第一篇:《土力学》教案
《土力学》教案
Soil Mechanics
3土中应力计算
为了对建筑物地基基础进行沉降(变形)以及对地基进行强度与稳定性分析,必须知道建筑前后土中的应力分布与变化规律。
土中的应力包括:
土的自重应力:自然状态下土中的应力。附加应力:外加荷载(如建筑物、车辆、地震等)引起的土的应力变化量。土中应力计算一般采用弹性理论求解,假定地基土是均匀、连续、各向同性的半空间线性变形体。当然这种假定与实际土大相径庭。不过,当附加应力不超过一定范围时,土的应力应变关系可近似为直线关系,此时应用弹性理论计算土中应力还是比较准确的。
要求:掌握土的自重应力、附加应力的计算及基底压力计算,了解有效应力的概念。
3.1 土中自重应力
3.1.1均质土的自重应力计算
假设:地基土是弹性半无限空间体(此时土无侧向变形及剪切变形),如P47图3.1所示。
自重应力计算: 土的竖向自重应力为:
czz
土的水平自重应力为:
cxcyK0cz
竖向及水平面上的剪应力为零:
xyyzzx0
2.1.2 其它情况下土自重应力计算(1)多层土地基 czihi
ii,hi分别为i层土的重度与厚度。
(2)有地下水影响时
将地下水面作为一分界面,地下水面以下以土的浮重度代替重度进行计算。因为影响土体变形的是有效应力。** 有效应力原理:
u
总应力,孔隙水,,u分别为有效应力,压力。
举例(海底的土表面上的水压力是很大,但土很软,若将水压力该为其它压力,土就会被压实。
(3)自重应力对土体变形的影响:分老土与新土。
P47例3.1
已知:
119kN/m,h12.0m
3sat19.4kN/m,h22.5m 3sat17.4kN/m,h34.5m
求:
绘制自重应力与空隙水压力(静水压力)分布图。
33解:
00kPa
cz11h117.44.538kPa
cz21h12h138(19.49.8)2.562kPacz31h12h23h362(17.49.8)4.596.2kPacz31h12h23h33819.42.517.44.5164.8kPaww(h1h2)9.8768.6kPa
自重应力与空隙水压力(静水压力)分布如上图所示。
3.2基底压力分布与简化计算
基底压力(接触压力):建筑物荷载通过基础传给地基的压力。基地压力分布很复杂(涉及上部建筑、基础与地基的相互作用),与基础的刚度、平面形状、大小、埋置深度有关,还与基础上的荷载大小与分布、地基土的性质有关。
1)柔性基础:刚度小,抵抗弯曲变形的能力很小,基础随地基一起变形。柔性基础的基底压力分布与其上部荷载分布情况一致。例如:土坝、路基… 如P48图3.4所示。
2)刚性基础:刚度大,受到外载后基础产生弯曲变形很小。基础下的地基变形一致,随荷载增大基底压力变化如P48图3.5所示。例如:柱式独立基础 P48图3.5
对于工业与民用建筑,当基础尺寸较小时,如柱下单独基础及墙下条形基础等,基地压力可当作直线分布按材料力学公式简化计算。3.2.1
基底压力的简化计算 1)中心受压基础
作用在基底上的荷载合力通过基底的形心时,基底压力可假定为均匀分布(P49图3.6),此时基底压力计算为:
FGp
(2.2.1)
AF-基础上的竖向力设计值
G-基础自重设计值及其上回填土的有效重量
A-基底面积。
P49图3.6
2)偏心受压基础
在单向偏心荷载作用下,设计时通常将基础长边方向定在偏心方向。此时基底边缘压力按材料力学偏心受压公式计算:
pmaxFGMFG6e1pminblWbll
M-基底形心上的力矩设计值 M(FG).e e-荷载偏心矩 W-基础底面的惯性矩,矩形Wbl/6 2P49图3.7
当e1/6时,基底压力呈梯形分布; P49图
3.7
(a
当e1/6时,呈三角形分布,pmin0P49图3.7(b))
当e1/6时,pmin0,基底与地基部分脱开,这时可根据偏心荷载与基底反力平衡的条件求取。
2(FG)pmax3b(l/2e)P49图3.7(c)
3)基底附加应力:建筑物建成后,作用于基底上的平均应力减去原土层的自重应力。
一般而言,地基在自重应力作用下,变形早已完成,故只有附加应力才可能引起地基产生附加应力和变形。,附加应力计算为:
p0pcdp0d
d——基础埋深 P50图3.8
3.3 地基附加应力计算
计算方法是假定土是均匀、连续、各向同性的线弹性体,用弹性理论求解。假定很多,求解过程仍然是很复杂的。
3.3.1竖向集中力作用下的附加应力计算。
如P50图3.9
竖向集中力作用于半空间表面时,任一点的应力、位移解由法国力学家J.Boussinesq 求出,较常用的是竖向正应力与位移:
33Fz3F3zcos
522R2RF(1)z1w[32(1)]
2ERR为了计算方便,将前一式变为: 3Fz3Fzz5225/22R2(rz)31F
25/222[(r/z)1]zFa2z!附加应力与土的力学性质(如弹性模量无关)
系数f(r/z)见 P51 表3.1。F——集中力
r——集中力作用点与计算点的水平距离 z——集中力作用点与计算点的竖向距离
P52页例3-2:
332已知:地表面集中力F200kN 求:
1)地面下z3m处水平面上的附加应力;
2)距作用点r1m处竖直面上的附加应力; 解:
Fza2
zf(r/z)
1)已知Z,根据一系列r,定,再求z,结果如P52表3.2。
2)已知r,根据一系列Z,定,再求z,结果如P52表3.3。P52图3.10
应力扩散的水平与竖向规律(水平方向,离荷载作用轴线越远,附加应力越小;竖向则是离荷载作用面越远,附加应力越小)。三维图。
下面的各种情况计算是以本例为基础的。
?多个集中力作用 叠加原理。
zFiai2 z3.3.2 分布荷载作用下的附加应力 P55例3.3: 图3.16 有一矩形底面基础b=4m, l=6m, 其上作用有均布荷载p0100kPa, 计算图中点c及点k下6米处的附加应力.解:已知集中力的解,怎样求矩形均匀分布区域下的附加应力.若知道均布矩形荷载角点下的附加应力可以竖向集中力作用下的附加应力计算为基础,大家能知道该怎么做吗。
可根据微积分的思想来求解,以矩形荷载面角点为原点,在矩形面积内取一微面积dxdy,则该微面积上的均布荷载可看作一集中力,该微面积中心坐标为(x,y),则在角点下任意深度z处的附加应力为:
dFp0dxdy3dFz
dz2225/22(xyz)3p0zdxdy2225/22(xyz)zdzcp0A
cc(l/b,z/b)见P54表3.4 1)角点c处的附加应力: z=0, l=6,b=4,cc(l/b,z/b)c(1.5,0)0.25 zcp00.25*100kPa25kPa 2)点k下6米处的附加应力:
33?关键在于:点k不在角点下, 怎么办 与4个面积有关:ksdi,kscr, kiaj,krbj, c1c(l/b,z/b)c(9/1,6/1)c(9,6)0.05
c2c(l/b,z/b)c(3/1,6/1)c(3,6)0.033c3c(l/b,z/b)c(9/3,6/3)c(3,2)0.131
c4c(l/b,z/b)
c(3/3,6/3)c(1,2)0.084zk(c1c2c3c4)p06.4kPa
3.3.3 其它形式荷载
1)三角形分布矩形荷载作用下的附加应力 P56图3.18
求解方法同样采用微积分原理,只是p0是变化的。
z1t1p0z2t2p0t1,t2都是l/b,z/b的函数,见P5657,表3.5前者为小边角点的附加应力, 后者为大边角点的附加应力.2)同理可求得均布圆形荷载(P57图3.19)中心与周边的附加应力系数(P57表3.6)3)均布条形荷载(P58图3.22)作用下的附加应力系数见P59表3.7.!各种荷载形式原理图,及参数.均布条形荷载与均布方形荷载附加应力比较:见P60 页图3.23 比较影响范围及原因。
P60页例3.5。
已知: 条形基础, 均布荷载250kPa.求: 1)基底中心下附加应力分布规律 2)深度z=2m的水平面上的附加应力.解: 均布条形基础下的附加应力计算:
zsz(x/b,z/b)p0 1)已知x=0,z变化 zsz(0,z/2)p0
查表求一系列z对应的系数,然后算出附加应力值.2)已知z=0,x变化
zsz(x/2,2/2)p0sz(x/2,1)p0
查表求一系列x对应的系数,然后算出附加应力值.结果如P61图3.24.附加应力变化趋势(附加应力的扩散现象)。2.3.1 双层地基
当地基土性质差异过大时,采用均匀、连续、各向同性的线性半空间计算误差就很大
(1)上层软而下层硬时,引起上层应力集中
(2)上层硬而下层软,引起上层应力扩散。P66例3.6 图3.30
已知: 粘土厚10米, 其下砂土层为承压水顶部水头为6米.求:最大开挖深度.解: 开挖基坑破坏为孔隙水压力超过上覆有效应力: Asat(10H)uA0 H=6.89
作业: P66: 3.2,3.4,3.5,3.8.
