第一篇:第八章模具管理与检测技术
本文由cdled008贡献
doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
课程教案
授课时间 第 周 第 节课 年 月)实践课(√))
课次 课时 安排 3 4+2 授课方式 理论课(√)讨论课()其 他((请打√)习题课(授课题目(教学章、节或主题): §8 模具管理与检测技术
教学目的、要求(分掌握、熟悉、了解三个层次): 目的要求:掌握模具管理的意义、管理流程及管理的实施过程。教学内容重点及难点: 重点:掌握模具管理的意义、管理流程及管理的实施过程。难点:三坐标测量仪的操作。教 具 作业 思考题 课后小结 熟悉掌握模具管理的意义、管理流程及管理的实施过程。多媒体
教 学 基 本 内 容
方法及手段
ξ8.1 模具的生产过程
一、模具标准化的意义 模具是机械工业的基础装备,随着机械工业的发展,模具工业也 得到相应的发展。模具标准化是模具生产技术发展到一定水平的产物,是 一项综合性技术工作和管理工作,它涉及到模具设计、制造、材料、检验 和使用的各个环节。同时模具标准化工作又对模具行业的发展起到促进作 用,是模具专业化生产、专门化生产和采用现代技术装备的基础。模具标准化的意义主要体现以下几个方面:(1)模具标准化是模具现代化生产的基础(2)模具标准化的贯彻执行提高了模具技术经济指标(3)模具标准化是开展模具 CAD/CAM 工作的先决条件(4)模具标准化工作为促进国际技术交流创造了条件
二、我国模具标准简介(1)冲模标准 ①《冲模术语》(GB 8845—88)冲模术语国家标准包括各种冲 压模具的名称、冲模零件名称、冲模设计术语、圆凸模和圆凹模结构要素 的规定和定义。②《冷冲模》(GB 285l~2875—1990)这是冷冲模的综合性国 家标准,包括冷冲模模架标准、零部件标准和典型组合标准三部分。③《冲模模架》(GB/2851.3~2861.6-1990)包括对角、中间、后侧和四导柱滑(滚)动模架及零件的结构型式、规格和技术条件。④《冲模模架精度检查》(GB/T 12447-90)本标准规定了冲模滑(滚)动模架及零件精度和精度检查方法及精度检查时必须使用的测量器 具,本标准与《冲模模架》国家标准配合使用。⑤还有《冲模用钢板模架及技术条件》《精冲模模架及技术、条件》 精冲模零件及技术条件》 12mm 槽系组合冲模》 冲模技术条件》、《、《、《、《冲模用圆凸模圆凹模》和《冲模常用材料及热处理规范》。(2)塑料模标准 ①《塑料成型模具术语》(GB 8846-1990),本标准规定了塑 料成型模具中的压缩模和注射模的模具、零件和设计中用到的主要术语和 定义。②《塑料注射模具零件》(GB 4159-1990)、《塑料注射模具零件技 术条件》(GB 4017—1990),规定了注射量为 10-4000g 注射机用模具的 11 种零件。有些零件也可用于压缩模和压注模。③《塑料注射模具技术条件》(GB/T12554-90)本标准规 定了注射模零件技术要求、总装配技术要求等内容,它适用于热塑性塑料 和热固性塑料注射模。④塑料模模架 包括《中小型塑料注射模模架及技术条件》(GB/T12556-90)和《大型塑料注射模模架及技术条件》(GB/T12555-90)两个国家标堆,分别规定了周界尺寸 500mm×900mm 及 630mm× 630mm-1250mm×2000mm 塑料注射模具。⑤其他标准《塑料模常用材料及热处理规范》和《塑料注射 模模架产品质量分等》。多媒体 讲授
教 学 基 本 内 容
方法及手段
ξ8.2 模具生产技术管理
一、模具标准化的意义 模具生产的组织形式以模具生产的规模、模具的类型、加工设备 状况和生产技术水平的不同而异,目前国内模具企业生产的组织形式上要 有以下三类 1.按生产工艺指挥生产 模具的生产过程按照模具制造工艺规程确定的程序和要求来组 织生产。这种组织形式的特点是: ①便于计划管理,为采用计算机辅助设计、制造、管理和网络 技术创造了条件。②符合专业化生产的原则,有利于提高生产效率,提高技术水平。③生产组织严密,计划性强,要求技术人员和管理人员有较 高的素质和能力,另外这种组织形式对产品和生产的变化有更强的适应性 和应变性。④由于分工细、生产环节多,模具生产周期长。2.以模具装配钳工为核心的指挥生产 按照模具类型的不同,以模具钳工为核心,配备一定数量的车、铣、磨等通用设备和人员组成若干生产单元,在一个生产单元内由模具钳 工统一指挥技术、生产进度。由专门化较强的和高精密的机床组成独立生 产单元,由车间统一调度和安排。这种组织形式适合于生产规模较小和模 具品种较单一的生产情况。它的特点是: ①居于作坊式生产,因此模具质量和进度主要取决于模具钳 工的技术水平和管理水平。②生产目标明确,责任性强,有利于调动生产人员的积极性。③简化生产环节,有利缩短制造周期和降低成本。④不利于生产技术的提高和标准化工作的开展。3.全封闭式生产 这种组织形式是将模具车间内的模具设计、工艺、管理和生产人 员按模具类型不同,组成若干个独立的封闭的生产工段,在生产工段内实 行全配套。它的特点是: ①工段内有生产指挥权,减少了生产环节,加快了生产进度。②不便于生产技术的统一管理,各工段之间无法有效地协调和平衡。③当某一环节出现问题,易造成整个生产过程无法正常进行。
二、模具生产计划管理 模具生产计划管理的目的就是如何确保模具生产周期、按质按时 按量交付模具。模具生产多由模具使用方提出模具生产周期,质量 要求和品种等,因此对模具生产方具有不确定性,实践证明,在模 具生产中采用网络计划技术是组织模具生产和进行计划管理的有效 形式。
多媒体 讲授
教 学 基 本 内 容
(一)网络计划技术的基本原理 网络计划技术的基本原理是以网络图为基础,通过网络分析和计算,制定网络计划并进行实施管理。网络图表达模具计划任务的进度安排和各 个零件工序间的关系,通过网络分析,计算网络时间参数,找出其中关键 工序和关键时间,利用加长周期的时差不断改变网络计划,在计划执行过 程中,通过进度反馈信息进行调度,最终保证生产周期。
(二)工作步骤 1.技术资料准备 在绘制模具生产计划网络图之前,必须掌握模具加工全部技术资 料和计划工时定额等。下图为传统模具制造流程。表 8-1 为所列某覆盖件 拉深模的加工项目。2.绘制网络图 根据同一副模具不同零件的加工工艺以及不同零件的先后加工顺序,从加工始点开始,依顺排列,直至加工结束。3.计算网络时间,找出关键路线 4.分析关键路线,确保计划周期
(三)模具计划网络图类型 ①生产准备计划网络图 包括技术准备以及坯料的粗加工等。②生产计划网络图 生产计划可以按月、按季和按年度计划,也可分阶段人为进行。③编制关键设备负荷平衡图
三、模具设计与工艺管理(1)在模具设计及工艺工作中要认真贯彻有关的国家标准、行业 标准和企业标准。(2)对于企业内经常重复出现的典型模具结构和零件,设计和工 艺人员与标准化人员一起设计图样、表格、典型和标准工艺卡的形式,减 少技术人员重复性的劳动和笔误。也可以规定—些通用的简化画法。(3)在技术工作,要遵循稳妥可靠的原则,在采用新技术、新材料、新工艺和新结构时要积极和慎重,要采用实践证明是成熟和可靠的新技 术、新材料、新工艺和新结构。(4)加强图样管理和经验的积累,首先明确各级技术人员的责任 制,严肃图样的更改和借阅制度,模具试用合格后应及时进行图样的定型 和归档工作。(5)模具技术人员应经常和定期深人生产第—线,了解问题,发现 问题,解决问题。对于相关车间的生产条件和技术现状,应做到心中有数。
方法及手段
多媒体 讲授 教 学 基 本 内 容
方法及手段
ξ8.3 模具的保管与维护 传统的模具制造在理想状态下,可以按照生产计划网络图的进度 完成,但是,由于模具设计质量受经验的影响,在调试过程中会出现不可 预见因素,如上图所示,模具性能评价不好时,要返回更改方案。往往越 是重要和关键的模具,难度大,调试周期长。所以,解决的根本方法是用 现代制造方法,如下图所示。可以把原型设计、模具设计、机械加工和调 试周期大大的缩短,并且,最大限度地避免工艺和模具设计的错误。
