET_N 20 数字输入 复位,活动到低电平RF_N 26 RF I/O RX 期间负RF 输入信号到LNA RF_P 25 RF I/O RX 期间正RF 输入信号到LNA XOSC_Q1 22 模拟I/O 32-MHz 晶振引脚1或外部时钟输入 XOSC_Q2 23 模拟I/O 32-MHz 晶振引脚2 2.2 软件方面

2.2.1 ZigBee技术

蜜蜂在发现花丛后会通过一种特殊的肢体语言来告知同伴新发现的食物源位置等信息,这种肢体语言就是ZigZag行舞蹈,是蜜蜂之间一种简单传达信息的方式。借此意义Zigbee作为新一代无线通讯技术的命名。在此之前ZigBee也被称为“HomeRF Lite”、“RF-EasyLink”或“fireFly”无线电技术,统称为ZigBee。

简单的说,ZigBee是一种高可靠的无线数传网络,类似于CDMA和GSM网络。ZigBee数传模块类似于移动网络基站。通讯距离从标准的75m到几百米、几公里,并且支持无限扩展。

ZigBee是一个由可多到65000个无线数传模块组成的一个无线数传网络平台,在整个网络范围内,每一个ZigBee网络数传模块之间可以相互通信,每个网络节点间的距离可以从标准的75m无限扩展。

与移动通信的CDMA网或GSM网不同的是,ZigBee网络主要是为工业现场自动化控制数据传输而建立,因而,它必须具有简单,使用方便,工作可靠,价格低的特点。而移动通信网主要是为语音通信而建立,每个基站价值一般都在百万元人民币以上,而每个ZigBee“基站”却不到1000元人民币。每个ZigBee网络节点不仅本身可以作为监控对象,例如其所连接的传感器直接进行数据采集和监控,还可以自动中转别的网络节点传过来的数据资料。除此之外,每一个ZigBee网络节点(FFD)还可在自己信号覆盖的范围内,和多个不承担网络信息中转任务的孤立的子节点(RFD)无线连接。

ZigBee技术是一种具有统一技术标准的短距离无线通信技术,其物理层和数据链路层协议为IEEE 802.15.4协议标准,网络层和安全层由ZigBee联盟制定,应用层的开发应用根据用户的应用需要,对其进行开发利用,因此该技术能够为用户提供机动、灵活的组网方式。

根据IEEE 802.15.4协议标准,ZigBee的工作频段分为3个频段,这3个工作频段相距较大,而且在各频段上的信道数据不同,因而,在该项技术标准中,各频段上的调制方式和传输速率不同。它们分别为 868MHz,915MHz和2.4GHz,其中2.4GHz频段上分为16个信道,该频段为全球通用的工业、科学、医学(indus-trial,scientific and medical,ISM)频段,该频段为免付费、免申请的无线电频段,在该频段上,数据传输速率为 250Kb/s;另外两个频段为915/868MHz,其相应的信道个数分别为10个和1个,传输速率分别为40Kb/s和ZOKb/s,868MHz和 915MHz无线电使用直接序列扩频技术和二进制相移键控(BPSK)调制技术。2.4GHz无线电使用DSSS和偏移正交相移键控(O-QPSK)。

在组网性能上,ZigBee可以构造为星形网络或者点对点对等网络,在每一个ZigBee组成的无线网络中,连接地址码分为16b短地址或者64b长地址,可容纳的最大设各个数分别为216和264个,具有较大的网络容量。在无线通信技术上,采用CSMA-CA方式,有效地避免了无线电载波之间的冲突,此外,为保证传输数据的可靠性,建立了完整的应答通信协议。

ZigBee设备为低功耗设各,其发射输出为 0~3.6dBm,通信距离为30~70m,具有能量检测和链路质量指示能力,根据这些检测结果,设各可以自动调整设各的发射功率,在保证通信链路质量的条件下,最小地消耗设各能量。