第二篇:土力学实验教案
《土力学与基础工程》实验教案
绪论
一、土工试验的对象和作用
土工试验是对土的工程性质进行测试,并获得土的物理性指标(如密度、含水率、土粒比重等)和力学性指标(如压缩模量、抗剪强度指标等)的实验工作,从而为工程设计和施工提供可靠的参数,它是正确评价工程地质条件不可缺少的前提和依据。
土是自然界的产物,其形成过程、物质成分以及工程特性是极为复杂的,并且随其受力状态、应力历史、加载速率和排水条件等的不同而变得更加复杂。、所以,在进行各类工程项目设计和施工之前,必须对工程项目所在场地的土体进行土工试验,以充分了解和掌握土的各种物理和力学性质,从而为场地岩土工程地质条件的正确评价提供必要的依据。因此,土工试验是各类工程建设项目中首先必须解决的何题。
从土力学的发展历史及过程来看,从某种意义上也可以说土力学是土的实验力学,如库仑(Coulomb)定律、达西(Darcy)定律、普洛特(Practor))压实理论以及描述土的应力一应变关系的双曲线模型等,无一不是通过对、土的各种试验而建立起来的。因此,土工试验又为土力学理论的发展提供依据,即使在计算机及计算技术高度发达的今天,可以把土的复杂的弹塑性应力一应变关系纳人到岩土工程的变形与稳定计算中去,但是土的工程性质的正确测定对于这些计算模型的建立以及模型中参数的确定仍然是一个关键伺题。所以,土工试验在土力学的发展过程中占有相当重要的地位。
采用原位测试方法对土的工程性质进行测定,较之室内土工试验具有不少优点,原位测试方法可以避免钻孔取土时对土的扰动和取土卸荷时土样回弹等对试验结果的影响,试验结果可以直接反映原位土层的物理状态,某些不易采取原状土样的土层(如深层的砂),只能采用原位测试的方法。但在进行原位测试时,其边界条件较为复杂。在计算分析时,有时还需作不少假定方能进行,如十字板剪切试验结果整理中的竖向和水平向抗剪强度相等的假定等,并且有些指标还不能用原位测试直接测定,如应为路径、时间效应及应变孩率等对主的性状的影响。室内土工试验由于能进行各种模拟控制试验以及进行全过程和全方位的量测和观察,在某种程度上反而能满足土的计算或研究的要求。因此,室内土工试验又是原位测试所代替不了的。
任何试验都有其一定的局限性,土工试验一样也有其局限性。其实,当土样从钻孔中取出时,就已产生两种效应使该土样偏离了实际情况,一是取土、搬运及试验切土时的机械作用扰动了土的结构,降低了土的强度;二是改变了土的应力条件,土样产生回弹膨胀。这两种效应统称为扰动,扰动使试验指标不符合原位土体的工程性状。除此以外,试样的数量也是非常有限的,一层土一般只能取几个或十几个试样,试样总体积与其所代表的土层体积相比,相差悬殊;同时,土还是各向异性的,在垂直方向上与在水平方向上,其性质指标是不相同的。而室内土工试验的应力条件是相对理想和单一化的,如固结试验是在完全侧限条件
下进行的,三轴压缩试验也仅是轴对称的,这些条件均与实际土层的受力条件不尽相符。因此,土工试验有一定的局限性,另外,土工试验成果因试验方法和试验技巧熟练程度的不同,也可能会有较大差别,这种差别在某种程度上甚至大于计算方法所引起的误差。
二、土工试验项目
(1)(2)(3)(4)(5)(6)(7)
土的含水率试验 土的密度试验 土的液限塑限试验 土的击实试验 土的渗透试验 土的压缩固结试验 土的直剪试验
实验一: 密度试验(环刀法)
一、概述
土的密度ρ是指土的单位体积质量,是土的基本物理性质指标之一,其单位为g/cm3。土的密度反映了土体结构的松紧程度,是计算土的自重应力、干密度、孔隙比、孔隙度等指标的重要依据,也是挡土墙土压力计算、土坡稳定性验算、地基承载力和沉降量估算以及路基路面施工填土压实度控制的重要指标之一。土的密度一般是指土的天然密度。
二、试验方法及原理
密度试验方法有环刀法、蜡封法、灌水法和灌砂法等。对于细粒土,宜采用环刀法;对于易碎、难以切削的土,可用蜡封法,对于现场粗粒土,可用灌水法或灌砂法。环刀法就是采用一定体积环刀切取土样并称土质量的方法,环刀内土的质量与环刀体积之比即为土的密度。
1.仪器设备
(1)恒质量环刀:内径6.18cm(面积30cm2)或内径7.98cm(面积50cm2),高20mm,壁厚1.5mm;
(2)称量500g、最小分度值0.1g的天平;
(3)切土刀、钢丝锯、毛玻璃和圆玻璃片等。
2.操作步骤
(1)按工程需要取原状土或人工制备所需要求的扰动土样,其直径和高度应大于环刀的尺寸,整平两端放在玻璃板上。
(2)在环刀内壁涂一薄层凡士林,将环刀的刀刃向下放在土样上面,然后用手将环刀垂直下压,边压边削,至土样上端伸出环刀为止,根据试样的软硬程度,采用钢丝锯或修土刀将两端余土削去修平,并及时在两端盖上圆玻璃片,以免水分蒸发。
(3)擦净环刀外壁,拿去圆玻璃片,然后称取环刀加土质量,准确至0.1g。
环刀法试验应进行两次平行测定,两次测定的密度差值不得大于0.03 g/cm3.,并取其两次测值的算术平均值。
实验二: 含水率试验(烘干法)
一、概述
土的含水率是指土在温度105-110℃下烘到衡量时所失去的水质量与达到恒量后干土质量的比值,以百分数表示。
二、试验方法及原理
含水率试验方法有烘干法、酒精燃烧法、比重法、碳化钙气压法、炒干法等,其中以烘干法为室内试验的标准方法。烘干法是将试样放在温度能保持105~110℃的烘箱中烘至恒量的方法,是室内测定含水率的标准方法。
1.仪器设备
(1)保持温度为105110℃的自动控制电热恒温烘箱或沸水烘箱、红外烘箱、微波炉等其他能源烘箱;(2)称量200g、最小分度值0.0lg的天平;(3)装有干燥剂的玻璃干燥缸;(4)恒质量的铝制称量盒。
2.操作步骤
(1)从土样中选取具有代表性的试样15~30g(有机质土、砂类土和整体状构造冻土为50g),放人称量盒内,立即盖上盒盖,称盒加湿土质量,准确至0.0lg。
(2)打开盒盖,将试样和盒一起放人烘箱内,在温度105^-110℃下烘至恒量。试样烘至恒量的时间,对于粘土和粉土宜烘8~10h,对于砂土宜烘6~8h。对于有机质超过干土质量5%的土,应将温度控制在65~70℃的恒温下进行烘干。
(3)将烘干后的试样和盒从烘箱中取出,盖上盒盖,放人干燥器内冷却至室温。(4)将试样和盒从干燥器内取出,称盒加干土质量,准确至0.0lg。
烘干法试验应对两个试样进行平行铡定,并取两个含水率测值的算术平均值。当含水率小于40%时,允许的平行测定差值为1%;当含水率等于、大于40%时,允许的平行测定差值为2%。
实验三: 土的液塑限试验
一、概述
界限含水率试验要求土的颗粒粒径小于0.5mm, 且有机质含量不超过5%,且宜采用天然含水率的试样,但也可采用风干试样,当试样中含有粒径大于0.5mm的土粒或杂质时,应过0.5mm的筛。
二、液限试验(圆锥仪液限试验)
液限是区分粘性土可塑状态和流动状态的界限含水率,测定土的液限主要有圆锥仪法、碟式仪法等试验方法,也可采用液塑限联合测定法测定土的液限。
圆锥仪液限试验就是将质量为76g的圆锥仪轻放在试样的表面,使其在自重作用下沉人土中,若圆锥体经过5s恰好沉人土中10 mm深度,此时试样的含水率就是液限。
1.仪器设备
(1)圆锥液限仪;
(2)称量200g,最小分度值0.0lg的天平;(3)烘箱、干燥器;
(4)铝制称量盒、调土刀、小刀、毛玻璃板、滴管、吹风机、孔径为0.5mm的标准筛、研钵等设备。
2.操作步骤
(1)选取具有代表性的天然含水率土样或风干土样,若土中含有较多大于0.5mm的颗粒或夹有多量的杂物时,应将土样风干后用带橡皮头的研杵研碎或用木棒在橡皮板上压碎,然后再过0.5mm的筛。
(2)当采用天然含水率土样时,取代表性土样250g,将试样放在橡皮板或毛玻璃板上搅拌均匀;当采用风干土样时,取过0.5mm筛的代表性土样200g,将试样放在橡皮板上用纯水将土样调成均匀膏状,然后放人调土皿中,盖上湿布,浸润过夜。
(3)将土样用调土刀充分调拌均匀后,分层装人试样杯中,并注意土中不能留有t空隙,装满试杯后刮去余土使土样与杯口齐平,并将试样杯放在底座上。
(4)将圆锥仪擦拭干净,并在锥尖上抹一薄层凡士林,两指捏住圆锥仪手柄,保持锥体垂直,当圆锥仪锥尖与试样表面正好接触时,轻轻松手让锥体自由沉人土中。
(5)放锥后约经5s,锥体人土深度恰好为10 mm的圆锥环状刻度线处,此时土的含水率即为液限。(6)若锥体人土深度超过或小于l0mm时,表示试样的含水率高于或低于液限,应该用小刀挖去沾有凡士林的土,然后将试样全部取出,放在橡皮板或毛玻璃板上,根据试样的干、湿情况,适当加纯水或边调拌边风干重新拌和,然后重复(3)~(5)试验步骤。
(7)取出锥体,用小刀挖去沾有凡士林的土,然后取锥孔附近土样约10~15g,放人称量盒内,测定其含水率。
液限试验需进行两次平均测定,并取其算术平均值,其平行差值不得大于2%。
三、塑限试验(滚搓法)
塑限是区分粘性土可塑状态与半固体状态的界限含水率,测定土的塑限的试验方法主要是滚搓法。滚搓法塑限试验就是用手在毛玻璃板上滚搓土条,当土条直径达3mm时产生裂缝并断裂,此时试样的含水率即为塑限。
1.仪器设备
(1)200mm×300mm的毛玻璃板;
(2)分度值0.02mm的卡尺或直径3 mm的金属丝;(3)称量200g,最小分度值0.0lg的天平;(4)烘箱、干燥器;
(5)铝制称量盒、滴管、吹风机、孔径为0.5mm的筛、研钵等。
2.操作步骤