多媒体 讲授
参考资料: 备注:
注:课程教案按授课次数填写,每次授课均应填写一份;重复班授课可不另填写教案。
第二篇:模具技术协议
模具采购合同附件1Page 1 of 3
模具采购技术标准
说明:该技术标准作为模具采购合同的附件,是XXXX有限公司(以下简称XXXX)委托模具
采购合同正本中的模具供应商(以下简称供应商)在模具设计、加工、调试、文件确认、技术服务
等方面的有关技术规范。包括下列内容
1.2.3.4.5.6.7.模具基本要求及描述; 模具交付期(首次试模时间)技术文件提交与确认及双方技术交流; 模具验收 模具备件及有关模具的技术服务; 与模具匹配的设备参数 XXXX提交的技术文件明细
双方责任人及联系方式等
XXXX有关信息:
项目名称:
XXXX项目负责人:联系电话:传真:
模具负责人:联系电话:E-mail:
供应商有关信息:
模具项目负责人:联系电话:传真:
公司地址:
1.模具基本要求及描述
基本信息
1.1 模具名称: 副仪表板总成(细分表见附表)
1.2 相应产品的零件号:B21-5305510
1.3 型腔数:1出1
1.4 使用的注塑原料及相应的标准:PP+EPDM+T20
1.5 材料的收缩率:1.1%
1.6 基本的生产节拍:90秒
1.7 与模具匹配的设备型号:1600T
1.8 模具类型:热流道
模具基本描述(供应商模具开发的内容)
1.9 模具工程设计。
1.10 模具三维数据设计:供应商需要进行模具的三维数据设计。
1.11 模具流动CAE分析:
1.12 模具使用主要材料为: S45C模架,型腔2738,型芯2738
1.13 模具加工:数控加工中心进口电火花
1.14 试模(分别在供应商及XXXX处试模,包括3次试模-详见:4模具验收)。
1.15 模具型腔表面要求:镜面 1500#
a 型腔表面粗糙度为;镜面 1500#
b 其他非工作表面粗糙度要求220#—380#
1.16 包装:
1.17 模具运输及安全:
供应商负责运输到XXXX并保障模具运输安全。
1.18 包括下列技术支持:
模具成型工艺研究和必要的产品结构更改等产品及模具结构可行性研究;
供应商在XXXX的模具安装、调试、维修和预防性维修等;
有关模具委托加工过程中XXXX追加的设计更改及模具更改。
其他要求
1.19 所有度量衡必须采用公制,基本单位是毫米(mm)。
1.20 模具设计应考虑正常操作的安全措施。
1.21 供应商需要模具提供滑快、顶杆等易损件的清单及备件。
1.22 模具上日期标识按照图纸中的技术要求或相应标准。
1.23 模具标识铭牌须按照XXXX的标准要求。
1.24 所有模具图纸的最小比例是1:2;一些需要局部放大的细节须按照1:1或比较清晰的看图
比例。
1.25 模具主要部件在粗加工后和精加工前须进行合理的热处理以有效地消除内应力。
1.26 正常模具寿命: 50万模次。
1.27 模具供应商保证模具正式生产后的一年内,在正常生产状态下的模具能够正常运作。
2.模具交付期(首次试模时间)
2.1 首次模具试模交付期:;首次试模时间是年月日
3.技术文件提交与确认及双方技术交流
3.1XXXX向供应商提供上述“模具基本要求及描述”和产品图纸及3D数据等(详细见模具
采购合同附件2:《XXXX提供的技术文件》。
3.2供应商需要提供给XXXX的相关文件如下:
3.2.1 模具最终设计在月 日完成后应得到XXXX工程师的确认;为保证项目正常进
度,XXXX工程师应及时去供应商处会签模具设计图纸。
3.2.2模具的最终确认前需要提供下列相关文件:
一套完整的并与制造模具一致的CAD数据,包括2D图纸和3D数据;
2套模具图纸并与所制造的模具尺寸、技术要求等一致。并用不同颜色
标识出产品外轮廓线、热流道、冷却水道、紧固连接件等。
最终状态的模具预防性维修保养手册及必要的使用手册指导
4.模具验收
4.1模具验收第一阶段
4.1.1模具验收第一阶段在供应商处进行。主要是对供应商加工的该模具的尺寸、表
面质量等进行验收。供应商应该对模具进行过模具尺寸的测量并提交测量报告。
4.1.2第一次试模产品套,产品用于FE、OTS交样认可和装车匹配,并以其结果
和测试报告作为修模依据。随后进行第二次试模和第三次试模,分别试制套
产品。原则上第三次试模完成后XXXX将派相关主管工程师进行模具的预验收。
4.1.3对于上述期间和预验收完成后的工作,双方约定如下:
供应商必须支持XXXX的FE、OTS及装车评估。对于匹配和表面质量
等问题并根据数据分析结果确系供应商的责任,则任何为提供匹配效果
和表面质量的修模都是免费的;
双方都将委派各自的有关人员参加每次的试模及评估;
4.2模具验收第二阶段
4.2.1当本合同正本所指的模具产品到达XXXX后,模具的最终认可在XXXX进行并
以检具及装车匹配为依据。
5.模具备件及有关模具的技术服务
供应商有责任对XXXX的操作人员进行模具的有关调整与操作等的培训;供应商需要提供必
要的备件及有关明细。
6.与模具匹配的设备参数
7.XXXX提交的技术文件明细
XXXX提供产品的三维数模(文件号:;版本号:)
本协议一式二份,经双方正式授权代表签字盖章后生效。双方各持一份。
需方:XXXX有限公司XXXX供应商:
工程师:日期:代表:日期:
经理:日期:
第三篇:传感器与检测技术总结
《传感器与检测技术》总结
姓名:王婷婷 学号:14032329 班级:14-1
1传感器与检测技术
这学期通过学习《传感器与检测技术》,懂得了很多,以下是我对这本书的总结。第一章 概 述
传感器的作用是:传感器是各种信息的感知、采集、转换、传输和处理的功能器件,具有不可替代的重要作用。
传感器的定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
传感器的组成:被测量量---敏感元件---转换元件----基本转换电路----电量输出
传感器的分类:按被测量对象分类(内部系统状态的内部信息传感器{位置、速度、力、力矩、温度、导演变化}、外部环境状态的外部信息传感器{接触式[触觉、滑动觉、压觉]、非接触式[视觉、超声测距、激光测距);按工作机理分类(结构型{电容式、电感式}、物性型{霍尔式、压电式});按是否有能量转换分类(能量控制型[有源型]、能量转换型[无源型]);按输出信号的性质分类(开关型[二值型]{接触型[微动、行程、接触开关]、非接触式[光电、接近开关]}、模拟型{电阻型[电位器、电阻应变片],电压、电流型[热电偶、光电电池],电感、电容型[电感、电容式位置传感器]}、数字型{计数型[脉冲或方波信号+计数器]、代码型[回转编码器、磁尺]})。
传感器的特性主要是指输出与输入之间的关系。当输入量为常量,或变化极慢时,称为静态特性;输出量对于随时间变化的输入量的响应特性,这一关系称为动态特性,这一特性取决于传感器本身及输入信号的形式。可以分为接触式环节(以刚性接触形式传递信息)、模拟环节(多数是非刚性传递信息)、数字环节。动态测量输入信号的形式通常采用正弦周期(在频域内)信号和阶跃信号(在时域内)。
传感器的静态特性:线性度(以一定的拟合直线作基准与校准曲线比较LLmaxY100%)、迟滞、重复性、灵敏度(K0=△Y/△X=输出变化量/输入变化量=k1k2···kn)和灵敏度误差(rs=△K0/K0×100%、稳定性、静态测量不确定性、其他性能参数:温度稳定性、抗干扰稳定性。
传感器的动态特性:传递函数、频率特性(幅频特性、相频特性)、过渡函数。
0阶系统:静态灵敏度;一阶系统:静态灵敏度,时间常数;二阶系统:静态灵敏度,时间常数,阻尼比。
传感器的标定:通过各种试验建立传感器的输入量与输出量之间的关系,确定传感器在不同使用条件下的误差关系。国家标准测力机允许误差±0.001%,省、部一级计量站允许误差±0.01%,市、企业计量站允许误差±0.1%,三等标准测力机、传感器允许误差±(0.3~0.5)%,工程测试、试验装置、测试用力传感器允许误差±1%。分为静态标定和动态标定。