为保证ZigBee设备之间通信数据的安全保密性,ZigBee技术采用了密钥长度为128位的加密算法,对所传输的数据信息进行加密处理。

2.2.2 ZigBee特点

ZigBee技术则致力于提供一种廉价的固定、便携或者移动设各使用的极低复杂度、成本和功耗的低速率无线通信技术。这种无线通信技术具有如下特点:

(1)数据传输速率低

只有10~250Kb/s,专注于低传输速率应用。无线传感器网络不传输语音、视频之类的大数据量的采集数据,仅仅传输一些采集到的温度、湿度之类的简单数据。

(2)功耗低

工作模式情况下,ZigBee技术传输速率低,传输数据量很小,因此信号的收发时间很短,其次在非工作模式时,ZigBee节点处于休眠模式,耗电量仅仅只有1μW。设各搜索时延一般为 30ms,休眠激活时延为15ms,活动设备信道接人时延为15ms。由于工作时间较短、收发信息功耗较低且采用了休眠模式,使得ZigBee设各非常省电,ZigBee节点的电池工作时间可以长达6个月到2年左右。同时,由于电池时间取决于很多因素,例如电池种类、容量和应用场合,ZigBee技术在协议上对电池使用也作了优化。对于典型应用,碱性电池可以使用数年,对于某些工作时间和总时间(工作时间+休眠时间)之比小于t%的情况,电池的寿命甚至可以超过1年。(3)数据传输可靠

ZigBee的介质链路层(以MAC层)采用CSMA-CA碰撞避免机制。在这种完全确认的数据传输机制下,当有数据传送需求时则立刻传送,发送的每个数据包都必须等待接收方的确认信息,并进行确认信息回复,若没有得到确认信息的回复就表示发生了碰撞,将再传一次,采用这种方法可以提高系统信息传输的可靠性。同时为需要固定带宽的通信业务预留了专用时隙,避免了发送数据时的竟争和冲突。同时ZigBee针对时延敏感的应用做了优化,通信时延和休眠状态激活的时延都非常短。(4)网络容量大

ZigBee的低速率、低功耗和短距离传输的特点使它非常适宜支持简单器件。ZigBee定义了两种器件:全功能器件(FFD)和简化功能器件(RFD)。网络协调器(coordinator)是一种全功能器件,而网络节点通常为简化功能器件。如果通过网络协调器组建无线传感器网络,整个网络最多可以支持超过65 000个ZigBee网络节点,再加上各个网络协调器可互相连接,整个ZigBee网络节点的数目将十分可观。

(5)自动动态组网、自主路由

无线传感器网络是动态变化的,无论是节点的能量耗尽,或者节点被敌人俘获,都能使节点退出网络,而且网络的使用者也希望能在需要的时候向已有的网络中加人新的传感器节点。(6)兼容性

ZigBee技术与现有的控制网络标准无缝集成。通过网络协调器自动建立网络,采用CSMA-CA方式进行信道接入。为了可靠传递,还提供全握手协议。

(7)安全性

ZigBee提供了数据完整性检查和鉴权功能,在数据传输中提供了三级安全性。第一级实际是无安全方式,对于某种应用,如果安全并不重要或者上层已经提供足够的安全保护,器件就可以选择这种方式来转移数据。对于第二级安全级别,器件可以使用接人控制清单(ACL)来防止非法器仵获取数据。

在这一级不采取加密措施。第三级安全级别在数据转移中采用属于高级加密标准(AES)的对称密码。AES可以用来保护数据净荷和防止攻击者冒充合法器件。

(8)实现成本低

模块的初始成本估计在6美元左右,很快就能降到1.5~2.5美元,且ZigBee协议免专利费用。无线传感器网络中可以具有成千上万的节点,如果不能严格地控制节点的成本,那么网络的规模必将受到严重的制约,从而将严重地制约无线传感器网络的强大功能。2.2.3 ZigBee协议栈结构