(1)取代表性天然含水率试样或过0.5 mm筛的代表性风干试样100g, 放在盛土皿中加纯水拌匀,盖上湿布,湿润静止过夜。(2)将制备好的试样在手中揉捏至不粘手,然后将试样捏扁,若出现裂缝,则表示其含水率已接近塑限。
(3)取接近塑限含水率的试样8~10g, 先用手捏成手指大小的土团(椭圆形或球形),然后再放在毛玻璃板上用手掌轻轻滚搓,滚搓时应以手掌均匀施压于土条上,不得使土条在毛玻璃板上无力滚动,在任何情况下土条不得有空心现象,土条长度不宜大于手掌宽度,在滚搓时不得从手掌下任一边脱出。
(4)当土条搓至3 mm直径时,表面产生许多裂缝,并开始断裂,此时试样的含水率即为塑限。若土条搓至3 mm直径时,仍未产生裂缝或断裂,表示试样的含水率高于塑限;或者土条直径在大于3 mm时已开始断裂,表示试样的含水率低于塑限,都应重新取样进行试验。
(5)取直径3mm且有裂缝的土条3-5g,放人称量盒内,随即盖紧盒盖,测定土条的含水率。塑限试验需进行两次平均测定,并取其算术平均值,其平行差值不得大于2%。
四、液、塑限联合测定法
液、塑限联合测定法是根据圆锥仪的圆锥人土深度与其相应的含水率在双对数坐标上具有线性关系的特性来进行的。利用圆锥质量为76g的液塑限联合测定仪测得土在不同含水率时的圆锥人土深度,并绘制其关系直线图,在图上查得圆锥下沉深度为l0mm(或17mm)所对应的含水率即为液限,查得圆锥下沉深度为2mm所对应的含水率即为塑限。
1.仪器设备
(1)液塑限联合测定仪。
(2)称量200g, 最小分度值0.0lg的天平。
(3)烘箱、干燥器。
(4)铝制称量盒、调土刀、孔径为0.5mm的筛、研钵、凡士林等。
2.操作步骤
(1)原则上采用天然含水率土样,但也可采用风干土样,当试样中含有粒径大于0.5mm的土粒和杂物时,应过0.5 mm筛。
(2)当采用天然含水率土样时,取代表性试样250g;采用风干土样时,取过0.5mm筛的代表性试样200g, 将试样放在橡皮板上用纯水调制成均匀膏状,放人调土皿,盖上湿布,浸润过夜。
(3)将制备好的试样用调土刀充分调拌均匀后,分层装人试样杯中,并注意土中不能留有空隙,装满试杯后刮去余土使土样与杯口齐平,并将试样杯放在联合测定仪的升降座上。
(4)将圆锥仪擦拭干净,并在锥尖上抹一薄层凡士林,然后接通电源,使电磁铁吸住圆 锥。
(5)调节零点,使屏幕上的标尺调在零位,然后转动升降旋钮,试样杯则徐徐上升,当锥尖刚好接触试样表面时,指示灯亮,立即停止转动旋钮。
(6)按动控制开关,圆锥则在自重下沉人试样,经5s后,测读显示在屏幕上的圆锥下沉深度,然后取出试样杯,挖去锥尖入土处的凡士林,取锥体附近的试样不少于log,放人称量盒内,测定含水率。
(7)将试样从试样杯中全部挖出,再加水或吹干并调匀,重复以上试验步骤分别测定试样在不同含水率下的圆锥下沉深度。液塑限联合测定至少在三点以上,其圆锥入土深度宜分别控制在3~4mm,7~9mm和15~17mm。3.液限和塑限确定
以含水率为横坐标、以圆锥人土深度为纵坐标在双对数坐标纸上绘制含水率与圆锥人土深度关系曲线,如下图所示。三点应在一直线上,如图中A线。当三点不在一直线上时,通过高含水率的点与其余两点连成两条直线,在圆锥下沉深度为2mm处查得相应的两个含水率,当所查得的两个含水率差值小于2%时,应以该两个含水率平均值的点(仍在圆锥下沉深度为2mm处)与高含水率的点再连一直线,如图中B线,若两个含水率的差值大于、等于2时,则应重做试验。
在含水率与圆锥下沉深度的关系图上查得圆锥下沉深度为17mm所对应的含水率为17mm液限;查得圆锥下沉深度为l0mm所对应的含水率为l0mm液限;查得圆锥下沉深度为2mm所对应的含水率为塑限,取值以百分数表示,准确至0.1%。
实验四 击实试验
一、概述
本实验的目的是用击实仪在一定击实次数下测定土的最大干密度和最优含水量,借以了解土的压实性质。
本实验采用南实处型击实仪,此仪器适用于粒径小于5毫米的土粒,如粒径大于5毫米的土粒重量介于总土量的3—30%时,允许以本仪器用粒径小于5毫米的土料进行实验,但应对实验结果进行校正,如粒径大于5毫米的土粒重量小于总量的30%时,可以不加校正.二、试验设备、方法与原理 1.仪器设备
(1)击筒容量为1000立方厘米, 锤重2.5公斤,南实处型落距为460毫米.(2)天平:感量0.01克.(3)台秤:称重10公斤,感量1克.(4)筛:孔径5毫米.(5)其它:推土器,削土刀,称量盒,搪瓷盘,水喷水器,碎土设备和少量轻机油.2.操作步骤
(1)将具有代表性的风干土样,或在低于60ºC摄氏度温度下烘干的土样,或天然含水量低于塑限可以碾散过筛的土样,放在橡皮板上用木碾碾散,过5毫米筛后备用(本步骤由实验室完成).(2)参照土的塑限,估计其最佳含水量0p,预定至少五个不同含水量,使各含水量依次相差约2%,且其中至少有二个大于和小于0p。各个预定含水量及土样原有含水量(由实验室给出),按下式计算所需的加水量: mωmω00.01(ωω0)
10.01ω0式中: mω——所需的加水质量,克。
mω0——含水量为ω0时的土质量,克。
ω——要求达到的预期含水量,%。
ω0——土样原有的含水量,%。
(3)按预定含水量制备试样。取土样约2.5千克,平铺于不吸水的平板上,用喷水设备往土样上均匀喷洒预定的水量,稍静置一段时间后,装入塑料袋内或密封于盛土器内静置备用。静置时间对高液限粘土(CH)不得少于一昼夜,对低液限粘土(CL)可酌情缩短,但不应少于12小时.(4)准备好击实筒和击锤,把击实筒固定于底板,检查各部分螺丝接头是否完好,筒与底板是否接触好,螺丝是否拧紧,击实筒底面和筒内壁需涂少许润滑油.(5)将击实筒连底板放在坚实地面上,将制备的土样分三层放入击实筒内,每装一层击实一层,每层25击.如土系用于中小型堤坝工程,则可用每层15击.每层的装土及击实方法如下: 取制备好的试样600—800克(使击实后的略高于筒高的1/3)倒入筒内,整平其表面,并用圆木板稍加压紧,按25击(或15击)击数进行击实.击实时,提起击锤与导筒顶接触(落高为460毫米)后,使其自由铅直下落,每次锤击时应挪动击锤,使锤迹均匀分布于土面.然后安装护筒,把土面刨成毛面,重复上述步骤进行第二及第三层的击实.击实后高出击实筒的余土高度不得大于10毫米.(6)用削土刀小心沿护筒内壁与土的接触面划开,转动并取下护筒(注意勿将击实筒内土样带出),齐筒顶细心削平试样,拆除底板.如试样底面超出筒外,亦应削平.然后檫净筒外壁,用台秤称出筒加土重,称重准至1克.(7)用推土器推出筒内试样,从试样中心不同位置处取两小块各约15~30克土,测定其含水量,计算 准至0.1%,其平行误差不得超过1%.(8)按4到7步骤进行其余含水量下土的击实和测定工作.三、计算及制图
1.按下式计算击实后各点的干密度: d10.01
式中: d-—干密度,g/cm
3ρ-—湿密度,g/cm3
ω-—击实后测定的含水量,% 2.将测得的不同d及ω值,绘出d及ω关系曲线(即击实曲线).曲线上峰点的坐标分别为dmax和op.如不能连接成合理曲线时,应进行补点实验.3.按下式计算饱和含水量: sat(%)(1)100% dGs式中:sat(%)--饱和含水量(%);
Gs--土粒比重;
--水的密度g/cm3。
计算几个干密度下土的饱和含水量,以干密度为纵坐标,饱和含水量为横坐标,绘制饱和曲线(见击实实验记录).1.8击实曲线1.5151.7最大干密度1.67最优含水量20%饱和度100%密度rd克/厘米21.6***4
含水量 ω% 实验
五、渗透实验
一、概述:
渗透是水流经多孔介质的现象.若土中渗透水流呈层流状态,则渗透速度与水力坡降成正比.当水力坡降等于1时的渗透速度,称为土的渗透系数.本次实验是在室内南55型渗透仪测定粘性土的渗透系数,渗透系数是估算渗流量,饱和条件下土工建筑物与地基内的渗水流速,以及选择筑坝土料的重要指标.二、试验设备、方法与原理
1.仪器设备
(1)渗透仪
(2)无空气水
(3)量筒: 容量100立方厘米,精度1立方厘米
(4)其他: 秒表,温度计,凡士林,修土刀等
2.操作步骤
(1)按工程需要,取原状土或制备成所需状态的扰动土样,按前述容重实验中环刀取土的方法操作,修平环刀上下土样突出的部分,但不得用刀在土样两端反复涂抹,切削试样时应根据要求将环刀刃口垂直或平行于土的天然层面。
(2)测定试样容重,并取削下的余土测定含水量。
(3)将容器套筒内壁涂上一薄层凡士林,然后将装有试样的环刀推入套筒,并压入止水垫圈.刮去挤出的凡士林.装好带有透水石和垫圈的上下盖,并且用螺丝拧紧,不得漏气漏水。
(4)把装好式样的容器的进水口与供水源装置连通,关止水夹。使供水瓶注满水,直至供水瓶的排气孔有水溢出时为止。
(5)把容器侧立,排气管向上,并打开排气管管夹。然后打开止水夹及进水口管夹,排除容器底部的空气,直至水中无夹带气泡溢出为止。关闭气管管夹,平放好容器。
(6)在不大于200cm水头作用下,静置某一时间,待上出水口7有水溢出后,开始测定。
(7)当采用变水头时,将水头管充水至需要高度后,关止水夹5(2),开动秒表,同时测记起始水头h1,经过时间t后再测记终了水头h2(每次测定的水头差应大于10厘米)。如此连续测记2~3次后,再使水头管水位回升至需要高度,再连续测记数次,前后需6次以上,试验终止①,同时测记试验开始时与终止的水温。
(8)当采用常水头时打开5(1)、5(2)、5(3)止水夹,开动秒表,同时用量筒接取出水口7处