第二章 位 移 检 测 传 感 器
测量位移常用的传感器有电阻式、电容式、涡流式、压电式、感应同步器式、磁栅式、光电式。参量位移传感器是将被测物理量转化为电参数,即电阻、电容或电感等。发电型位移传感器是将被测物理量转换为电源性参量,如电动势、电荷等。属于能量转换型传感器,这类传感器有磁电型、压电型等。
电位计的电阻元件通常有线绕电阻、薄膜电阻、导塑料(即有机实心电位计)等。电位计结构简单,输出信号大,性能稳定,并容易实现任意函数关系。其缺点是要求输入能量大,电刷与电阻元件之间有干摩擦,容易磨损,产生噪声干扰。
Rx线性电位计的空载特性:
RxKRxl,KR----电位计的电阻灵敏度(Ω/m)。电位计输出空载电压为U0UixKuxl,Ku------电位计的电压灵敏度(V/m)。
C电容式传感器的基本原理:
SroSδ、S和εr中的某一项或几项有变化时,就改变了电容C0,δ或S的变化可以反映线位移或角位移的变化,也可以间接反映压力、加速度等的变化;εr的变化则可反映液面高度、材料厚度等的变化。ε0=8.85×10-12F/m。
Ka.变极距型电容位移传感器的灵敏度为
CSC00,C00;b.变极板面积型电C容位移传感器2(lx)xCxC0C0lnRB/RAl, C0l ; c.变介质型电容式位移传感器
C0Sd/r,其中ε0为真空介电常数(空气介电常数ε1=ε0)εr为介质的相对介电常数,r/0,ε为介质的介电常数; d.容栅式电容位移传感器
Cmaxnab(RRrr)n2,其中n为可动容栅的栅极数,a、b分别为栅极的宽度宽度和长度,α为每条栅极所对应的圆心角,R、r分别为栅极外半径和内半径。特点分辨力高、精度高、量程大,刻划精度和安装精度要求有所降低。
电容式传感器的转换电路:电桥电路、二极管双T形电路、差动脉冲调宽电路、运算放大器式电路、调频电路。
电容式传感器的特点:优点:温度特性好,结构简单、适应性强,动态响应好,可以实现非接触测量、具有平均效应。缺点:输出阻抗高、负载能力差,寄生电容影响大。
电感式位移传感器:是一种利用线圈自感和互感的变化实现非电量电测的装置。感测量:位移、振动、压力、应变、流量、比重。种类有:根据转换原理:分自感式和互感式两种;根据结构型式,分气隙型、面积型和螺管型。
电感式传感器的转换电路:调幅电路;调频电路;调相电路。
自感式电感受位移传感器:NmLi ;
mNiNNLRm ;Rm ;Rml2S0S0;其中l----铁心与衔铁中的导磁长度;μ---铁心与衔铁的磁导率(H/m);S---铁心与衔铁中的导磁面积;δ---气隙厚度;μ0---真空磁导率;S0---气隙导磁横截面积。互感式位移传感器:将被测物理量的变化转换成互感系数的变化。常接成差动形式,故也称差动变压器式位移传感器,属于螺管型。则总输出电动势E0E1E2(M2M1)di1dt
互感式位移传感器的误差因素:零点残余电压(当差动变压器的衔铁处于中间位置时,理想条件下其输出电压为零。但实际上,当使用桥式电路时,在零点仍有一个微小的电压值(从零点几mV到数十mV)存在,称为零点残余电压。电涡流式传感器:电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,该电流的流线呈闭合回线,类似水涡形状,称之为电涡流。电涡流式传感器是以电涡流效应为基础,由一个线圈和与线圈邻近的金属体组成,当线圈通入交变电流I时,在线圈的周围产生一交变磁场H1,处于该磁场中的金属体上产生感应电动势,并形成涡流。金属体上流动的电涡流也将产生相应的磁场H2,H2与H1方向相反,对线圈磁场H1起抵消作用,从而引起线圈等效阻抗Z或等效电感L或品质因素相应变化。金属体上的电涡流越大,这些参数的变化亦越大。如图如式:
涡流位移传感器主要分为高频反射和低频透射两类。电涡流式传感器的转换电路:电桥电路法、谐振电路法、正反馈法。其特点是涡流式传感器结构简单,易于进行非接触测量,灵敏度高,应用广泛,可测位移、厚度、振动等。
霍尔效应的定义:磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两个面之间产生电动势,这种现象称霍尔效应。该电势称霍尔电势,霍尔效应的大小:UHBI/nedUHkHBI
霍尔式传感器的误差因素:元件几何误差以及电极焊点的大小造成的影响;不等位电势的影响;寄生直流电势的影响;感应电势的影响;温度误差的影响(恒流源供电和输入回路并联电阻;合理选取负载电阻;恒压源和输入回路串联电阻;采用温度裣元件。)
光栅式位移传感器:长光栅(测量线位移)、圆光栅(测量角位移)。长光栅:是根据
BH莫尔条纹效应设计的。两个莫尔条纹的间距
WW2sin/2。光栅条纹密度有25条/mm,50条/mm,100条/mm或更密,栅线长度一般为6~12mm。其测长精度可达0.5~3μm(3000mm范围内),分辨力可达0.1μm。圆光栅:圆光栅同心放置时,条纹间距BHWRWRBHr1r2;偏心放置时,e,测量精度可达到0.15“,分辨力可达0.1”。W:光栅栅距。R:圆的半径。R1、R2:分别为切线圆半径。e :偏心量。
光栅可以制成透射光栅和反射光栅,透射光栅的栅线刻制在透明村料上,要求较高时,可以采用光学玻璃;而指示光栅最好采用光学玻璃,反射光栅的栅线刻制在具有反射率很高的金属或镀以金属膜的玻璃上。
感应同步器:利用电磁感应原理将线位移和角位移转换成电信号的一种装置。根据用途可将感应同步器分为直线式和旋转式两种,分别用于测量线位移和角位移。
激光式位移传感器:由激光器、光学元件、光电转换元件构成的将测位移量转换成电信号。常用的激光干涉测长传感器分为单频激光干涉传感器和双频激光干涉传感器。
第三章 力、扭矩和压力传感器 测力传感器:用于测力的传感器多为电气式。电气式测力传感器根据转换方式不同又分为参量型和发电型。参量型测力传感器有电阻应变式、电容式、电感式等。发电测力传感器有压电式、压磁式等。
电阻应变式测力传感器:将力作用在弹性元件上,弹性元件在力作用下产生应变,利用贴在弹性元件上的应变片将应变转换成电阻的变化。然后利用电桥将电阻变化转换成电压(或电流)的变化,再送入测量放大电路测量。最后利用标定的电压(或电流)和力之间的对应关系,可测出力的大小或经换算得到被测力。
dRdLdSd2LE(12)LELS应变片:R;其中μ:电阻丝的泊松系数;ζ:电阻丝受到的应力(Pa);E:电阻丝的弹性模量;πL:电阻丝材料的dR(12)K纵向压阻系数。对于金属丝,(1+2μ)ε»πLEε,则R;其中K:金属电阻丝灵敏系数,K约在1.7~3.6之间。常用金属丝材料在200℃~300℃以下工作可选用康铜丝应变丝,在300℃以上工作可选用镍铬合金应变片、铂铱合金应变片等。
半导体应变片:其工作原理是基于压阻效应。压阻效应:是指当半导体受到应力作用时,由于截流子迁移率的变化,使其电阻率发生变化的现象。表达电阻丝电阻应变效应的公
K式也适用于半导体电阻材料。其应变灵敏系数为:
dR/RLE,半导体应变片的缺点是应变灵敏系数的离散性大,机械强度低,非线性误差大,温度系数大。
应变片的布置和接桥方式:则电桥的输出U0电压为:
R1R3R2R4Ui(R1R2)(R3R4),当R1=R2=R3=R4=R,U0UiR1R2R3R4()4RRRR,应变仪电桥式作方式有:单臂、双臂、四臂。应变片在弹性元件上典型的布片和接桥方式有:柱型、环形、悬臂梁式、两端固定梁、轴。压电式力传感器:是基于压电元件的压电效应而工作的。正压电效应:当某些晶体沿一定方向受到外力作用而变形时,在其相应的两个相对表面产生极性相反的电荷,当外力去掉后,又恢复到不带电状态。晶体受力所产生的电荷量与外力的大小成正比,电荷的极性取决于变形的形式。逆压电效应:在某些晶体的极化方向(受力能产生电荷的方向)施加外电场,晶体本身将产生机械变形,当外电场撤去后,变形也随之消失。