ZigBee技术的协议栈结构很简单,不像诸如蓝牙和其他网络结构,这些网络结构通常分为7层,而ZigBee技术仅分为4层。

在ZigBee技术中,PHY层和 MAC层采用IEEE 802.15.4协议标准,其中,PHY层提供了两种类型的服务:即通过物理层管理实体接口对PHY层数据和PHY层管理提供服务。PHY层数据服务可以通过无线物理信道发送和接收物理层协议数据单元来实现。

PHY层的特征是启动和关闭无线收发器,能量监测,链路质量,信道选择,清除信道评估,以及通过物理介质对数据包进行发送和接收。同样,MAC层也提供了两种类型的服务:通过MAC层管理实体服务接人点向MAC层数据和MAC层管理提供服务。MAC层数据服务可以通过PHY层数据服务发送和接收MAC层协议数据单元。

MAC层的具体特征是:信标管理,信道接入,时隙管理,发送确认帧,发送连接及断开连接请求。除此以外,MAC层为应用合适的安全机制提供一些方法。

ZigBee技术的网络/安全层主要用于ZigBee的WPAN的组网连接、数据管理以及网络安全等;应用层主要为ZigBee技术的实际应用提供一些应用框架模型等,以便对ZigBee技术进行开发应用。

图2 ZigBee协议栈结构图

1.物理层

物理层由半双工的无线收发器及其接口组成,主要作用是激活和关闭射频收发器;检测信道的能量;显示收到数据包的链路质量;空闲信道评估;选择信道频率;数据的接受和发送。

2.媒体访问控制层

媒体访问控制(MAC)层建立了一条节点和与其相邻的节点之间可靠的数据传输链路,共享传输媒体,提高通信效率。在协调器的MAC层,可以产生网络信标,同步网络信标;支持ZigBee设备的关联和取消关联;支持设备加密;在信道访问方面,采用CSMA/CA信道退避算法,减少了碰撞概率;确保时隙分配(GTS);支持信标使能和非信标使能两种数据传输模式,为两个对等的MAC实体提供可靠连接。

3.网络层

网络层负责拓扑结构的建立和维护网络连接,主要功能包括设备连接和断开网络时所采用的机制,以及在帧信息传输过程中所采用的安全性机制。此外,还包括设备的路由发现和路由维护和转交。并且,网络层完成对一跳(one—hop)邻居设备的发现和相关结点信息的存储。一个ZigBee协调器创建一个新网络,为新加入的设备分配短地址等。并且,网络层还提供一些必要的函数,确保ZigBee的MAC层正常工作,并且为应用层提供合适的服务接口。

网络层要求能够很好地完成在IEEE 802.15.4标准中MAC子层所定义的功能,同时,又要为应用层提供适当的服务接口。为了与应用层进行更好的通信,网络层中定义了两种服务实体来实现必要的功能。这两个服务实体是数据服务实体(NLDE)和管理服务实体(NLME)。网络层的NLDE通过数据服务实体服务访问点(NLDE—SAP)来提供数据传输服务,NLME通过管理服务实体服务访问点(NLME—SAP)来提供管理服务。NLME可以利用NLDE来激活它的管理工作,它还具有对网络层信息数据库(NIB)进行维护的功能。在这个图中直观地给出了网络层所提供的实体和服务接口等。

NLDE提供的数据服务允许在处于同一应用网络中的两个或多个设备之间传输应用协议数据单元(APDU)。NLDE提供的服务有:产生网络协议数据单元(NPDU)和选择通信路由。选择通信路由,在通信中,NLDE要发送一个NPDU到一个合适的设备,这个设备可能是通信的终点也可能只是通信链路中的一个点。NLME需提供一个管理服务以允许一个应用来与协议栈操作进行交互。NLME需要提供以下服务:①配置一个新的设备(configuring a new device)。具有充分配置所需操作栈的能力。配置选项包括:ZigBee协调器的开始操作,加入一个现有的网络等。