3时间t的渗水量,并测记水头h及水温TºC,如此重复测记6次以上,每次定的水量,应不少于5.0cm。
三、计算及制图
1.按下式计算渗透系数: KT2.20 或
KThaL log1(变水头)Ath2QL(常水头)
Aht注:①每次测定的水头应大于10厘米.对较粘的试样或较密实的试样,测记时间可能长,为避免测试过程中水温变化较大,影响实验结果,规定每测试一次,应在3~4小时内完成.如不能满足上述要求,可加大作用水头或改用负压法.测试时,如发现水流过快,应检查试样及容器漏水或试样集中渗流现象.有,则应重新制样,安装.式中: KT-水温TºC时的土的渗透系数,厘米/秒;a-测压管的断面积,平方厘米;A-试样的断面积,平方厘米;L-试样长度,厘米;t-水头自h1降到h2所经的时间,秒;h1-测压管中开始水头,厘米;
h2-测压管中终了水头,厘米;Q-时间t内的渗透流量,立方厘米;h-常水头,厘米.2.按下述公式计算水温10ºC时的渗透系数.以10ºC为标准是由于地下水渗流的温度在10ºC右,选它做标准是为了符合实际渗透情况.K10KtT 10式中: K10-水温为10ºC时土的渗透系数,厘米/秒;KT-水温为TºC时土的渗透系数,厘米/秒;T-TºC时水的动力粘滞系数,克秒/平方厘米;10-10ºC时水的动力粘滞系数,克秒/平方厘米.T比值与温度的关系见表5—1.10 3.取测得的六个(或四个)渗透系数较接近的数个求其算术平均值.实验六: 土的压缩、固结试验
一、概述
标准固结试验就是将天然状态下的原状土或人工制备的扰动土,制备成一定规格的土样,然后在侧限与轴向排水条件下测定土在不同荷载下的压缩变形,且试样在每级压力下的固结稳定时间为24h。
二、试验方法与原理 1.仪器设备
(1)固结容器。由环刀、护环、透水板、加压上盖等组成,土样面积30cm2或50cm2,高
度2cm。
(2)加荷设备。可采用量程为5~l0kN的杠杆式、磅秤式或气压式等加荷设备。
(3)变形量测设备。可采用最大量程l0mm, 最小分度值0.0lmm的百分表,也可采用一准确度为全量程0.2%的位移传感器及数字显示仪表或计算机。
(4)毛玻璃板、圆玻璃片、滤纸、切土刀、钢丝锯和凡士林或硅油等。
2.试验步骤
(1)按工程需要选择面积为30cm,或50cm的切土环刀,环刀内侧涂上一层薄薄的凡士林或硅油,刀口应向下放在原状土或人工制备的扰动土上,切取原状土样时应按天然状态时垂直方向一致。
(2)小心地边压边削,注意避免环刀偏心入土,应使整个土样进入环刀并凸出环刀为止,然后用钢丝锯(软土)或用修土刀(较硬的土或硬土),将环刀两端余土修平,擦净环刀外壁。
(3)测定土样密度,并在余土中取代表性土样测定其含水率,然后用圆玻璃片将环刀两端盖上,防止水分蒸发。
(4)在固结仪的固结容器内装上带有试样的切土环刀(刀口向下),在土样两端应贴上洁净而湿润的滤纸,再用提环螺丝将导环置于固结容器,然后放上透水石和传压活塞以及定向钢球。
(5)将装有土样的固结容器,准确地放在加荷横梁的中心,如杠杆式固结仪,应调整杠杆平衡,为保证试样与容器上下各部件之间接触良好,应施加1kPa预压荷载;如采用气压式压缩仪,可按规定调节气压力,使之平衡,同时使各部件之间密合。
(6)调整百分表或位移传感器至“0”读数,并按工程需要确定加压等级、测定项目以及试验方法。
(7)加压等级可采用12.5kPa,25kPa,50kPa,l00kPa,200kPa,400kPa,800kPa,1600kPa和3200kPa。第一级压力的大小视土的软硬程度,分别采用12.5kPa, 25kPa或50kPa;最后一级压力应大于土层的自重应力与附加应力之和,或大于上覆土层的计算压力100-200kPa, 但最大压力不应小于400kPa。
(8)当需要确定原状土的先期固结压力时,初始段的荷重率应小于1,可采用0.5或0.25.最后一级压力应使测得的e-lgp曲线下段出现直线段。对于超固结土,应采用卸压、再加压方法来评价其再压缩特性。
(9)当需要做回弹试验时,回弹荷重可由超过自重应力或超过先期固结压力的下一级荷重依次卸压至25kPa,然后再依次加荷,一直加至最后一级荷重为止。卸压后的回弹稳定标准与加压相同,即每次卸压后24h测定试样的回弹量。但对于再加荷时间,因考虑到固结已完成,稳定较快,因此可采用12h或更短的时间。
(10)对于饱和试样,在试样受第一级荷重后,应立即向固结容器的水槽中注水浸没试样,而对于非饱和土样,须用湿棉纱或湿海绵覆盖于加压盖板四周,避免水分蒸发。
(11)当需要预估建筑物对于时间与沉降的关系,需要测定竖向固结系数CV,或对于层理构造明显的软土需测定水平向固结系数CH时,应在某一级荷重下测定时间与试样高度变化的关系。读数时间为6s, 15s, lmin, 2.25min, 4min,6.25min,9min,12.25min,16min,20.25min,25min,30. 25min,36min,42.25min,49min,64min,100min,200min,400min,23h,24h,直至稳定为止。当测定CH时,需具备水平向固结的径向多孔环,环的内壁与土样之间应贴有滤纸。
(12)当不需要测定沉降速率时,则施加每级压力后24h测定试样高度变化作为稳定标准;只需测定压缩系数的试样,施加每级压力后,每小时变形达0.0lmm时,测定试样高度变化作为稳定标准。(13)当试验结束时,应先排除固结容器内水分,然后拆除容器内各部件,取出带环刀的土样,必要时,揩干试样两端和环刀外壁上的水分,测定试验后的密度和含水率。
实验七: 直剪试验
一、概述
直接剪切试验就是直接对试样进行剪切的试验,简称直剪试验,是测定土的抗剪强度的一种常用方法,通常采用4个试样,分别在不同的垂直压力p下,施加水平剪切力,测得试样破坏时的剪应力τ, 然后根据库仑定律确定土的抗剪强度参数内摩擦角φ甲和粘聚力c。
二、试验方法
直接剪切试验一般可分为慢剪、固结快剪和快剪三种试验方法。
1.慢剪试验。先使土样在某一级垂直压力作用下,固结至排水变形稳定(变形稳定标准为每小时变形不大于0.005mm),再以小于每分钟0.02mm的剪切速率缓慢施加水平剪应力,在施加剪应力的过程中,使土样内始终不产生孔隙水压力,用几个土样在不同垂直压力下进行剪切,将得到有效应力抗剪强度参数φs、cs,但历时较长,剪切破坏时间可按下式估算
tf =50t50 式中 tf —达到破坏所经历的时间;
t50 —固结度达到50%的时间。
2.固结快剪试验。先使土样在某一级垂直压力作用下,固结至排水变形稳定,再以每分钟0.8mm的剪切速率施加剪力,直至剪坏,一般在3 ~ 5min内完成,适用于渗透系数小于10-6cm/s的细粒土。由于时间短促,剪力所产生的超静水压力不会转化为粒间的有效应力,用几个土样在不同垂直压力下进行慢剪,便能求得抗剪强度参数值φcq、ccq,其值称为总应力法抗剪强度参数。
3.快剪试验。采用原状土样尽量接近现场情况,以每分钟0.8mm的剪切速率施加剪力,直至剪坏,一般在3~5min内完成,适用于渗透系数小于10-6cm/s的细粒土。这种方法将使粒间有效应力维持原状,不受试验外力的影响,但由于这种粒间有效应力的数值无法求得,所以试验结果只能求得(σtan φq + cq)的混合值。快速法适用于测定粘性土天然强度,但φq角将会偏大。
三、仪器设备
1.直剪仪。采用应变控制式直接剪切仪。
2.测力计。采用应变圈,量表为百分表或位移传感器。
3.环刀。内径6.18cm, 高2.0cm。
4.其它。切土刀、钢丝锯、滤纸、毛玻璃板、圆玻璃片以及润滑油等。
四、操作步骤
1.对准剪切盒的上下盒,插人固定销钉,在下盒内放洁净透水石一块及湿润滤纸一张。
2.将盛有试样的环刀,平口向下、刀口向上,对准剪切盒的上盒,在试样面放湿润滤纸一张及透水石一块,然后将试样通过透水石徐徐压人剪切盒底,移去环刀,并顺次加上传压活塞及加压框架。
3.取不少于4个试样,并分别施加不同的垂直压力,其压力大小根据工程实际和土的软硬程度而定,一般可按25kPa,50kPa,100kPa,200kPa,300kPa,400kPa,600kPa„施加,加荷时应轻轻加上,但必须注意,如土质松软,为防止试样被挤出,应分级施加。
4.若试样是饱和试样,则在施加垂直压力5min后,向剪切盒内注满水;若试样是非饱和土试样,不必注水,但应在加压板周围包以湿棉纱,以防止水分蒸发。
5.当在试样上施加垂直压力后,若每小时垂直变形不大于0.005mm, 则认为试样已达到固结稳定。6.试样达到固结稳定后,安装测力计,徐徐转动手轮,使上盒前端的钢珠恰与测力计接触,测记测力计初读数。
7.松开外面四只螺杆,拔去里面固定销钉,然后开动电动机,使应变圈受压,观察测力计的读数,它将随下盒位移的增大而增大,当测力计读数不再增加或开始倒退时,即出现峰值,认为试样已破坏,记下破坏值,并继续剪切至位移为4mm时停机;当剪切过程中测力计读数无峰值时,应剪切至剪切位移为6mm时停机。
8.剪切结束后,卸去剪切力和垂直压力,取出试样,并测定试样的含水率。
第三篇:《土力学》教案2004(1章)
《土质土力学》
教案
第一章 绪论
一.学土质土力学这门课的意义(为什么要学这门课)
(1)本课程的重要性:
“万丈高楼从地起”
地基与基础是整个建筑工程质量与安全的基础,它是建筑物出问题的主要方面(占2/3以上,人为因素除外)。而且一旦出现事故,很难补救。它在建筑的工期(25-30%)与造价(5-50%)方面占较大比重。