压电元件及其晶片连接方式有:单片式、两片串联式、两片并联式、剪切式、扭转式。压磁式力传感器:在机械力作用下,铁磁材料内部产生应力或应力变化,使磁导率发生变化,磁阻相应也发生变化的现象。外力是拉力时,在作用方向铁磁材料磁导率提高,垂直作用力方向磁导率降低;作用力为压力时,则反之。常用的铁磁材料有硅钢片和坡莫合金。
第四章 速度、加速度传感器
直流测速发电机:按定子磁极的励磁方式不同,可分为电磁式、永磁式两类;若按电枢的结构形式不同,可分为无槽电枢、有槽电枢、空心杯电枢、圆盘印刷绕组等。电枢感应电动势为EsKenCen,其中Ke:感应系数;Φ:磁通;n:转速;Ce:感应电动势与转速的比例系数。空载时:Is=0 ,则有直流测速发电机的输出电压和电枢感应电动势相等,因而输出电压与转速成正比。有负载时,直流测速发电机的输出电压为VCFEsIsrs,rS:电枢回路的总电阻。电枢电流为
ISVCFRL,RL:测速发电机的负载电阻。则可得VCFCenCn1rs/RL
直流测速发电机在工作中,其输出电压与转速之间不能保持比例关系,原因和改进方法:一是有负载时,电枢反映去磁作用的影响,使输出电压不再与转速成正比(在定子磁极上安装补偿绕组,或使负载电阻大于规定值)。二是电刷接触压降的影响(应采用接触压降较小的铜-石墨电极或铜电极,并在它与换向器相接触的表面上镀银)。三是温度的影响(在直流测速发电机的绕组回路中串联一个电阻值较大的附加电阻,再接到励磁电源上)。
交流测速发电机:可分为永磁式、感应式、脉冲式三种。永磁式并流测速发电机实质上是单向永磁转子同步发电机,定子绕组感应的交变电动势的大小和频率都随输入信号而变f化:
ppnE4.44fNKwm44.4NKwmnKn6060 ;
;其中K:常系数,K4.44pNKwm60 ;p:电机极对数;N:定子绕组每相匝数;KW:定子绕组基波绕组系数;Φm:电机每极基波磁通的幅值。通常此电机只做指示式转速计使用。感应式测速发电机与脉冲式测速发电机的工作原理基本相同,都是利用定子、转子齿槽相互位置的变化,使输出绕组中的磁通产生脉动,从而感应出电动势,也称为感应子式发电机原理。输出电动f势的频率为ZrnHz60,其中Zr:转子齿数;n:电动机转速(r/min)线振动速度传感器:当一个绕有N匝的线圈作垂直于磁场方向相对运动时,线圈切割磁力线,由法拉第电磁感应定律可知,线圈产生感应电动势ENBlv,其中B:线圈所在磁场的磁感应强度(T);l:每匝线圈的平均长度;v:线圈磁场的运动速度。
变磁通式:开磁路式:测量时,齿轮随被测旋转体一起转动,每转过一个齿,传感器磁路磁阻变化一次,磁通亦变化一次,因此线圈产生感应电动势的变化频率等于齿轮的齿数与转速的乘积。闭磁路式:测量转速时,磁能周期变化,线圈产生感应电动势的频率与转速成正比。n60f/z ; w(2/z)f(rad/s)
陀螺式角速度传感器:包括转子陀螺、压电陀螺、激光陀螺、光纤陀螺。半导体硅流速传感器是一种可测流速、流动方向的传感器。其工作原理是依据发热体与放置发热体的流体介质的热导率λ与流体流速相关原理制成的。Q(T1T2)(ABvt)(T1T2),Q:流体介质从温度T1流向温度T2的热量;λ:热导率;vt:流体介质流速;B:常数,A为vt=0时的热导率,A与B均由由流体介质性质和发热体性质决定。
加速度传感器:常用的有压电式、应变式、磁致伸缩式等。
压电式加速度传感器包括:压缩型(为了区分异常振动与其它噪声振动,传感器的固有频率设计成与异常振动频率相同,从而提高了信噪比)、剪切型(可忽略横向加速度的影响,还能在高温环境中使用)、弯曲型(结构简单、体积小、重量轻、灵敏度高,但压电材料有阻抗高、脆性大、难于与金属粘结)。因为其本身内阻抗很高,输出微弱,则必须接高输入阻抗的前置放大器。这类放大器有电压放大器(第一级采用场效应管构成源极输出器,第二级晶体管构成对输入端的负反馈,以提高输入阻抗)和电荷放大器(输出电压u0Q/Cf,Q:传感器输出电荷,Cf:反馈电容,即输出电压与电缆分布、长短无关)。压电加速度传感器属发电型传感器,可把它看成电压源或电荷源,故灵敏度有电压灵敏度{输出电压(mV)与所承受加速度之比}、电荷灵敏度{输出电荷(Q)与所承受加速度之比)。对给定的压电材料,灵敏度随质量的增大或压电片的增多而增大。一般加速度传感器尺寸越大,其固有频率越低。因此在选用加速度传感器时应当权衡灵敏度和结构尺寸、附加质量影响和频率响应特性之间的利弊。
第五章 视觉、触觉传感器
视觉传感器:以光电变换为基础,由四个部分组成,照明部(钨丝灯、闪光灯等)、接收部(由透镜和滤光片组成,具有聚成光学图像或抽出有效信息的功能)、光电转换部(将光学图像信息转换成电信号)、扫描部(将二维图像的电信号转换成时间序列的一维信号)。在机电一体化系统中的作用有三:进行位置检测;进行图像识别;进行物体形状、尺寸缺陷的检测。
视觉传感器分为:光电式摄像机(即工业电视摄像机){其光导摄像管是一种兼有光电转换功能和扫描功能的真空管}、固体半导体摄像机{由许多光电二极管组成阵列代替光导摄像管。其摄像元件为CCD即电荷耦合器件,它是一种MOS型晶体管开关集成电路,它的构成主要有隔行传送方式、帧传送方式}、激光式视觉传感器{利用激光作为定向性高密度光源,由光电转换及放大元件、高速回转多面棱镜、激光器组成}、红外图像传感器{由红外敏感元件、电子扫描电路组成}。
人工视觉系统的硬件构成:图像输入、图像处理、图像存储、图像输出四个子系统组成。图像输出装置分为两类:一类是只要求瞬时知道处理结果,以及计算机用对话形式进行处理的显示终端,称为软拷贝;另一类可长时间保存结果,如宽行打印机、绘图机、X-Y绘图仪以及显示器图面照像装置等,称为硬拷贝。图像信息的处理技术中,区域法与微分法不同,它不直接检测灰度的变化点,而是以灰度大致相同的像素集合作为区域而汇集的方法。
触觉传感器:接触觉、压觉的阈值单位为104Pa,人的压觉阈值约为1.28×104Pa,人的手指接触觉阈值约为3×104Pa。接触觉传感器的代表是用硅橡胶制成的矩阵式触觉传感器。硅橡胶与金属电极对置、接触。由于硅橡胶受压其电阻值就改变,所以输出电压相应变化。滑动觉传感器:被用于工业机器人手指把持面与操作对象之间的相对运动,以实现实时控制指部的夹紧力。它是检测指部与操作物体在切向的相对位移。
第六章 温度传感器
热电偶式温度传感器:属于接触式热电动势型传感器,基于热电效应(当两种不同金属导体两端相互紧密地连接在一起组成一个闭合电路时,由于两个端点温度不同,回路中将产生热电动势,并有电流通过,即将热能转换成电能。)它由热电偶(闭合回路)、热电极(两导体)、热端、冷端组成。热电动势由接触电动势、温差电动势两部分组成。
热电偶的分类:普通热电偶(主要用于测量液体和气体的温度)、铠装热电偶(也称缆式热电偶,可分为有碰底型、不碰底型、露头型、帽型。特点是测量结热容量小、热惯性小、动态响应快、挠性好、强度高、抗震性好,适用于普通热电偶不能测量的空间温度)、薄膜热电偶(可分为片状、针状,主要用于测量固体表面小面积瞬时变化的温度。特点是热容量小、时间常数小、反应速度快)、并联热电偶(它是把几个同一型号的热电偶的同性电极参考端并联在一起,而各个热电偶的测量结处于不同温度下,其输出电动势为各热电偶热电动势的平均值,所以这种热电偶可用于测量平均温度)、串联热电偶(又称热电堆,它是把若干个同一型号的热电偶串联在一起,所有测量端处于同一温度T之下,所有连接点处于另一温度TO之下,则输出电动势是每个热电动势之和。为保证测量值的真实性,常用的方法有恒温法、温度修正法、电桥补偿法、冷端补偿法、电位补偿法。)
电阻式温度传感器:分为金属热电阻式、热敏电阻式两大类。金属热电阻式温度传感器:其基理是在金属导体两端加电压后,使其内部杂乱无章运动的自由电子形成有规律的定向运动,而使导体导电。对于大多数金属导体而言RtRo(11t2t2ntn);铂电阻物理化学性能稳定,搞氧化能力强,测温精度