4.应用层

应用层包括三部分:应用支持子层(APS)、ZigBee设备对象(ZDO)和应用框架(AF)。应用支持子层的任务是提取网络层的信息并将信息发送到运行在节点上的不同应用端点。应用支持子层维护了一个绑定表,可以定义、增加或移除组信息;完成64位长地址(IEEE地址)与16位短地址(网络地址)一对一映射;实现传输数据的分割与重组;应用支持子层连接网络层和应用层,是它们之间的接口。这个接口由两个服务实体提供:APS数据实体(APSDE)和APS管理实体(APSME)。APS数据实体为网络中的节点提供数据传输服务,它会拆分和重组大于最大荷载量的数据包。APS管理实体提供安全服务,节点绑定,建立和移除组地址,负责64位IEEE地址与16位网络地址的地址映射[4]。

ZigBee设备对象负责设备的所有管理工作,包括设定该设备在网络中的角色(协调器、路由器或终端设备),发现网络中的设备,确定这些设备能提供的功能,发起或响应绑定请求,完成设备之间建立安全的关联等。用户在开发ZigBee产品时,需要在ZigBee协议栈的AF上附加应用端点,调用ZDO功能以发现网络上的其他设备和服务,管理绑定、安全和其他网络设置。ZDO是一个特殊的应用对象,它驻留在每一个ZigBee节点上,其端点编号固定为0。

AF应用框架是应用层与APS层的接口。它负责发送和接收数据,并为接收到的数据寻找相应的目的端点。2.2.4 无线传感器网络

WSN是wireless sensor network的简称,即无线传感器网络。

无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给观察者。传感器、感知对象和观察者构成了无线传感器网络的三个要素。

微机电系统(Micro-Electro-Mechanism System,MEMS)、片上系统(SOC,System on Chip)、无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks,WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳自组织网络。

很多人都认为,这项技术的重要性可与因特网相媲美:正如因特网使得计算机能够访问各种数字信息而可以不管其保存在什么地方,传感器网络将能扩展人们与现实世界进行远程交互的能力。它甚至被人称为一种全新类型的计算机系统,这就是因为它区别于过去硬件的可到处散布的特点以及集体分析能力。然而从很多方面来说,现在的无线传感器网络就如同远在1970年的因特网,那时因特网仅仅连接了不到200所大学和军事实验室,并且研究者还在试验各种通讯协议和寻址方案。而现在,大多数传感器网络只连接了不到100个节点,更多的节点以及通讯线路会使其变得十分复杂难缠而无法正常工作。另外一个原因是单个传感器节点的价格目前还并不低廉,而且电池寿命在最好的情况下也只能维持几个月。不过这些问题并不是不可逾越的,一些无线传感器网络的产品已经上市,并且具备引人入胜的功能的新产品也会在几年之内出现。

无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。基于MEMS的微传感技术和无线联网技术为无线传感器网络赋予了广阔的应用前景。这些潜在的应用领域可以归纳为:军事、航空、反恐、防爆、救灾、环境、医疗、保健、家居、工业、商业等领域。

农业物联网种植环境监控系统设计

3.1 农业物联网种植环境监控系统关键技术

物联网技术应用在农业种植环境监控系统控制中,关键技术为一下两部分:意识感知层的进行无线数据感知与采集,而是通过网络传输层远程智能化控制对采集到的数据通过计算机分析,控制农作物生长所需的空气、温度、水分等,进而实现精准农业。

3.2 农业物联网种植环境监控系统建构

基于物联网技术的农业种植环境监控系统如

图3 基于物联网技术的农业种植环境监控系统框图

基于物联网技术的农业种植监控系统核心包括以下几部分:

感知层:数据感知与采集,实现种植环境中的土壤湿度、空气温度湿度、光照及自动灌溉系统的实时感知的试纸传送到ZigBee协调器节点上;