难就难在地基的材料“土”的特殊力学性质令人琢磨不透。(2)知识的广泛适用性
当前我国土木工程方兴未艾,随着人类活动的发展,改造地球的能力的提高,本课程知识将很有前途;
一般人员将土力学只与建筑方面的地基基础联系在一块,事实上远不止如此:
交通上的路面可看成基础,路面下的土层可以看成地基,水利的大坝可看成基础,大坝下的土就是地基,应有大土木的概念,只有涉及土的地方,就是土力学的用武之地
(3)知识的长期实用性
当前地球上的建筑业、交通、水利等土木工程建设方兴未艾,随着人类改造地球能力的提高,本学科也日趋完善。
以后人类的生存空间向海洋、太空发展时,会发展成海洋土力学、太空土力学
目前关于海洋土的力学性质研究、海洋边坡稳定分析在我国已有一些进展。
在英国杂志《Geotechnique》就有月球土的力学性质研究的论文。
本学科是一门越来越古老,也越来越年轻的学科。而有些学科,如石油学科,过几十年,石油开采完了,该学科也就寿终正寝了。
二.基本概念
(1)土是矿物或岩石碎屑在自然环境下生成的堆积物。(提问)
(2)土力学是研究土的物理性质、化学和力学性质(荷载、水、温度作用下土体的应力、变形与强度规律),从而解决工程中土体变形和稳定问题的一门学科。
(3)地基:通常把支承基础的土体或岩体成为地基 a)天然地基b)人工地基
(4)基础:将结构承受的各种作用传递到地基上的结构主成部分。(说明基础和地基的不同)根据基础的埋置深度不同可分为浅基础和深基础(基础方面的知识在基础工程会有仔细地讲解)
土力学是土木工程专业的一门重要专业基础课程。是土木工程设计、施工的重要基础。
三.学习目的
(1)掌握土的基本物理、力学、强度特性。
(2)具有土体变形与稳定分析的能力:地基沉降计算
地基承载力计算
土压力计算与挡土墙设计 土坡稳定分析。
四.本课程的特点
1)理论性强:
理论主要涉及土的基本性质、土的应力与变形计算、土坡稳定分析
2)实践性很强:
本课程重要内容都是与工程实践联系十分密切的,书中的理论是为实践服务的,
第四篇:土力学实验教案
实验一
液、塑限试验
一、目的
测定细粒土的液限含水率、塑限含水率、塑性指数、液性指数、确定土的工程分类。
二、试验方法 液塑限联合测定法
三、仪器设备
1、光电式液限、塑限联合测定仪,试样杯
2、天平,称量200g,最小分度值0.1g。
3、其它:烘箱、铝盒、调土刀、刮土刀、凡士林等。
四、试验步骤
1、本次试验原则上应采用天然含水率的土样进行,也允许用风干土制备土样,土样过0.5mm筛后,喷洒配制一定含水率的土样,然后装入密闭玻璃广口瓶内,润湿一昼夜备用(土样制备工作实验室已预先做好)。
2、将已制备好的土样取出调匀后,密实地装入试样杯中(土中不能有孔洞),高出试样杯口的余土,用刮土刀刮平,随即将试样杯放在升降底座上。
3、接通电源,调平底座,吸放安扭调到“吸”的状态,把装有透明光学微分尺的圆锥仪,在锥体上抹以薄层凡士林,使电磁铁吸稳固锥仪。并使光学微分尺垂直于光轴(可从屏幕上观察,刻度线清晰,并在屏幕居中位置)。
4、调节零点,使读数屏幕上的零线与光学微分尺影像零线重合,按下“手”(即手动)按钮,使仪器处于备用状态。
5、转动升降座,待试样杯上升到土面刚好与圆锥仪锥尖接触时,按“放”按钮,圆锥仪自由下落,历时5秒,当音响讯号自动发出声响时,立即从读数屏幕上读出圆锥仪下沉深度,平行两组试验。
6、把升降座降下,细心取出试样杯,剔除锥尖处含有凡士林的土,取出锥体附近的试样不少于15-30g放入称量铝盒内,称量得质量m1,并记下盒号,测定含水率。
7、将称量过的铝盒,放入烘箱;在105℃~110℃的温度下烘至恒量,取出土样盒放入玻璃干燥皿内冷却,称干土的质量m2。
8、重复2~7条的步骤,测试另二种含水率土样的圆锥入土深度和含水率
9、以含水率为横坐标,以圆锥入土深度为纵坐标在双对数坐标纸上绘制含水率与相应的圆锥入土深度关系曲线,如图1-2所示。三点应在一根直线上,如图中A线。如果三点不在同一直线上,通过高含水率的一点与其余两点连两根直线,在圆锥入土深工为2mm处查得相应的两个含水率,用该两含水率的平均值的点与高含水率的测点作直线,在含水率与圆锥下沉深度的关系图上查得下沉深度为17mm对应的含水率为液限,查得下沉深度为2mm对应的含水率为塑限。
五、成果整理
书中表格,双对数座标轴
实验二
固结试验
(一)、试验目的
本试验的目的是测定试样在侧限与轴向排水条件下的变形和压力,或孔隙比和压力的关系,变形和时间的关系,以便计算土的压缩系数、压缩指数、压缩模量、固结系数及原状土的先期固结压力等。
(二)、试验方法
适用于饱和的粘质土(当只进行压缩试验时,允许用于非饱和土)。
试验方法:
1、正常慢固结法;(快速固结试验:本实验采用规定试样在各级压力下的固结时间为10分钟)
(三)、仪器设备
①固结容器;②加压设备;③百分表;④其他:刮土刀、天平、秒表等。
(四)、试验步骤
(1)根据工程需要,切取原状土试样或制备给定密度与含水量的扰动土样。
(2)按试验一、二的方法,测定试样的密度及含水量。
(3)将土样压入环刀,在固结容器内放置护环、透水板和用水湿润后的薄滤纸,将带有环刀(环刀的表面积为30cm,h20mm)的试样,小心装入护环内,然后在试样上放薄滤纸、透水板和加压盖板、传压钢柱,置于加压框架下,对准加压框架的正中,安装量表。
(4)施加0.25kPa的预压压力,使试样与仪器上下各部分之间接触良好,然后调整量表,使指针读数为5.00。
(5)确定需要施加的各级压力。加压等级一般为50.0、100、200、400kPa。(在工程实践中做本实验的最后一级压力应大于上覆土层的计算压力100~200kPa)。
(6)测记稳定读数。当不需要测定沉降速率时,稳定标准规定为每级压力下固结24小时。测记稳定读数后,本实验取固结稳定时间为10分钟,再施加第2级压力。依次逐级加压至试验结束。
(7)试验结束后,迅速拆除仪器部件,取出带环刀的试样。(如系饱和试样,则用干滤纸吸去试样两端表面上的水,取出试样,测定试验后的含水量)。
(8)、计算与制图
1按下式计算试样的初始孔隙比e0 2e0wGs(10.01w0)10
式中:ρ0—试样初始密度,g/cm3;
w0—试样的初始含水量,%。
2按下式计算各级压力下固结稳定后的孔隙比ei
eie0(1e0)hih0
式中:Δhi—某级压力下试样高度变化,即总变形量减去仪器变形量,mm;
h0——试样初始高度,mm。
3绘制e~p的关系曲线
以孔隙比e为纵坐标,压力p为横坐标,将试验成果点在图上,连成一条光滑曲线。
(五)、本试验记录格式详见实验报告
实验三
直剪试验
(一)、试验目的
直接剪切试验是测定土的抗剪强度的一种常用方法。通常采用4个试样,分别在不同的垂直压力p下,施加水平剪切力进行剪切,测得剪切破坏时的剪应力τ。然后根据库仑定律确定土的抗剪强度指标:内摩擦角φ和粘聚力c。
(二)、试验方法与适用范围
1、试验方法
快剪试验:在试样上施加垂直压力后立即快速施加水平剪应力。(本实验采用此方法)
固结快剪试验:在试样上施加垂直压力,待试样排水固结稳定后,快速施加水平剪应力。
慢剪试验:在试样上施加垂直压力及水平剪应力的过程中,均使试样排水固结。
2、适用范围:适用于测定细粒土的抗剪强度指标c和φ及土颗粒的粒径小于2mm的砂土的抗剪强度指标φ。渗透系数k大于10-6cm/s的土不宜作快剪试验。
(三)仪器设备
应变控制式直剪仪:剪切盒、垂直加压框架、量力环、推动机构等;
位移计(百分表):量程5~10mm,分度值0.01mm;
天平、环刀、削土刀、饱和器、秒表、滤纸、直尺等。
2、操作步骤(粘性土)
(1)试样制备:从原状土样中切取原状土试样或制备给定干密度和含水量的扰动土试样。按规范规定,测定试样的密度及含水量。用环刀取试样。
(2)试样安装:
对准上下盒,插入固定销。在下盒内放湿滤纸和透水板。将装有试样的环刀平口向下,对准剪切盒口,在试样顶面放湿滤纸和透水板,然后将试样徐徐推入剪切盒内,移去环刀,重复取样。
转动手轮,使上盒前端钢珠刚好与量力环接触。调整测力计读数为零。依次加上加压盖板、钢珠、加压框架,安装垂直位移计,测记起始读数。
(3)施加垂直压力:一个垂直压力相当于现场预期的最大压力p,一个垂直压力要大于p,其他垂直压力均小于p。但垂直压力的各级差值要大致相等。也可以取垂直压力分别为100、200、300、400kPa 各级垂直压力可一次轻轻施加,若土质软弱,也可以分级施加以防试样挤出。
(4),拔去固定销,开动秒表,以0.8~1.2mm/min的速率剪切(每分钟4~6转的均匀速度旋转手轮),使试样在3~5min剪损。
剪损的标准:①当测力计的读数达到稳定,或有明显后退表示试样剪损;②一般宜剪切至剪切变形达到4mm;③若测力计的读数继续增加,则剪切变形达到6mm为止。
(5)剪切结束后,倒转手轮,尽快移去垂直压力、框架、钢珠、加压盖板等。取出试样,重复实验,直至完成。
(6)、计算与制图
1计算: 按下式计算试样的剪应力
kR
式中:k—测力计率定系数,N/0.01mm;
R—测力计读数,0.01mm;
2制图:①以抗剪强度τf为纵坐标,垂直压力p为横坐标,绘制抗剪强度τf与垂直压力p的关系曲线。
(五)、本试验记录格式详见实验报告
第五篇:土力学总结
一、名词解释