23RtRo[11t2t3(t100C)t],在高,在(-200~0)℃范围内的阻温特性是:(0~850)℃内的阻温特性是:RtRo(11t2t),一般在RO=100Ω或RO=50Ω时,α1=3.96847×10-3/℃,α2=-5.847×10-7/℃2,α3=-4.22×10-12/℃4。铜价格低,在(-50~150)℃,23RtRo(11t2t3t)其电化学性和物理性能稳定,则有。为了避免通过交流电时产
2生感抗,或有交变磁场时产生感应电动势,在绕制时要采用双线无感绕制法。
热敏电阻式温度传感器:所用材料是陶瓷半导体,其导电性取决于电子-空穴的浓度。其阻温特性为RT=ROeB(1/T-1/TO);正温度系数热敏电阻,随温度增加而增加,高温不得超过140℃,临界温度系数热敏电阻,不适于较宽温度范围内的测量;负温度系数热敏电阻,其阻值随温度增加而下降,一般用于(-50~300)℃之间的温度测量。硅热敏电阻即可具有正温度系数也可具有负温度系数,采用线性化措施后,可在(-30~150)℃内实现近似线性化。锗热敏电阻广泛应用于低温测量;硼热敏电阻在工作中700℃高温时仍能满足要求。
非接触式温度传感器:可分为全辐射式温度传感器、亮度式温度传感器、比色式温度传感器。
全辐射式温度传感器:利用物体在全光谱范围内总辐射能量与温度的关系测量温度。
4全辐射式温度传感器测得的温度总是低于物体的真实温度。测量温度:TTr1/T ;Tr:辐射温度;εT:温度T时物体的全辐射发射系数。这种传感器适用于远距离、不能直接接触的高温物体,其测量范围为(100~2000)℃。
亮度式温度传感器:利用物体的单色辐射亮度随温度变化的原理。传感器测得的温度
11lnT值小于被测物体的真实温度T:TTLC2,ελT:单色辐射发射系数;C2:第二辐射常数,C2=0.014388(m·K);λ:波长(m)。
比色温度传感器:通常,将波长选在光谱的红色和蓝色区域内。真实温度T:11ln(1/2)TTPC2(11)12 ;其量程(800~2000)℃,测量精度为0.5%。如果两个波长的单色发射系数相等,则真实温度与比色温度相同。一般灰体的发射系数不随波长而变,故比色温度等于真实温度。通常λ1:对应蓝色,λ2:对应为红色。对于很多金属,由于单色发射系数随波长的增加而减小,故比色温度高于真实温度。半导体温度传感器:以半导体P-N结的温度特性为理论基础,利用晶体二极管与晶体三极管作为感温元件。采用晶体二极管,测温范围在(0~50)℃;采用晶体三极管,测温范围在(-50~150)℃。
第七章 气敏、温度、水份传感器 气敏传感器(N型半导体):是一种将检测到的气体成份和浓度转换为电信号的传感器。具有代表性的是SnO2系和ZnO系气敏元件。这些金属氧化物都是利用陶瓷工艺制成的具有半导体特性的材料,简称半导瓷。材料吸收吸附分子,为正离子吸附(O2和氮氧化合物,为氧化型气体);材料释放电子,为负离子吸附(H2、CO碳氢化合物和酒类倾向,为还原型气体)。SnO2气敏半导瓷掺加Pd、Mo、Ga等杂质,可供制造常温工作的烟雾报警器。
湿度传感器:分为绝对温度(一定大小空间中水蒸气的绝对含量,kg/m3,又称为水气浓度或水气密度。它可以用水的蒸气压表示,空气水气密度
vpvMRT,其中M:水气摩尔质量;R:摩尔气体常数;Pv:蒸气压力;T:热力学温度)、相对温度(为某一被测蒸气压与相同温度下饱和蒸气压比值的百分数,常用%RH表示。是无量纲值。表示为潮湿程度。)
湿敏元件有:氯化锂湿敏元件、半导体陶瓷湿敏元件、热敏电阻湿敏元件、高分子膜湿敏元件。
氯化锂湿敏元件:利用吸湿性盐类潮解,离子导电率发生变化而制成的测湿元件。是典型的离子晶体。
热敏电阻式湿敏元件:特点有灵敏度高且响应速度快;无滞后现象;不像干湿球温度计需要水和纱布及其它维修保养;可连续测量(不需要加热清洗);抗受风、油、尘埃能力强。可制造精密的恒湿槽,精度达±0.2g/m3。
高分子膜湿敏元件:它是以随高分子膜吸收或放出水份而引起电导率或电容变化测量环境相对湿度的装置。根据电容器的容量值
CSd,再测得相对温度。电子温度计由检测部分(有携带型、墙袋型、凸缘型)、数字显示器、变换器构成。常用于工业温度监视、记录和控制,尤可用于湿度小于20%RH的测量。在超过90%RH的高湿区域会出现结露。结露时湿度传感器在沾湿间歇不能测量,一旦沾湿消失,恢复原来特性。
水份传感器:水份是存在于物质中水的数量,以百分比表示。种类有:直流电阻型、高频电阻型、电容率型、气体介质型、近红外型、中子型、核磁共振型。
第八章 传感检测系统的构成
传感检测系统的组成:传感器(信息获取)、中间转换(信号调理)电路(信号转换调理)、微机接口电路(信息传输)、分析处理及控制显示电路(信息分析处理、显示记录)等部分组成。目前常用的有模拟显示(精度受标尺最小分度限制,易引入主观误差)、数字显示(有利于消除读数主观误差)、图像显示(常用的自动记录仪器有笔式记录仪、光线示波器、磁带记录仪)三种。
电桥:是把电阻、电感、电容等元件参数转换成电压或电流的一种测量电路。
直流电桥:在电桥的输入端加入直流电源ES。当输出端与高输入阻抗装置相接时,电桥相当于工作在输出端开路状态,其输出电压UoR1R3R1R4R2R3EsEsEsR1R2R3R4(R1R2)(R3R4)。当R2R3=R1R4时,输出电压UO为0,称这种状态为平衡状态。若将电桥输出端与内阻为Rg的检流计相连接,由戴维南定
Ro理知,AB端的等效电阻
R1R2R3R4R1R2R3R4,AB端的开路电压UocR1R4R2R3RgEsUoUoc(R1R2)(R3R4),则电桥输出端的电压为RoRg。如下图。
交流电桥:采用交流电源供电的电桥。如果交流电源是频率为f的正弦交流信号,则有Z1Z11,Z2Z22,Z3Z33,Z4Z44。当电桥输出端开路时,其输出
UsUsZ1Z4Z2Z3UoZ1Z3UsZ1Z2Z3Z4(Z1Z2)(Z3Z4)电压,当Z1Z4=Z2Z3,则有Z2Z3Z1Z4,2314。如下图
电桥的分类:按电桥采用电源的不同分为:直流电桥、交流电桥。按电桥的工作方式可分为:平衡电桥、不平衡电桥。按电桥被测电阻的接入方式:单臂电桥、差动电桥。
电桥的工作特性指标分别为:电桥的灵敏度、电桥的非线性误差。电桥的灵敏度是单
Kus位输入量时的输出变化量,对于不平衡电桥:
U/UoR/R。电桥的非线性误差:若线
f性化后的输出电压为UOS,则有
UosUoUo。
各类电桥的灵敏度与非线性误差:单臂电桥:当R2=R1、R3=R4时,R1/R1,Uo则有R1R41UsUsUosUs(R1R1R2)(R3R4)2(2),化简可得4,非线性误差fUosUo1Uo2。可见输入变化量越大,非线性误差越大,若要求电桥的误差小于3%,KusUos/Us14。差动电桥:
时允许ε的最大值为0.06。对于单臂电桥,其输出电压灵敏度当R2=R
1,R1/R1,R2R3=R1R4Uo(R1Rx)R4(R2Rx)R3Rx1UsUsUoUs(R1RxR2Rx)(R3R4)R1R2,化简得2,得差动电桥灵
11UsUs2f20Uo/Us11KusUs2,非线性误差2敏度。如下图。有源电桥:装有一个具有高输入阻抗和低输出阻抗及高增益等特点的运算放大器A,当△R=0时,电桥平衡,当
UsUsUsRUo(RR)Uo(1)I1I2Us/(2R)22R2RR变化到R+△R时,则有,(Us/Us)Uo/Us1UoUsKus22,则输出灵敏度及非线性误差分别为2,即
f0。如下图
电桥调零:测量前电桥的输出应调为零,通常采用的有串联调零法(多用于桥参数R值较大的场合,调零电位器的阻值RW « RO)和并联调零法(并联在电桥输出端,多用于桥参数R值较大的场合,调零电位器的阻值RW » RO)。
无源滤波器:特点是电路简单,但是带负载能力差。有源滤波器:由运算放大器和RC网络组成。特点是1)有源滤波器不用电感线圈,因而在体积、重量、价格、线性度等方面具有明显的优越性,便于集成化。2)由于运算放大器输入阻抗高,输出阻抗低,可以提供良好的隔离性能,并可提供所需增益。3)可以使低频截止频率达到很低的范围。
低通滤波器:具有低频信号容易通过并抑制高频信号的作用。高通滤波器:RC电路具有高频信号容易通过并抑制低频信号的作用。带通滤波器:RLC电路用于通过某一频段