应用层:该系统负责对采集的数据进行存储、信息处理和控制指令的下达,为用户提供分析 决策依据,用户可随时随地提供电脑灯终端进行查询。3.3农业种植监控系统构建

3.3.1 系统硬件构建

1)无线节点模块:ZigBee是基于IEEE802.11.4协议的一簇展集,主要针对于低成本、低功耗的射频应用一部分是网关协调器及传感节点; 2)传感及控制模块:温度传感器、湿度传感器、光照强度传感器; 3)电源板:提供无线节点模块和传感控制模块连接,同时为系统供电。农业种植环境监控系统硬件构建如图2所示。

图4 农业种植环境监控系统硬件构建

在以上设计的硬件系统中,以MCU为控制中心,电池模块对系统供电和连接,传感及控制模块对种植环境进行实施检测采集数据,通过ZigBee无线网络进行数据和信息并比对标准生长环境参数,各个硬件模块经由无线收发模块传输数据,实现对环境信息的远程控制。3.3.2 系统软件构建

系统的软件设计工作主要有:传感器节点程序设计如3所示,ZigBee协议栈程序设计如图4所示。

图5 传感器节点程序设计

图6 网络协调器软件流程图

3.3.3 编码

void main(){ int wendu;int shidu;char s[16];UINT8 adc0_value[2];float shuzi = 0;SET_MAIN_CLOCK_SOURCE(CRYSTAL);// 设置系统时钟源为 32MHz 晶体振荡器

GUI_Init();// GUI 初始化

GUI_SetColor(1,0);// 显示色为亮点,背景色为暗点

GUI_PutString5_7(25,6,“OURS-CC2530”);//显示 OURS-CC2530 GUI_PutString5_7(10,22,“Temp:”);GUI_PutString5_7(10,35,“Humi:”);GUI_PutString5_7(10,48,“Light:”);LCM_Refresh();while(1){ th_read(&tem,&hum);//从采集模块读取温度和湿度的数据

sprintf(s,(char*)“%d%d C”,((INT16)((int)tempera / 10)),((INT16)((int)tempera % 10)));//将采集的温度结果转换为字符串格式

GUI_PutString5_7(48,22,(char *)s);//显示采集的温湿度的结果

LCM_Refresh();sprintf(s,(char*)“%d%d %%”,((INT16)((int)humidity / 10)),((INT16)((int)humidity % 10)));//将采集的湿度结果转换为字符串的格式

GUI_PutString5_7(48,35,(char *)s);//显示采集结果 LCM_Refresh();

四 总结

本次为期两周的课程设计中,主要目的是设计一个基于物联网的农业种植环境温湿度数据采集系统。该系统是一个采用CC2530无线单片机进行温湿度的数据采集,并且结合Zigbee协议架构进行编程的设计,主要是基于CC2530的温湿度数据采集系统模块的设计,并在IAR集成环境开发环境中进行基于Zigbee架构的编程,节点模块的调试,最后,实现无线传感网络的构建。在基于Zigbee无线传感器节点模块上,可以实现数据的实时采集,处理以及传输等功能。

本设计可以实现在谷仓内的温湿度检测,工厂厂房内不同区域的温湿度控制以及大面积的温室培养等功能。

本次课程设计的完成,让我结道,在以后的工作中,还可以继续从以下几个方面着手,进行研究和改进:

1、减少节点的能量消耗。在无线传感网络中某个节点失效,不会导致整个网络瘫痪,减少节点的能量消耗是不可避免要面对的问题之一。

2、减少路由发现过程中的开销。这其实也是减少节点的能量消耗的一种措施,尽量减少在路由发现过程中所损失的能量。

3、路由选择。路由优化选择可以尽量避免不必要的路由请求的广播以及信息传输,做到这一点不仅可以提高效率,也可以在减少能量消耗方面做出贡献。

五 参考文献

[1] 孙利民 《无线传感器网络》.清华大学出版社.2005.[2] 张拓.无线多点温度采集系统的设计.武汉:武汉理工大学,2009.[3] 陈旭.基于zigbee的可移动温度采集系统.武汉:武汉科技大学,2009 [3] 雷纯 《基于ZigBee 的多点温度采集系统设计与实现》.自动化技术与应用.2010,29(2)43~47.[5] 王翠茹 《基于ZigBee技术的温度采集传输系统》.仪表技术与传感器.2008.No.7.103~105.[6] 景军锋《基于ZigBee 技术的无线温度采集系统》.微型机与应用.2009.No.23.33~35.[7] 《Zigbee协议栈中文说明》.[8] 《IAR使用指南》.周立功单片机有限公司.[9] 《Zigbee技术实用手册》.西安达泰电子.[10] 《IAR 安装与使用》.成都无线龙通讯科技有限公司.六 致谢信