1.最优含水率:在击数一定时,当含水率较低时,击实后的干密度随着含水率的增加而增大;而当含水率达到某一值时,干密度达到最大值,此时含水率继续增加反而招致干密度的减小。干密度的这一最大值称为最大干密度,与它对应的含水率称为最优含水率。
2.静止侧压力系数 :土体在无侧向变形条件下,侧向有效应力与竖向有效应力之比值。3.抗剪强度:土体抵抗剪切变形的最大能力或土体频临剪切破坏时所能承受的最大剪应力称为土的抗剪强度。
4.主动土压力 :当挡土墙离开填土移动,墙后填土达到极限平衡状态时,作用在墙上的土压力称为主动土压力。
5.允许承载力:地基频临破坏时所能的基底压力称为地基的极限承载力,将土中的剪切破坏区限制在某一区域范围内,视地基土能承受多大的基底压力,此压力即为允许承载力。容许承载力等于极限承载力除以安全系数。管涌:管涌是渗透变形的一种形式.指在渗流作用下土体中的细土粒在粗土颗粒形成的空隙中发生移动并被带出的现象. 被动土压力:当挡土墙向沿着填土方向转动或移动时,随着位移的增加墙后受到挤压而引起土压力增加,当墙后填土达到极限平衡状态时增加到最大值,作用在墙上的土压力称为被动土压力。土:是各类岩石经长期地质营力作用风化后的产物,是由各种岩石碎块和矿物颗粒组成的松散集合体。
粒组:将工程性质相似,颗粒大小相近的土粒归并成组,按其粒径大小分成若干组别,称为粒组。
土的结构:指组成土的土粒大小、形状、表面特征,土粒间的连结关系和土粒的排列情况,其中包括颗粒或集合体间的距离、孔隙大小及其分布特点。
塑性指数:粘性土中含水量在液限与塑限两个稠度界限之间时,具有可塑性,且可塑性的强弱可由这两个稠度界限的差值大小来反映,这差值就称为塑性指数IP。即
渗透系数:反映土的透水性能的比例系数,是水力梯度为1时的渗透速度,其量纲与渗透速度相同。其物理含义是单位面积单位水力梯度单位时间内透过的水量。角点法:利用角点下的应力计算公式和应力叠加原理推求地基中任意点的附加应力的方法称为角点法。
侧限压缩模量:土在完全侧限条件下,竖向附加应力σz与相应竖向应变εz之比值,即Es=σz/εz。
附加应力:在外荷作用下,土体中各点产生的应力增量。
基底压力:基础底面传递给地基表面的压力,由于基底压力作用于基础与地基的接触面上,故也称基底接触压力。
平均固结度:土层发生渗流固结,在某一时刻t,土层骨架已经承担起来的有效应力对全部附加压应力的比值,称为土层的平均固结度。
极限承载力:地基从局部剪损破坏阶段进入整体破坏阶段,即将丧失稳定性时的基底压力。临界荷载:塑性区最大深度限制在基础宽度的四分之一(或三分之一)时相应的基底压力。容许承载力:地基稳定有足够的安全度,并且变形控制在建筑物的容许范围内时,单位面积所能承受的最大荷载
应力。
库仑定律:当土所受法向应力不很大时,土的抗剪强度与法向应力可近似用线性关系表示,这一表征土体抗剪强度与法向应力的公式即为库仑定律表达式
式中:c-内聚力,υ-内摩擦角,σ-法向应力,τf-抗剪强度。固结不排水试验:施加周围压力,打开排水阀门,允许排水固结,固结完成后关闭排水阀门,再施加竖向压力,使试样在排水的条件下剪切破坏的三轴压缩试验
二、是非题(每题 1 分)1.附加应力大小只与计算点深度有关,而与基础尺寸无关。(×)2.完全饱和土体,含水量w=100%
(×)
3.固结度是一个反映土体固结特性的指标,决定于土的性质和土层几何尺寸,不随时间变化。(×)4.饱和土的固结主要是由于孔隙水的渗透排出,因此当固结完成时,孔隙水应力全部消散为零,孔隙中的水也全部排干了。(×)5.土的固结系数越大,则压缩量亦越大。(×)6.击实功能(击数)愈大,土的最优含水率愈大。(×)
7.当地下水位由地面以下某一深度上升到地面时地基承载力降低了。(√)
8.根据达西定律,渗透系数愈高的土,需要愈大的水头梯度才能获得相同的渗流速度。(×)9.三轴剪切的CU试验中,饱和的正常固结土将产生正的孔隙水应力,而饱和的强超固结土则可能产生负的孔隙水应力。
(√)10.不固结不排水剪试验得出的 值为零(饱和粘土)。
(√)
三、填空题(每题 3 分)1.土的结构一般有(单粒结构)(蜂窝状结构)和(絮状结构)等三种,其中(絮状结构)是以面~边接触为主的。
2.常水头渗透试验适用于(透水性强的无粘性土),变水头试验适用于(透水性差的粘性土)。3.在计算矩形基底受竖直三角形分布荷载作用时,角点下的竖向附加应力时,应作用两点,一是计算点落在(角点)的一点垂线上,二是B始终指(宽度)方向基底的长度。4.分析土坡稳定的瑞典条分法与毕肖甫法其共同点是(假设滑动面是圆弧面)、(假定滑动体为刚体),不同点是(条分法不考虑条间力)。5.地基的破坏一般有(整体剪切破坏)、(局部剪切破坏)和(冲剪破坏)等三种型式,而其中(整体剪切)破坏过程将出现三个变形阶段。
1、无粘性土的性质主要取决于颗粒的粒径和级配。
2、用三轴试验测定土的抗剪强度指标,在其它条件都相同的情况下,测的抗剪强度指标值最大的是 固结排水剪切试验,最小的是不固结不排水剪切试验。
3、评价粗颗粒土粒径级配的指标有不均匀系数和曲率系数。
4、τf表示土体抵抗剪切破坏的极限能力,当土体中某点的剪应力τ=τf时,土体处于极限平衡状态;τ>τf时,土体处于破坏状态;τ<τf时,土体处于平衡状态。
5、桩按受力分为端承桩和摩擦桩。
6、用朗肯土压力理论计算土压力时,挡土墙墙背垂直、光滑,墙后填土表面因水平。
7、桩的接头方式有 角钢焊接、法兰盘焊接和硫磺胶泥连接。
8、建筑物地基变形的特征有沉降量、沉降差、局部倾斜和倾斜四种类型
1、在天然状态下,自然界中的土是由 固体颗粒、水 和 气体 组成的三相体系。
2、土的结构一般可以分为单粒结构、蜂窝结构和絮状结构三种基本类型。
3、有一个湿土重23克,烘干后重15克,测得土的液限为40%,塑限为24%,则土样的塑性指数Ip= 16 ;液性指数IL 1.83。
4、常用的计算基础最终沉降的方法有分层总和法和《地基规范》推荐法。
5、在荷载作用下,建筑物地基由承载力不足而引起的剪切破坏的形式分为: 整体剪切破坏、局部剪切破坏、冲剪破坏。
6、挡土墙按其结构形式可分为:重力式挡土墙、悬臂式挡土墙和扶臂式挡土墙。
7、摩擦型桩设计以 设计桩底标高 为主要控制指标,以 贯入度 为参考指标。
8、桩按施工方法分为预制桩和灌注桩。
一、填空题(每空1分,共20分)
1、岩石按形成原因分为岩浆岩、沉积岩、变质岩三类。
2、粉土的性质主要与其密实度、天然含水量有关。
3、渗透固结过程实际上是孔隙水压力消散和有效应力增长的过程。
4、已知土中某点σ1=30 kPa,σ3=10 kPa,该点最大剪应力值为 10 kPa,与主应力的夹角为 45。
5、第四纪沉积物按形成条件分为残积层、坡积层、洪积层、冲积层 等几种类型。
6、挡土墙的抗滑动稳定安全系数Ks是抗滑力与、滑动力之比,要求不小于 1.3。
7、摩擦桩基中,如果群桩中的各桩受力与单桩相同,那么群桩的沉降量 大于 单桩;如果群桩的沉降量与单桩相同,那么群桩中的各桩受力 小于单桩。
8、地震烈度是指 受震地区的地面影响和破坏的强烈程度。
二、选择题(每小题2分,共10分)
1、碎石土和砂土定名时下列何项方法正确?(B)
A、按粒组划分 B、按粒组含量由大到小以最先符合者确定 C、按粒组含量由小到大以最先符合者确定 D、按有效粒径确定
2、在粉土中,当动力水(A)土的浮重时,会发生流砂现象。A、大于等于 B、小于等于 C、小于 D、无法确定
3、指出下列何项不属于土的压缩性指标(E为土的变形模量,G为土的剪切模量):D(A)a 1-2(B)E(C)Es(D)G
4、下列何项因素对地基沉降计算深度的影响最为显著?B A、基底附加应力 B、基础底面尺寸 C、土的压缩模量 D、基础埋置深度
5、高层建筑为了减小地基的变形,下列何种基础形式较为有效?B(A)钢筋混凝土十字交叉 基础(B)箱形基础(C)筏形基础(D)扩展基础
二、单项选择题(10分)
1.在研究土的性质时,其最基本的工程特征是(B)A.土的力学性质 B.土的物理性质 C.上的压缩性 D.土的渗透性
2.矩形分布的荷载角点下附加应力系数是L/b、Z/b的函数,其中b是(C)A.矩形面积的长边 B.三角形荷载分布方向的边长 C.矩形面积的短边 D.三角形荷载最大值所对应的边长 3.土的压缩性是指土在压力作用下体积缩小的特性,土的体积减小包括土颗粒本身的压缩、土内空隙中水的压缩和封闭在土中的气体的压缩。在一般压力作用下,土的压缩就是指(D)。
A.土颗粒本身的压缩 B.土内空隙中水的压缩
C.封闭在土中的气体的压缩 D.土中空隙体积的减小
4.形成年代已久的天然土层在自重应力作用下的变形早已稳定,当地下水位下降时,水位变化范围内的土体,土中自重应力会(B)。A.减小 B.增大
C.不变 D.具体问题具体分析
5.地基整体倾覆的稳定安全系数表达式为(D)A.K=抗剪切力矩/剪切力矩 B.K=抗倾覆力/倾覆力 C.K=抗滑动力/滑动力 D.K=抗倾覆力矩/倾覆力矩
1、采用搓条法测定塑限时,土条出现裂纹并开始断裂时的直径应为(B)(A)2mm(B)3mm(C)4mm(D)5mm
2、《地基规范》划分砂土的密实度指标是(C)
(A)孔隙比(B)相对密度(C)标准贯入锤击数(D)野外鉴别
3、建筑物施工速度较快,地基土的透水条件不良,抗剪强度指标的测定方法宜选用(A)(A)不固结不排水剪切试验(B)固结不排水剪切试验(C)排水剪切试验(D)直接剪切试验
4、地基发生整体滑动破坏时,作用在基底的压力一定大于(C)。