Q的信号,而将此频段外的信号加以抑制或衰减。品质因素
fo1B3RFRfRf,带阻滤波器:用于抑制某一频段的信号,而让此频段外的信号通过。品质因素Qfo1B2(2RfRF)Rf。
一阶RC低通滤波器的幅频及相频特性如图。
一阶高通滤波器的幅频及相频特性如图所示:
数字滤波:利用程序来实现,因而不需增加硬件,而且可靠性高、稳定性好、灵活方便。常用的方法有:限定最大偏差法:当
YnYn1Y,则令YnYn1。如果YnYn1Y,则YnYn。算术平均值法:
YnYn1YnYnkkk,适用于压力测量、流
i量测量等。加权平均滤波法:
YnCiYn1i0n1,其中满足i0C1n1。
数/模转换:它是把数字量转变成模拟的器件,它由四个部分组成:电阻网络、运算放大器、基准电源、模拟开关。目前用得较多的是T型电阻网络数/模转换器(D/A)。D/A集成电路芯片分为八位、十位、十二位、十六位等。DAC0832是一个具有两个输入数据缓冲器的八位D/A芯片。其分辨率是指最小输出电压与最大输出电压之比。例如八位D/A的110.00398分辨率212561。其精度的误差由参考电压的波动、运算放大器的零点漂移、模拟开关的压降以及电阻阻值的偏差。通常用非线性误差的大小表示D/A的线性度。
多路模拟开关环节:采用分时法切换信号,完成多路切换的器件称为多路模拟开关。常用的模拟开关有晶体管开关、光耦合器开关、结型场效应管开关、CMOS场效应开关。其中应用最多的是CMOS场效应开关。多路模拟开关电路由地址译码器和多路双向模拟开关组成。
采样保持环节:其作用是在采样期间,其输出能跟随输入的变化而变化,而在保持状态能使其输出值保持不变。采样理论表明,连续模拟信号可以表示为一组等间隔离散化瞬时采样序列,反之也可由这组离散采样脉冲序列恢复为原连续信号。但其中必有采样频率fs2fH采样信号频谱中的最高频率分量,如不满足,将会出现信息丢失或信号失真。LF398采样保持器具有采样速度高、保持电压下降速率慢、精度高等特点。
传感检测信号的细分:为了提高检测系统的分辨力,需要对传感检测信号进行细分。如几何量测量中采用机械式细分(如游标卡尺)、光学式细分和电子式细分等。四倍细分原理:莫尔条纹的间距为BHW/[2sin(/2)]W/。
传感检测系统中的抗干扰问题:产生内部干扰的因素有:信号通过公共电源、地线和传输线的阻抗相互耦合形成的干扰;元件之间、导线之间通过寄生电容或互感耦合造成的干扰;大功率和高压元件产生的电场;电子开关元件的电压或电流急剧变化而产生的干扰源;工作电源,交叉走线等。外部干扰的因素有:外部高压电源因绝缘不良形成的漏电;广播电视、高频感应加热等;空间电磁波的辐射;周围机械振动和冲击的影响。信噪比是指信号通
SPS10lgPN。形成干扰路中,有用信号功率Ps与噪声功率PN之比,通常用S/N表示,N的三个条件有:干扰源、干扰的耦合通道[电容性耦合,互感性耦合,公共地线的耦合,漏电耦合,辐射电磁场耦合]、干扰的接收电路。
抑制干扰的方法:主要是采取单点接地、屏蔽隔离(静电屏蔽、低频磁感应屏蔽、高频磁感应屏蔽)、滤波(电源滤波、退耦滤波器、有源滤波、数字滤波)等。接地在测量系统中有四种接地系统:安全地(强电应用设备)、信号源地、数字信号地、模拟信号地(此三地是为了防止电路有公共阻抗而引起信号交叉耦合)。
典型噪声干扰的抑制:设备启、停时产生的电火花干扰:消除这种干扰的方法通常是RC吸收电路,即将电阻R和电容C串联后再并联到继电器触点或电源开关两端。共模噪声:抑制这种干扰可采用差分放大器,差分放大器的输入阻抗越高,抑制作用越强。串扰:克服串扰的有效方法是将不同信号线分开,并且留有最大可能的空间隔离。
ADC与CPU的时间协调:其控制方式有延时等待、中断式、查询式。
数据转换接口的典型结构有:高电平单路信号调理单ADC系统(性能一般,成本低,全部输入通道共用一路信号调理电路)、低电平多路信号调理单ADC系统(最常见的数据采集系统,性能较高,每个通道均有各自的信号调理电路)、多路信号调理多ADC系统(通过多路ADC转换的数字信号由一个多路数字开关送入微机,其成本虽高,但性能较高)。
A/D转换器与CPU的接口示例:8位8通道A/D转换电路:由模拟多路转换开关(LF13508)、采样/保持器(LF398)、A/D转换(ADC0804:逐次逼近式8位转换芯片,属于脉冲启动转换芯片)和并行接口PIO组成。ADC574是12位逐次比较式A/D转换芯片,很容易与8031单片机的接口相连。
传感器信号的温度补偿:在计算机能力允许时,可采用计算机软件(常用公式法、表格法)进行,也可采用硬件电路实现。温度补偿公式法的步骤:1。给定m+1个温度值,测出每一个温度下传感器静态特性曲线在y轴上的截距;2。将Y表示成以温度T为自变量的n次代数多项式Ya0a1Ta2TanT,用最小二乘曲线拟合法确定a0„,在测得
2nx每一个y值对应的T值,计算出Y,再求传感器的输入值
yYk。温度补偿表格法的步YYi(TTi)骤:Yi1YiTi1Ti,若T
线性化处理方法:可以用硬件实现,也可以用软件实现线性化处理。常用的方法有公式法、表格法。公式法也称曲线拟合法,(求完)
第九章 信号分析及其在测试中的应用
信号的分类:信号有静态信号、动态信号。按能否用明确的时间函数关系描述,可将信号分为确定性信号与非确定性信号。确定信号是指能用明确的数学解析关系式或图表描述的信号,如简谐波、方波、矩形波等信号。确定性信号又可分为周期信号和非周期信号。非确定性信号也称随机信号,是指时域波形不确定,无法用确切的数学关系式描述,也不能准确预测未来的结果。只能用概率统计方法描述它的规律。
模拟信号:在某一自变量连续变化的间隔内,信号的数值连续。离散信号:自变量在某些不连续数值时,输出信号才具有确定值。如果将其各离散点的幅值也作离散化,以二进制编码表示,则称为数字信号。
xlim信号的均值
1TTT0x(t)dt,它表示信号中常值分量或直流分量。信号的方差1limTT2xT0[x(t)x]2dt,它描述信号的波动范围,其正平方根为信号的标准差。信号的均方值x2lim1TTT0x2(t)dt,它描述信号的强度,表示信号的平均功率。则有2x2x2x。信号的概率密度函数
pxlimTxT0T0x,它描述了信号x(t)对指定幅值的取值机会。
信号的相关描述:它又称为信号的时差描述。信号的自相关函数Rx()lim1TTT0x(t)x(t)dt,其中η---时延量,自相关函数的性质:1)当时延0,1Rx(0)limTT信号的自相关函数就是信号的均方值
T0x2(t)dt2,2)当Rx(0)Rx()时,即在η=0处取峰值;3)Rx()Rx();4)周期信号的自相关函数必呈周期性,这是因为有x(t)x(tnT),故
Rx(nT)lim1Tx(tnT)x(tnT)dtRx()0TT。信号的Rxy()lim互相关函数
1TTT0x(t)y(t)dt,互相关函数的性质有:1)Rxy(η)通常不在η=0处取峰值,其峰值偏离原点的位置为ηd,图反映两信号相互有ηd时移时,相关程度
1Rxy()limTT最高;2)Rxy(η)与Ryx(η)是两个不同的函数。根据定义Ryx()lim1TTT0x(t)y(t)dt;T0y(t)x(t)dt,不难证明Rxy()Ryx();3)均值为零的两个统计独y(t),其中Rxy()0。信号的互相关系数立的随机信号x(t)和xy()Rxy()Rxy()Rx(0)Ry(0)xrmsyrms,由于Rxy()Rx(0)Ry(0),故xy()1,一般有:xy()1说明x(t)和y(t)完全相关;xy()0说明x(t)和y(t)完全不相关;0xy()0,x()说明x(t)和y(t)部分相关。自相关系数
Rx()Rx(0)。
周期信号与离散频谱:傅里叶级数
x(t)a0(ancosnw0tbnsinnw0t)n1,其中w02/T,a01TT0x(t)dt,an2T2Tx(t)cosnw0tdt,bnx(t)sinnw0tdt,T0T0如果周期信号x(t)为奇函数时,an0,a00,此时