这次课程设计,给我留下了很深的印象。虽然只是短暂的两周,但在这期间,却让我受益匪浅。

通过这次课程设计,使我物联网应用系统有了全面的认识,对课本的知识又有了深刻的理解,在之前物联网应用系统的学习以及完成课后的作业的过程中,对其有了一些基础的了解和认识。本次经过两周的课程设计,让我对物联网应用系统有了更深的理解,我把课上的理论知识运用到实际中去,让我更近一步地巩固了课堂上所学的理论知识,并能很好地理解与掌握物联网应用系统中的基本概念、基本原理、基本分析方法。

总的来说,通过这次课程设计使我了解了物联网应用系统的设计原理,设计步骤等方面有了了解。提高了分析和实践能力。同时我相信,进一步加强对物联网应用系统的学习与研究对我今后的学习将会起到很大的帮助!

在此要特别感谢我的指导老师的指导与督促,同时感谢他的谅解与包容。求学历程是艰苦的,但又是快乐的。

第四篇:物联网在智慧农业系统中的应用

物联网在智慧农业系统中的应用

摘要:介绍了物联网及智慧农业系统的内涵,结合农业智能化生产的实际情况设计了智慧农业物联网架构,主要包括物联网感知层、物联网网络层和物联网应用层。同时,通过农产品疾病识别与治理系统,具体研究了物联网在智慧农业中的应用。

关键词:智慧农业系统;物联网;架构;疾病识别 0引言

我国是农业大国,传统农业在国际市场上的优势主要依赖于丰富的自然资源和低廉的劳动力成本。随着物联网等高新技术的发展,我国传统农业正在加快向现代农业转型,而智慧农业将成为现代农业未来发展的趋势。要建设智慧农业,就要依托物联网等先进的科学技术,大力推进农业科技创新,研究多功能、智能化、能推动农业生产力发展的农业科技成果,并及时地将科技成果转化为农业生产所需的技术产品,应用于农业生产的整个过程。

托普物联网指出:智慧农业系统是将全球定位系统、遥感、地理信息系统、人工智能等高新技术用于对农作物精确的管理方法。这种定位技术用于农业生产,主要是针对农田因土壤构成、肥力状况、作物生长情况等因素的差异而对种籽、化肥、除草剂和杀虫剂施用量提出的不同要求。在目前情况下,农民一般难以顾及这些因素,在同一地区不同条块的农田上使用等量的种籽和农用化学品,这除了用量过多而造成经济上的浪费之外,还导致了土壤中残余化学物质的积累和地下水资源的污染。物联网

物联网(The Intemet of Things,简称IOT)的概念是在1999年提出的,2005年国际电信联盟(ITu)发布的n’U互联网报告,对物联网做了如下定义:通过二维码识读设备、射频识别(RFID)装置、红外感应器、全球定位系统和激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络¨J。自2009年8月温家宝总理到中国科学院无锡高新微纳传感网工程技术研发中心(国家传感网工程中心、无锡物联网产业研究院)考察时提到“尽快建立中国的传感信息中心或者叫‘感知中国’中心”以来,物联网被正式列为我国5大新兴战略性产业之一。