(A)临塑荷载(B)临界荷载(C)极限荷载(D)地基承载力
5、夯实深层地基土宜采用的方法是(A)(A)强夯法(B)分层压实法(C)振动碾压法(D)重锤夯实
四、问答及简述题(共 30 分)1.为什么说在一般情况下,土的自重应力不会引起土的压缩变形(或沉降),而当地下水位下降时,又会使土产生下沉呢?(10分)一般情况下,地基是经过了若干万年的沉积,在自重应力作用下已经压缩稳定了。自重应力已经转变为有效应力了,这种情况下,自重应力不会引起土体压缩。但如土体是新近沉积,自重应力还未完全转变未有效应力,则自重应力将产生压缩。(5分)
当地下水位下降时,部分土层从水下变为水上,该土层原来受到浮托力作用,现该浮托力因水位下降而消失,相当于在该土层施加了一个向下的体积力,其大小等于浮托力。该力必然引起土体压缩。(5分)
2.简述用分层总和法求基础沉降的方法步骤。(10分)1 根据作用在基础上的荷载的性质,计算基底压力和分布(2分)2 将地基分层.(1分)3 计算地基中土的自重应力分布(1分)4 计算地基中垂向附加应力分布(1分)5 按算术平均求各分层平均自重应力和平均附加应力(1分)6 求第I层的压缩量,(2分)7 将各个分层的压缩量累加,得到地基的总的沉降量.(2分)3.土的粒径分布曲线和粒组频率曲线如何测得,有何用途?对级配不连续的土,这两个曲线各有什么特征?(10分)
1.土的粒径分布曲线:以土颗粒粒径为横坐标(对数比例尺)小于某粒径的土质量占试样的总质量的百分数为纵坐标绘制的曲线。(2分)根据土的粒径分布曲线可以求得土中各粒组的含量,用于评估土的分类和大致评估的工程性质.某些特征粒径,用于建筑材料的选择和评价土级配的好坏。
2.粒组频率曲线:以个颗粒组的平均粒径为横坐标对数比例尺,以各颗粒组的土颗粒含量为纵坐标绘得。(2分)土的粒径分配曲线不仅可以确定粒组的相对含量,还可以根据曲线的坡度判断土的级配的好坏.(3分)
1、答:土体的压缩主要是由孔隙体积的减小引起的,土中固体颗粒和土中水的体积压缩可以忽略不计。由孔隙比的定义e=VV/VS可知,在土体的压缩过程中,VS始终不变,只有VV随之减小,所以土的压缩性可以用孔隙比表示。
2、答:无粘性土抗剪强度的来源包括内摩擦力和咬合力两部分。影响因素主要有:土颗粒的形状、土的原始密度以及土的含水量
3、答:不相同
(1)计算基底压力时,在确定基础及台阶上土的自重时,基础埋置深度应从设计地面到基础底面的距离。
(2)计算基底附加应力时,在确定基底自重应力时,基础埋置深度应为从自然地面到基础底面的距离。
4、答:(1)土的抗剪强度取决于有效应力的大小。
(2)试验排水条件不同,土样的固结程度不同,即影响有效应力数值的大小,因此测定的抗剪指标也不同。
5、答:挡土墙向着离开填土方向移动,当达到某一位移量时,墙后填土出现滑裂面,作用在挡土墙上的土压力达到最小值,墙后填土处于极限平衡状态。此时作用在挡土墙的土压力称为主动土压力。
6、答:单桩竖向承载力是指单桩在外荷载作用下,不丧失稳定,不产生过大变形所能承受的最大荷载。由桩身材料强度和土对桩支承力综合确定。其中确定土对桩支承力方法主要有:桩的静载荷试验和按静力学公式计算等。
1、直剪试验存在哪些缺点? 答:(1)土样在试验中不能严格控制排水条件,无法量测孔隙水压力;(2)剪切面固定在剪切盒的上下盒之间,该处不一定是 土样的薄弱面;(3)试样中应力状态复杂,有应力集中情况,仍按均匀分布计算;
(4)试样发生剪切后,土样在上下盒之间错位,实际剪切面积减小,但仍按初始面积计算。
2、影响边坡稳定的因素有哪些? 答:(1)土坡的边坡坡度。以坡角表示,坡角θ越小越安全,但不经济。
(2)土坡的边坡高度H,在其它条件都相同的情况下,边坡高度H越小越安全。(3)土的物理力学性质。如γ,c,υ越大,则土坡越安全
3、产生被动土压力的条件是什么?
答:挡土墙向着填土方向移动,当达到某一位移量时,墙后填土出现滑裂面,作用在挡土墙上的土压力达到最大值,墙后填土处于极限平衡状态。此时作用在挡土墙的土压力称为被动土压力。
4、什么是单桩竖向承载力?确定单桩承载力的方法有哪几种? 答:(1)单桩竖向承载力是指单桩在外荷载作用下,不丧失稳定,不产生过大变形所能承受的最大荷载。
(2)由桩身材料强度和土对桩支承力综合确定。其中确定土对桩支承力方法主要有:桩的静载荷试验和按静力学公式计算等。
1.答案:粘性土含水多少而呈现出的不同的物理状态称为粘性土的稠度状态。土的稠度状态因含水量的不同,可表现为固态,塑态与流态三种状态。含水量相对较少,粒间主要为强结合水连结时表现为固态。含水量较固态为大,粒间主要为弱结合水连结,具可塑性,表现为塑态。含水量继续增加、粒间主要为液态水占据,连结极微弱,表现为流态。
2.答案:工程上常把大小相近的土粒合并为组,称为粒组。粒径大于0.075mm的各粒组,均由原生矿物所构成;粉粒组由原生矿物与次生矿物混合组成,其中以石英为主,其次为高岭石及难溶盐;粘粒组主要由不可溶性次生矿物与腐植质组成,有时也含难溶盐。
1.答:土体的抗剪强度主要是由两部分所组成的,即摩擦强度σtgυ和粘聚强度c。其中摩擦强度又包括两个组成部分:(1)滑动摩擦力(2)咬合摩擦力。一般认为,无粘性土不具有粘聚强度。影响土体的抗剪强度的主要因素是:密度,粒径级配,颗粒形状,矿物成分,颗粒间距离,土粒比表面积,胶结程度等。
2.答:挡土墙是否发生位移以及位移方向和位移量,决定了挡土墙所受的土压力类型,并据此将土压力分为静止土压力,主动土压力和被动土压力。挡土墙不发生任何移动或滑动,这时墙背上的土压力为静止土压力。当挡土墙产生离开填土方向的移动,移动量足够大,墙后填土体处于极限平衡状态时,墙背上的土压力为主动土压力。当挡土墙受外力作用向着填土方向移动,挤压墙后填土使其处于极限平衡状态时,作用在墙背上的土压力为被动土压力。挡土墙所受的土压力随其位移量的变化而变化,只有当挡土墙位移量足够大时才产生主动土压力和被动土压力,若挡土墙的实际位移量并未达到使土体处于极限平衡状态所需的位移量,则挡土墙上的土压力是介于主动土压力和别被动土压力之间的某一数值。
2.答案:发生整体剪切破坏的地基,从开始承受荷载到破坏,经历了一个变形发展的过程。这个过程可以明显地区分为三个阶段。
(1)直线变形阶段。地基处于稳定状态,地基仅有小量的压缩变形,主要是土颗粒互相挤紧、土体压缩的结果。所以此变形阶段又称压密阶段。
(2)局部塑性变形阶段。变形的速率随荷载的增加而增大,p-S关系线是下弯的曲线。这一阶段是地基由稳定状态向不稳定状态发展的过渡性阶段。
(3)破坏阶段。当荷载增加到某一极限值时,地基变形突然增大。地基中已经发展到形成与地面贯通的连续滑动面,地基整体失稳。
在地基变形过程中,作用在它上面的荷载有两个特征值:一是临塑荷载pcr,一是极限荷载pu。
3.答案:(1)按限制塑性变形区的范围来确定地基的容许承载力(2)根据极限承载力确定地基容许承载力(3)按地基规范承载力表确定地基容许承载力(4)原位试验求地基的容许承载力
1、比较朗肯土压力理论和库仑土压力理论的基本假定何适用条件?(4分)答:朗肯土压力理论假定挡土墙背竖直、光滑,其后填土表面水平并无限延伸。
库仑土压力理论假定:a.墙后填土是理想的散粒体。b.滑动破裂面为通过墙踵的平面。朗肯土压力理论只能解决挡土墙背竖直、光滑,其后填土表面水平的问题,而 库仑土压力理论能解决挡土墙背倾斜、填土表面倾斜的一般土压力问题。
1、请简述软弱土有哪些特性?
答:软弱土的特性有:天然含水量高、孔隙比大、压缩性高、渗透性差、具有构荷性。
2、请说明单向固结理论的假定条件。答:单向固结理论的假定条件:(1)土的排水和压缩只限竖直方向,水平方向不排水,不压缩;(2)土层均匀,完全饱和。在压缩过程中,渗透系数k和压缩模量Es=(1+e)/a不变;(3)附加应力一次骤然施加且沿土层深度z为均匀分布。
3、请问确定基础埋置深度应考虑哪些因素?
答:确定基础埋置深度应综合考虑以下因素:上部结构情况、工程地质和水文地质条件、当地冻结深度和建筑场地的环境条件。
4、影响饱和土液化的主要因素有哪些?、答:影响饱和土液化的主要因素有:土的类别、排水条件、土的密实度、土的初始固结压力及振动作用强度和持续时间。
1.确定地基承载力的常用方法有那些?
确定地基承载力的常用方法有:理论公式计算,根据土的性质指标查规范中的承载力表以及由现场荷载试验和静力触探试验确定等三类。
4.什么叫前期固结应力?什么叫超固结比?讨论它们有什么意义?把土在历史上曾受到过的最大有效应力称为前期固结应力;把前期固结应力与现有有效 应力之比定义为超固结比。超固结比可以反映土体经历不同的应力历史问题,用于讨论应力历史对土体压缩性的影响。
2、简述天然地基上的浅基础设计得一般步骤。(4分)答:
1、准备资料;
2、选择基础的结构类型和材料;
3、选择持力层,确定合适的地基基础深度;
4、确定地基承载力;
5、根据地基承载力,确定基础底面尺寸;
6、进行必要的验算(包括变形和稳定性验算);
7、基础的结构和构造设计;
8、绘制基础施工图。
3、地基处理的目的主要有哪些?(4分)答:
1、提高地基强度或增加其稳定性;
2、降低地基的压缩性,以减少其变形;
3、改善地基的渗透性,减少其渗漏或加强其渗透稳定性;
4、改善地基的动力特性,以提高其抗震性能;
5、改良地基的某种特殊不良特性,以满足工程的要求。1.确定地基承载力的常用方法有那些?