x(t)bnsinnw0tn1;如果周期信号x(t)为偶函数时,bn0,此时x(t)a0ancosnw0tn1。周期信号频谱特点:离散性、收敛性、谐波性。瞬态信号的频谱连续。傅里叶变换的主要性质有:(如图所示
非确定性信号的功率谱密度函数:自功率谱密度函数:若自相关函数满足绝对可积条件,即Rx()d,则定义
Sx(f)Rx()ej2fd,为x(t)的自功率谱密度函数,称自谱或自功率谱。频域上Sx(f)曲线下的总面积代表信号x(t)的总功率。互功率谱密度函数:如果互相关函数Rxy(η)满足傅里叶变换的条件Rxy()d,则定义
称Sxy(f)为信号x(t)和y(t)的互谱密度函数,简称互谱。互相干函数:有一种方法能评价测试系统输入信号和输出信号之间的因果性,即输出信号的功率谱中有多少是所测输入信号引起的响应,这个指标常用相干函数γxy(f)表示,其定义为Sxy(f)Rxy()ej2fd2xy(f)Sxy(f)22(0xy1)Sx(f)Sy(f)。当
2xy(f)0,表示输出信号y(t)与输入信号x(t)不相干;当2xy(f)1,表示输出信号y(t)与输入信号x(t)完全相干,系统无干扰输入;若
2xy(f)在0~1之间,则表示下述可能性:测试中有外界噪声干扰输入;联系x(t)和y(t)的系统非线性;输出y(t)和x(t)和其它输入的综合。
第十章 传感器在机电一体化系统中的应用
零位和极限位置的检测:零位的检测精度直接影响工业机器人的重复定位精度和轨迹精度;极限位置的检测则起保护机器人和安全动作的作用。工业机器人常用的位置传感器有:接触式微动开关、精密电位计,非接触式光电开关、电涡流传感器。
位移量的检测:机器人上常用的位移传感器有:旋转变压器、差动变压器、感应同步器、电位计、光栅、磁栅、光电编码器等。例如关节型机器人大多采用光电编码器,由于刚性原因,位移传感器多与驱动元件同轴,以提高分辨力。直角坐标机器人中的直线关节或气动、液压驱动的某些关节采用线位移传感器。
速度、加速度的检测:速度传感器是为实现机器人各关节的速度闭环控制。加速度传感器被用于机器人中关节的加速度控制。
在大位移量中,常用位移传感器有感应同步器、光栅、磁尺、容栅等。传感器在位置反馈系统中,在传感器安装位置的不同有半闭环控制和全闭环控制;按反馈信号的检测和比较方式不同有脉冲比较伺服系统、相伴比较伺服系统、幅值比较伺服系统。光电编码器PE同时进行速度反馈和位置反馈的半闭环控制系统中,光电编码器将电动机转角变换成数字脉冲信号,反馈到CNC装置进行位置伺服控制。又由于电动机转速与编码器反馈的脉冲频率成比例,因此采用F/V(频率/电压)变换器将其变换为速度电压信号就可以进行速度反馈。
“测量中心”是指三坐标测量与机械加工中心相配合。测量系统按其性质可以分为机械式测量系统、光学式测量系统、电气式测量系统。三坐标测量机的测量头按测量方法分为接触式{ 应用广泛,它可分为硬测头[多为机械测头,使用较少]、软测头[可分为触发式测头、三维测微测头(可分为模拟测头、数字测头)},、非接触式{常用激光测头、光学测头、电视扫描测头等} 汽车机电一体化的中心内容是以微机为中心的自动控制系统取代原有纯机械式控制部件,从而改善汽车的性能,增加汽车的功能,实现汽车降低油耗,减少排气污染,提高汽车行驶的安全性、可靠性、操作方便和合适性。汽车行驶控制的重点是:1)汽车发动机的正时点火、燃油喷射、空燃比和废气再循环的控制,使燃烧充分、减少污染、节省能源;2)汽车行驶中的自动变速和排气净化控制,以使其行驶状态最佳化;3)汽车的防滑制动、防碰撞,以提高行驶的安全性;4)汽车的自动空调、自动调整车高控制,以提高舒适性。
公路交通用传感器:国外采用的传感器有电感式、橡皮管式、超声波式、雷达式及红外线式。
第四篇:检测技术与仪器感想
测量时人类对客观世界获取定量信息的过程,人们通过对客观事物大量观察和探测,形成定性和定量的认识归纳并建立各种定理和定律。测量时用树字语言描述周围世界,解释客观世界规律,进而改造世界的重要手段,我们可以通过门捷列夫的话来描述测量的重要性“没有测量,就没有科学”
所谓测量就是借助于专用的技术工具通过实验和(或)计算,对被测对象收集信息的过程。在自然界中,对于任何被研究的对象,若要定量地进行评价,必须通过测量来实现。在电子技术领域中,中肯的分析只能来自正确的测量。通过测量,我们对大自然认识才由感性世界跨入了理性世界,才逐步对大自然有了理性的分析,通过分析和归纳,我们才能得到规律性的知识来改造世界,科学技术才能得以高速发展。牛顿开创的早期自然科学的工作方法可归纳为“观察、实验、理论”,可见,人们是通过观测试验的结果和已经掌握的规律,进行概括、推理,再对所研究的事物取得定量的概念和发现它的规律性,然后上升到理论。因此,测量技术的水平在相当程度上影响着科学技术的发展速度和深度,科学技术上有一些突破是以测试技术的突破为基础的。这种例子在科学发展史上是不胜枚举的。
在没有显微镜时,人眼只能看清大小为0.1—0.2 毫米的东西,这大大限制了人类对自然界中微观世界的认识,在这种情况下,绝对不会有微生物学等技术的产生。16 世纪出现了光学显微镜,它的分辨率可达2000埃,相应的放大率约为1500倍,大大扩展了人的眼力。在显微镜的帮助下,人类发现了构成生物基础的细胞(大小约为10-100微米),使人类对生物界的认识有了一个极大的飞跃,这一发现对推动生物学各方面的研究作出了重要贡献,被恩格斯誉为19世纪三大发现之一。20 世纪30 年代出现了电子显微镜,它的分辨本42领高达2一3 埃,又比光学显微镜提高了约三个数量级。由此可见电子技术引入测量领域的巨大的推动作用。在电子显微镜下,可以洞察小小细胞内的超微机构,连细胞膜也可清晰地辨出是由三个薄层组成的,并发现了致病的病毒、形成了生物科学的又一次飞跃。现代科学技术、生产和国防的重要特点之一,就是要进行大量的观测和统计。现代工业大生产,用到测量上的工时和费用约占整个生产所用的20%一30%。提高测量水平,降低测量成本,减少测量误差,提高测量效率,对国民经济各个领域都是至关重要的。
三、电子测量的特点及应用电子测量的特点及应用电子测量的特点及应用电子测量的特点及应用
随着电子技术的不断发展,测量的内容愈来愈多,通常包括以下几个方面:
① 电能量的测量,包括对于电流、电压、电功率的测量;② 信号的特性及所受干扰的测量,例如信号的失真度、频率相位、脉冲参数、调制度、信号频谱、信噪比等;③ 元件和电路参数的测量,例如电限、电感、电容、电子器件(电子管、晶体管、扬效应管等)的测量,集成电路的测量,电路频率响应、通频带宽度、品质因数、相位移、延时、衰减和增益等的测量。
随看电子技术的发展,由于电子测量技术的许多无可比拟的优点,许多非电量的测量也可以通过传感器转换成电信号,再利用电子技术进行测量。例如,高温炉中的温度、深海的压力等许多人们不能亲身到的地方或无法直接测量的量,都可以通过这种方式进行测量.电子测量除了对电参数进行稳态测量以外,还可以对自动控制系统的过渡过程及频率特性进行动态测量。例如,对一个轧钢的电气传动系统通过模拟计算机可以自动描绘出动态过程曲线;对于化工系统的生产过程进行自动检测与分析等。与其它的测量相比,电子测量具有以下几个明显的特点:
① 测量频率范围极宽,电子测量能工作在这样宽的频率范围,这就使它的应用范围很广。
② 量程很广,由于所测量的大小相差极大,要求测量仪器的量程也极宽.同一台电子仪器,经常能做到量程宽达很多数量级。例如一台普通的欧姆表,可以测出几欧姆至几十兆欧姆的电阻,量程宽达六、七个数量级。电子计数器的量程更宽,可达17个数量级。量程宽正是电子仪器的突出优点。
③ 测量准确度高。电子仪器的准确度通常可比其它测量仪器高很多。特别是对频率和时间的测量,由于采用了原子频标和原子秒作为基准,使误差减小到极小量级,这是目前人类在测量准确度方面达到的最高标准。电子测量准确度高,正是它在现代科技领域得到广泛应用的重要原因。例如发射人造卫星的控制和遥测系统,如果不够准确,最后一级火箭的速度有千分之二的相对误差,卫星就会偏离预定轨道一百公里.