物联网的体系结构如图1所示。它可分为3层:感知层、网络层和应用层。感知层相当于人体的皮肤和五官,主要用于识别物体,采集信息包括二维码标签和识读器、RFID标签和读写器、摄像头、传感器及传感器网络等。网络层相当于人体的神经中枢和大脑,主要用于信息传递和处理,包括通信与互联网的融合网络、物联网管理中心、物联网信息中心和智能处理中心等。应用层相当于人的社会分工,与行业需求结合,实现广泛智能化,是物联网与行业专用技术的深度融合旧。目前,物联网技术已经在智慧农业、智慧城市、智慧家居、智慧医疗、智慧交通和智慧物流等领域得到了广泛的应用。智慧农业

智慧农业是最近兴起的一个概念,目前国内外还没有一个公认的定义。中国农业大学李道亮教授认为:智慧农业是以最高效率地利用各种农业资源,最大限度地降低农业成本和能耗、减少农业生态环境破坏以及实现农业系统的整体最优为目标,以农业全产业、全过程智能化的泛在化为特征,以全面感知、可靠传输和智能处理等物联网技术为支撑和手段,以自动化生产、最优化控制、智能化管理、系统化物流和电子化交易为主要生产方式的高产、高效、低耗、优质、生态和安全的一种现代农业发展模式与形态13]。中国农业科学院周国民研究员认为:智慧农业是充分利用信息技术,包括更透彻的感知技术、更广泛的互联互通技术和更深入的智能化技术,使得农业系统的运转更加有效、更加智慧,以使农业系统达到农产品竞争力强、农业可持续发展、农业资源有效利用和环境保护的目标。

智慧农业系统主要内容包括:

1)通过各种无线传感器实时采集农业生产现场的温湿度、光照、CO:浓度等参数,利用视频监 控设备获取农作物的生长状况等信息,远程监控农业生产环境,同时将采集的参数和获取的信息进行数字化转换和汇总后,经传输网络实时上传到相关农业智能管理系统中;系统按照农作物生长的各项指标要求,精确地遥控农业设施自动开启或者关闭(如远程控制节水浇灌、节能增氧等),实现智能化的农业生产。

2)利用RFID电子标签,搭建农产品安全溯源系统,加强农业生产、加工、运输到销售等全流程数据共享与透明管理,实现农产品全流程安全溯源,促进农产品的品牌建设,提升农产品的附加值。

3)组建无线传感器网络,开发智能农业应用系统,对空气、土壤、作物生长状态等数据进行实时采集和分析,系统规划农业产业园分布、合理选配农作物品种、在线疾病识别和治理、科学指导生态轮作。在未来的现代农业生产过程中,智慧农业的应用将更加广泛,农户将选择合适的农业生产智能化系统,以提高农产品产量,增加收益。

3智慧农业系统物联网架构

通常情况下,应用于智慧农业系统的物联网架构,可以按物联网感知层、物联网网络层和物联网应用层3个层次来设计,如图2所示。

1)物联网感知层主要由常见的传感器、RFID设备、视频监控设备等数据采集设备组成,实现将数据采集设备获取到的数据通过ZigBee节点、CAN节点等通讯模块传送至物联网智能网关,做到现场数据信息实时检测与采集。此外,上层应用系统下发的控制命令,通过物联网智能网关传送到继电器控制设备,远程控制农业设施的开关(如智能浇灌等),实现农业生产环境的改善。

2)物联网网络层通过LAN,WLAN,CDMA和3G等的相互融合,实现现场数据信息和上层控制命令实时准确地传输与交互。

3)物联网应用层主要包括农业生产环境管理、农业生产过程管理、农业疾病识别与治理等农业应用系统,实现对由物联网感知层采集的海量数据进行分析和处理,以及对农业生产现场的智能化控制与管理。同时,为合理生产提供决策支持。

4智慧农业物联网应用案例

农产品疾病识别与治理系统已成为推动农业经济可持续发展的重要动力和保障农民收入的必要手段,本文以农产品疾病识别与治理系统为例,阐述物联网在智慧农业中的应用。系统结构如图3所示。

1)在联网感知层采用智能化传感器和视频监控设备,建立农业生产现场监控网络,采集现场农作物生长环境数据(如日照、温湿度等)和农作物生长状态图像数据,并通过ZigBee节点、WiFi节点、485节点等传送到物联网智能网关,对数据进行汇总和处理后,自动将数据上传到物联网网络层。