确定地基承载力的常用方法有:理论公式计算,根据土的性质指标查规范中的承载力表 以及由现场荷载试验和静力触探试验确定等三类。
3.简述用分层总和法求基础沉降的方法步骤
(1)选择计算剖面,在每个剖面上选择若干计算点。
(2)地基分层。每层厚度可以控制在2~4 米或小于或等于0.4B,B 为基础的宽度。
(3)求出计算点垂线上各分层层面处的竖向自重应力,并绘出分布曲线。
(4)求出计算点垂线上各分层层面处的竖向附加应力并绘出它的分布曲线。并以附加
应力等于0.2 或0.1 倍自重应力为标准确定压缩层的厚度。
(5)按算术平均算出各分层的平均自重应力和平均附加应力。
(6)根据第i 分层的平均初始应力、初始应力和附加应力之和,由压缩曲线查出相应的初始孔隙比和压缩稳定后孔隙比。
(7)按无侧向变形条件下的沉降量计算公式分层计算各层的压缩量,最后总和得出基础的沉降量。
五、计算题(共 30 分)1.某一取自地下水位下的饱和试样,用环刀法测定其容重。环刀的体积为50cm3,环刀重为80g,环刀加土重为172.5g,该土的土粒比重为2.7,试计算该土样的天然容重、饱和容重、干容重及孔隙比。(10分)
解:m=72.5-80=92.5;v=50
cm3 饱和土:ρ =ρ= =92.5/50=1.85g/cm3(3分)r =r=1.85×9.8=18.13 kN/m3(2分)因为: ; =1.0 =2.7/(1+1)=1.35g/cm3;(4分)rd=1.35×9.8=13.23kN/m3(1分)
2.对一完全饱和的正常固结土试样,为了模拟其原位受力状态,先在周围压力σc=140KPa作用下固结,然后再在Δσ3=0的情况下进行不排水剪试验,测得其破坏时的σ1=260,同时测出破坏时的孔隙水应力Uf=110KPa,试求:(1)该试样的不排水强度Cu;(2)破坏时试样中的有效主应力σ'1及σ'3;(3)破坏时的孔隙水应力系数Af;(4)试样的固结不排水抗剪强度指标Ccu、υcu和有效应力强度指标c', υ'。(10分)解:1.σ3=σc=140kPa;σ1=260kPa;故 Cu=(σ1-σ3)/2=(260-140)/2=60 kPa(2分)
2、σ'1=σ1-uf=260-110=150 kPa;σ'3=σ3-uf=140-110=30 kPa(2分)
3、(2分)
4、正常固结土,Ccu=0;C'=0 υcu=17.5°(2分)υ'=41.8°(2分
3.墙背直立的光滑挡土墙,墙高为10m,两层填土的厚度与性质指标如下图所示,试求作用在墙背上总的主动土压力,并绘出压力分布图(10分)解:ka1=tg2(45-ø1/2)=tg2(45-15)=tg230(1分)ka2=tg2(45-ø2/2)=tg2(45-17)=tg228(1分)因C2>0,需判定下层土是否出现拉应力区
下层土无拉应力区
B点交界面上:pa1=r1H1 ka1=16×3×tg230=16 kPa(2分)B点交界面下:pa2=r1H1 ka2-2c2 =16×3×tg228-2×8×tg28=5.1 kPa(2分)C点:pa3=(r1H1+r2H2)ka2-2c2(2分)=(16×3+20×7)×tg228-2×8×tg28=44.6 kPa Pa=0.5×3×16+0.5×7×(5.1+44.6)=197.95 kN/m(2分)
1、某土样重180g,饱和度Sr=90%,相对密度为2.7,烘干后重135g。若将该土样压密,使其干密度达到1.5g/cm3。试求此时土样的天然重度、含水量、孔隙比和饱和度。(10分)解:由已知条件可得原土样的三相数值为: m=180g ms=135g mw=180-135=45g Vs=135/2.7=50cm3 Vw=45 cm3 Vv=45/0.9=50cm3 V=50+50=100 cm3 土样压密后的三相数值为:V=135/1.5=90cm3 Vv=90-50=40 cm3 Vw=40 cm3 mw=40g m=135+40=175g γ=175/90×10=19.4 kN/m3 w=40/135×40%=30% e=40/50=0.8 Sr=40/40×100%=100%
4、已知某桩基础,桩的截面尺寸为300㎜×300㎜,桩长8.5 m,根据静载荷试验的S-logt曲线确定极限荷载为600kN,其它条件如图所示,试验算单桩承载力是否满足要求?(14分)解:(1)确定单桩承载力 Rk 按静载荷试验:Rk=600/2=300kN 按经验公式:Rk=qpAp+up∑qsilsi
=1800×0.32+4×0.3×(1×12+4.9×10+1.6×25+1×35)=325.2kN 所以取小值,Rk=300kN(2)单桩平均轴向力验算:
每桩受力:Q=(N+G)/n=(2130+2.3×2.6×1.5×20)/8=2309.4/8=288.68kN< Rk=300kN(满足)(3)单桩中受最大轴向力桩的验算: My=M+Q·H=260+40×1.5=320kN·m Qmax=(N+G)/n+My·xmax/∑xi2 =288.68+320×1/(4×12+2×0.52)=359.79kN<1.2 Rk=360kN(满足)(1)天然密度:
含水量: 孔隙比:
饱和度:
(2)液性指数: 塑性指数:
土的稠度状态为:硬塑;
2.解:
4、有一挡土墙高H=6m,墙后填土水平并有均布荷载q=9KPa,墙背垂直、光滑,填土物理性质指标如下:,试计算坡顶裂缝出现后的主动土压力,并确定其总土压力的作用点的位置。解:
主动土压力系数:
挡土墙底部的土压力强度: 临界深度: 主动土压力:
主动土压力距墙底的距离为:
1、岩体的强度小于岩石的强度主要是由于()。
(A)岩体中含有大量的不连续面
(B)岩体中含有水
(C)岩体为非均质材料
(D)岩石的弹性模量比岩体的大
2、岩体的尺寸效应是指()。
(A)岩体的力学参数与试件的尺寸没有什么关系
(B)岩体的力学参数随试件的增大而增大的现象
(C)岩体的力学参数随试件的增大而减少的现象
(D)岩体的强度比岩石的小 3、影响岩体质量的主要因素为()。
(A)岩石类型、埋深
(B)岩石类型、含水量、温度
(C)岩体的完整性和岩石的强度(D)岩体的完整性、岩石强度、裂隙密度、埋深
4、我国工程岩体分级标准中岩石的坚硬程序确定是按照()。
(A)岩石的饱和单轴抗压强度
(B)岩石的抗拉强度
(C)岩石的变形模量
(D)岩石的粘结力
5、下列形态的结构体中,哪一种具有较好的稳定性?()(A)锥形(B)菱形(C)楔形(D)方形
1、A
2、C
3、C
4、A
5、D
6、A
7、C
8、B
9、A
10、D
6、沉积岩中的沉积间断面属于哪一种类型的结构面?()(A)原生结构面
(B)构造结构面(C)次生结构面
7、岩体的变形和破坏主要发生在()
(A)劈理面(B)解理面(C)结构面D)晶面
8、同一形式的结构体,其稳定性由大到小排列次序正确的是()(A)柱状>板状>块状(B)块状>板状>柱状(C)块状>柱状>板状(D)板状>块状>柱状
9、不同形式的结构体对岩体稳定性的影响程度由大到小的排列次序为()(A)聚合型结构体>方形结构体>菱形结构体>锥形结构体(B)锥形结构体>菱形结构体>方形结构体>聚合型结构体(C)聚合型结构体>菱形结构体>文形结构体>锥形结构体(D)聚合型结构体>方形结构体>锥形结构体>菱形结构体
10、岩体结构体是指由不同产状的结构面组合围限起来,将岩体分割成相对的完整坚硬的单无块体,其结构类型的划分取决于()(A)结构面的性质(B)结构体型式(C)岩石建造的组合(D)三者都应考虑
1、A
2、C
3、C
4、A
5、D
6、A
7、C
8、B
9、A
10、D 选择题
1、在我国工程岩体分级标准中,软岩表示岩石的饱和单轴抗压强度为()。(A)15~30MPa(B)<5MPa(C)5~15MPa(D)<2MPa
2、我国工程岩体分级标准中岩体完整性确定是依据()。(A)RQD(B)节理间距(C)节理密度(D)岩体完整性指数或岩体体积节理数
3、在我国工程岩体分级标准中,较完整岩体表示岩体的完整性指数为()。(A)0.55~0.35(B)0.35~0.15(C)>0.55(D)0.75~0.55
4、在我国工程岩体分级标准中,岩体基本质量指标是由哪两个指标村确定的?()。(A)RQD和节理密度(B)岩石单轴饱和抗压强度和岩体的完整性指数(C)地下水和RQD(D)节理密度和地下水
5、我国工程岩体分级标准中是根据哪些因素对岩石基本质量进行修正的?()。①地应力大小; ②地下水; ③结构面方位; ④结构面粗糙度。(A)①,④(B)①,②(C)③(D)①,②,③
6、某岩石、实测单轴饱和抗压强度RC=55MPa,完整性指数KV=0.8,野外鉴别为原层状结构,结构面结合良好,锤击清脆有轻微回弹,按工程岩 体分级标准确定该岩石的基本质量等级为()(A)I级(B)II级(C)III级(D)IV级 问答题
1、为什么要进行工程岩体分类?
1、C
2、D
3、D
4、B
5、D
6、B 选择题
1、初始地应力主要包括()。
(A)自重应力(B)构造应力
(C)自重应力和构造应力(D)残余应力
2、初始地应力是指()。
(A)未受开挖影响的原始地应力
(B)未支护时的围岩应力
(C)开挖后岩体中的应力
(D)支护完成后围岩中的应力
3、构造应力的作用方向为()。
A、铅垂方向 B、近水平方向
C、断层的走向方向 D、倾斜方向
4、下列关于岩石初始应力的描述中,哪个是正确的?()。(A)垂直应力一定大于水平应力
(B)构造应力以水平应力为主(C)自重应力以压应力为主
(D)自重应力和构造应力分布范围基本一致
5、如果不时行测量而想估计岩体的初始应力状态,则一般假设侧压力系数为下列哪一个值比较好?()
(A)0.5(B)1.0(C)<1(D)>1
6、测定岩体的初始应力时,最普遍采用的方法是()(A)应力恢复(B)应力解除法(C)弹性波法(D)模拟试验
1、C
2、A
3、B
4、B
5、B
6、B 选择题
1、在工程实践中,洞室围岩稳定性主要取决于(B)。
(A)岩石强度(B)岩体强度(C)结构体强度(D)结构面强度 计算题
7.1解释岩体原始应力﹑二次应力﹑围岩压力。
7.2某直墙型隧道处于Ⅳ类围岩,浄宽5.5m,浄高7.4m,围岩容重 r=20,适用铁路隧道计算方法确定围岩压力。
7.3一直墙型隧道建于软弱破碎岩体中,埋深40m,围岩岩石容重 r=23 内摩檫角
q=36 ,岩石抗压强度R=8Mpa,隧道宽6m,高8m,使用泰沙基理论和普氏理论确定围岩压力。7.4Ⅲ类围岩中的一直墙型隧道,埋深26m,围岩容重22,计算内摩擦角30度,隧道宽6m,高8m。试按浅埋隧道确定围岩压力。