④ 测量速度快.电子测量由于是通过电子运动和电磁波的传播来进行工作的,因此具有其它测量方法通常无法类比的高速度。
⑤ 易于实现遥测和长期不间断的测量,显示方式又可以做到清晰、直观。由于可以把电子仪器或与它连接的传感器放到人类不便长期停留或无法到达的区域去进行遥测,而且可在被测对象正常工作的情况下进行测量。对于测量结果,电子测量的显示方法也比较清晰、直观,例如发光二极管直接数字显示,便于直接给出结果;荧光屏示波方法,便于形象直观地给出被测量的特征。测量结果还便于打印、绘图或启动指示灯或替铃显示。⑥ 易于利用计算机,形成电子测量与计算技术的紧密结合。电子测量的测量结采和它所需的控制信号都是电信号,这非常有利于它宵接或通过A/D、D/A变换与计算机连接,现在随着微型计算机功能的提高和成本的降低,就可以在不增加仪器体积和不明显增加成本的情况下,使测量仪器的性能发生很大的飞跃,使它具有高性能、多功能的特点。
由于以上电子测量技术的一系列特点,使它广泛应用于自然科学的一切领域.大到天文观测、宇宙航天,小到物质结构、基本粒子,从复杂深奥的生命、细胞、遗传间题到日常的工农业生产、医学、商业各部门,都越来越多地采用了电子测量技术和设备。电子测量技术的发展是与自然科学特别是电子技术的发展互相促进、互相推动的一方面电子测量技术的发展为自然科学特别是电子学的研究、实验、分析和检验提供了条件,另一方面自然科学的发展特别是电子科学技术的发展向电子测量技术不断提出新课题。同时,近代电子学、计算科学、物理学和材料学等的发展又反过来为电子测量提供了新理论、新技术、新工艺、新材料、新器材,形成了相辅相成不可分割的关系。
随着被测试系统、产品的发展水平日趋提高,测量与仪器速度越来越快、体积越来越小、应用范围越来越广,人们对测试测量技术及精密仪器的要求越来越高,促使测试测量技术和测量仪器不断出现新理论、新技术和新方法。电子测量仪器室技术密集型、知识密集型的产业。电子测量仪器对国民经济有着重大的辐射作用和影响力仪器仪表对国民经济有着巨大的辐射作用和影响力,测量仪器对工业具有先导作用。
第五篇:检测技术与自动化装置
检测技术与自动化装置 天津大学
A+ 2 浙江大学
A+ 3 清华大学
A+ 4 北京航空航天大学
A+ 5 华中科技大学
A+ 6 南京理工大学
A+ 7 中南大学
A 8 中国科学技术大学
A 9 同济大学
A 10 东北大学
A 11 东南大学
A 12 西安交通大学
A 13 哈尔滨工业大学 A 14 北京科技大学
A 15 华南理工大学
A 16 北京理工大学
A 17 电子科技大学
A 18 哈尔滨工程大学 A 19 大连理工大学
A 20 北京工业大学
A 21 沈阳工业大学
A 22 华东理工大学
A 23 西北工业大学
A 24 太原理工大学
A 25-60 南昌航空工业学院
B+
北京化工大学
B+
四川大学
B+
长春理工大学
B+
合肥工业大学
B+
中国矿业大学
B+
南京航空航天大学
B+
燕山大学
B+
北京邮电大学
B+
重庆大学
B+
桂林工学院
B+
山东大学
B+
广东工业大学
B+
湖南大学
B+
武汉工程大学
B+
河北工业大学
B+
大连海事大学
B+
武汉理工大学
B+
北方工业大学
B+
西安理工大学
B+
重庆邮电大学
B+
北京交通大学
B+
上海理工大学
B+
南京林业大学
B+
杭州电子科技大学
B+
华侨大学
B+
上海大学
B+
长春工业大学
B+
沈阳理工大学
B+
南京农业大学
B+
浙江工业大学
B+
安徽工业大学
B+
中山大学
B+
江南大学
B+
山东轻工业学院 B+
上海海事大学
B+ 61-96 郑州大学
B
西安电子科技大学
B
西安工程大学
B
哈尔滨理工大学 B
河南大学
B
北京信息科技大学
B
河海大学
B
安徽大学
B
武汉大学
B
中北大学
B
广西大学
B
山东建筑大学
B
安徽工程科技学院
B
长江大学
B
长安大学
B
山东科技大学
B
东北电力大学
B
天津理工大学
B
青岛科技大学
B
兰州交通大学
B
华东交通大学
B
天津科技大学
B
西安科技大学
B
厦门大学
B
兰州理工大学
B
河北大学
B
西南科技大学
B
中国地质大学
B
北京工商大学
B
东华大学
B
南华大学
B
西安工业大学
B
中国石油大学
B
河南理工大学
B
沈阳化工学院
B
辽宁石油化工大学
B
控制理论与控制工程 浙江大学
A+ 2 清华大学
A+ 3 东北大学
A+ 4 上海交通大学
A+ 5 西北工业大学
A+ 6 东南大学
A+ 7 华南理工大学
A+ 8 哈尔滨工业大学 A 9 北京理工大学
A 10 北京航空航天大学
A 11 中南大学
A 12 南京理工大学
A 13 哈尔滨工程大学 A 14 大连理工大学
A 15 燕山大学
A 16 西安交通大学
A 17 广东工业大学
A 18 北京科技大学
A 19 华中科技大学
A 20 上海大学
A 21 重庆大学
A 22 同济大学
A 23 天津大学
A 24 华北电力大学
A 25 中国科学技术大学
A 26 北京交通大学
A 27 南开大学
A 28 东华大学
A 29 北京化工大学
A 30 北京大学
A 31 山东大学
A 34 同济大学
A 35-82 江南大学
B+
华东理工大学
B+
浙江工业大学
B+
南京航空航天大学
B+
兰州理工大学
B+
河北工业大学
B+
吉林大学
B+
中国石油大学
B+
西安理工大学
B+
武汉理工大学
B+
武汉科技大学
B+
山东科技大学
B+
江苏大学
B+
中国矿业大学
B+
郑州大学
B+
湖南大学
B+
大连海事大学
B+
厦门大学
B+
杭州电子科技大学
B+
西安电子科技大学
B+
兰州交通大学
B+
重庆邮电大学
B+
内蒙古科技大学 B+
天津工业大学
B+
河南理工大学
B+
沈阳工业大学
B+
南京师范大学
B+
电子科技大学
B+
合肥工业大学
B+
苏州大学
B+
广西大学
B+
武汉大学
B+
河海大学
B+
青岛科技大学
B+
太原理工大学
B+
北京工业大学
B+
南通大学
B+
鞍山科技大学
B+
南京工业大学
B+
上海海事大学
B+
四川大学
B+
湖南科技大学
B+
辽宁工程技术大学
B+
沈阳理工大学
B+
黑龙江大学
B+
西安建筑科技大学
B+
辽宁石油化工大学
B+
北京邮电大学
B+ 83-129
西南交通大学
B
西华大学
B
河北理工大学
B
青岛大学
B
东北电力大学
B
中国海洋大学
B
辽宁工学院
B
江苏科技大学
B
太原科技大学
B
三峡大学
B
长春工业大学
B
北方工业大学
B
安徽理工大学
B
新疆大学
B
昆明理工大学
B
安徽工业大学
B
曲阜师范大学
B
深圳大学
B
内蒙古工业大学 B
南昌大学
B
哈尔滨理工大学 B
天津理工大学
B
南京邮电大学
B
河南科技大学
B
河南大学
B
福州大学
B
中北大学
B
西安科技大学
B
陕西科技大学
B
湖南工业大学
B
长沙理工大学
B
北京工商大学
B
天津科技大学
B
河北大学
B
大连大学
B
江西理工大学
B
长安大学
B
扬州大学
B
西南科技大学
B
东北林业大学
B
渤海大学
B
郑州轻工业学院 B
贵州大学
B
中国地质大学
B
河北科技大学
B
南京大学
B
北京建筑工程学院
B