2)物联网网络层通过LAN,WLAN,CDMA和3G等的相互融合,将获取的数据信息传输到物联网的应用层。

3)在物联网应用层建设标准化的农产品病虫害数据库和远程专家诊断中心,将现场采集的数据信息与农产品病虫害数据库中的数据进行比对分析,从而识别出农作物的病虫害信息;对于一些不能通过比对数据库来识别的病虫害,则可以通过远程专家诊断中心进行诊断,精确地确定农作物的疾病,并给出最合理的治理决策。此外,通过病虫害预警,利用相关途径(如手机短信息等)向农户传递即将可能发生的病虫害信息,提醒农户进行及时的防治。同时,利用公共信息展示平台(如电子大屏等)实时显示农作物的相关信息,如生长环境的状况、生长状态、可能出现的病虫害和防治方法等信息,供农户进行参考。

5前景展望

物联网的发展为加快实现我国农业智慧化提供了前所未有的机遇,也必将深刻影响现代农业的未来。现阶段,我国在运用物联网来加快智慧农业的发展已经具备了一定的技术和产业化基础。但是,在智慧农业物联网关键技术和标准体系等方面仍存在着一些问题,解决这些问题需要政府、企业、科研部门及各个行业的共同努力。可以预见,在不久的将来,物联网必将会给农业领域带来革命性的变化。

参考文献:

[1]朱仲英.传感网与物联网的进展与趋势[J].微型电脑应用,2010(1):1—3. [2]石军.“感知中国”促进中国物联网加速发展[J].通信管理与技术,2009(5):1—3. [3]李道亮.物联网与智慧农业[J].农业工程,2012(1):1—7. [4]周国民.浅议智慧农业[J].农业网络信息,2009(10):5—7.

[5]徐丹.“智慧农业”路在何方[J].中国高新技术企业,2012(2):96—98.

[6]刘春红,张漫,张帆,等.基于无线传感器网络的智慧农业信息平台开发[J].中国农业大学学报,2011,16(5):151—156.

[7] 大唐电信.大唐电信智慧农业物联网解决方案[J].通信世界,2011(16):10.

[8]卢闯,彭秀媛,宣锴,等.物联网在设施农业中的应用研究[J].农业网络信息,2011(9):10—13.

第五篇:智慧物流沙盘实训系统

智慧物流沙盘实训系统Welcome To Microsec 智慧城市服务专家 物联网安全创造者

一、物流沙盘系统设计

本次设计主要通过沙盘模型展示物流的概念、设备、运作流程,甚至相关的信息流和资金流,具体点就是用物流过程中的各类运输工具,以及海陆空中用到的港口、车站、机场、仓储等相关硬件设施,搭配上层软件,浅显直白的展示出物流的整个运作流程。

二、场景定义

始发地→火车→港口物流集散中心→轮船→港口物流中心→汽车→航空物流中心→飞机→物流集散地→汽车→目的地

三、开发功能

1、实现的六个场景

沙盘共有六个场景的建筑群,树立六个标签牌,每一个场景放置一个RFID读卡器,六个场景的流通路线用箭头指示。

2、硬件实现功能

n张卡片表示n个货物;

货车内安装RFID卡,分别经过每一个场景,将每一个场景的的信息录入,同时从卡片内读出先前所有场景的信息。智慧物流沙盘实训系统Welcome To Microsec 智慧城市服务专家 物联网安全创造者

3、上层软件

实现功能一切从简,上层软件相当于一个总后台,实施监控物品流通的地点以及相关信息,并提供物品查询功能,模仿顺丰物流信息查询系统。

物品信息:物品名称、单号、地点、到达时间、快递员姓名、联系方式等。

下载物联网智慧农业沙盘教学演示模型实训系统—微分电子word格式文档
下载物联网智慧农业沙盘教学演示模型实训系统—微分电子.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